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Abstract: Developing highly efficient and stable electrocatalysts for hydrogen evolution reaction
(HER) is regarded as a crucial way to reduce energy loss in water splitting. Herein, NiSe2/MoSe2

heterostructures grown on graphene nanosheets (NiSe2-MoSe2 HTs/G) have been in situ synthesized
by a simple hydrothermal reaction. As an electrocatalyst for HER, NiSe2-MoSe2 HTs/G delivers
superior performance with a low Tafel slope of 65 mV dec−1, a small overpotential of 144 mV at
10 mA cm−2, and long-term stability up to 24 h. The superior performance for HER can be mainly
ascribed to the synergistic effects of NiSe2-MoSe2 heterostructures, which can facilitate the rapid
electron transfer from the electrode to the exposed MoSe2 edges to take part in the HER reaction,
thus boosting the HER kinetics. Moreover, the graphene matrix with high conductivity can not only
improve the overall conductivity of the composite but also greatly increase the exposed active sites,
therefore further promoting the HER performance. This study provides a simple route for fabricating
bimetallic selenides-based heterostructures on graphene as an efficient and stable electrocatalyst
for HER.

Keywords: NiSe2/MoSe2 heterostructures; synergistic effect; electrocatalyst; HER

1. Introduction

The excessive combustion of fossil fuels in our daily life has brought about severe
environmental problems and energy crises [1]. As we all know, hydrogen, a renewable
energy source, has been considered a promising candidate to replace natural fossil fuels
due to its clean combustion products and high energy density [2–4]. Electrochemical water
splitting has been regarded as an efficient strategy to produce hydrogen [5]. However, the
high overpotentials on the electrodes severely increase the power consumption and cost in
the real electrocatalytic process [6]. Platinum (Pt), a commercial catalyst, has been identified
as the most efficient electrocatalyst for the HER [7]. However, its extreme scarcity results in
high costs, which limits the commercialization. Hence, highly efficient non-noble metal
catalysts must be developed to reduce the overpotential in the HER, aiming to cut costs [8].

In recent years, two-dimensional (2D) transition-metal dichalcogenides (TMDs) in-
cluding MoS2 [9], WS2 [10], WSe2 [11], MoSe2 [12], etc., have emerged as competitive
alternatives for HER to Pt-based electrocatalysts due to their numerous advantages, includ-
ing excellent catalytic activity, high stability, and low costs [13]. Generally, the monolayer
TMDs consist of a transition-metal atomic plane (Mo, W, Re, Hf, etc.) sandwiched between
two chalcogen (S or Se) planes [14]. The adjacent layers of 2D TMDs are coupled by van
der Waals force to construct bulk crystals [15]. Among them, nonprecious 2D MoSe2 has
received widespread attention as a promising HER catalyst due to its fascinating structures
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and low Gibbs free energy [16]. However, it is well-known that the HER performance of
2D MoSe2 is strongly limited by its weak conductivity and the lack of exposed active edges,
which play key roles in the HER process [17–19]. At present, the two parameters are still
challenging to simultaneously optimize. Furthermore, MoSe2-based catalysts exhibit higher
HER activity in acidic media, but often show slower HER kinetics in alkaline media because
the HER activity under alkaline conditions is strongly limited by the lack of H+. Hence,
these above shortcomings result in its severely limited potential application in the HER.

To address these issues, combining 2D MoSe2 with metallic TMDs such as CoSe2 [20],
Ni0.85Se [21], NiSe [22], NiSe2 [23], etc., has been demonstrated as an effective strategy to
promote its catalytic HER performance under alkaline conditions. For instance, Wang et al.
reported that MoSe2–CoSe2 nanotubes present highly efficient performance for HER in the
alkaline medium because their unique hierarchical architecture can suppress the restacking
of MoSe2 layers to gain more active sites for HER [24]. Zhou et al. found that the electrons
in MoSe2-NiSe nanohybrids can be easily transferred from the metallic NiSe nanocrystallite
to the exposed MoSe2 edges, thus enhancing HER performance [22]. Similarly, Zhang et al.
demonstrated that 3D MoSe2@Ni0.85Se nanowire exhibits remarkably improved alkaline
HER performance because the conductive Ni0.85Se can facilitate fast electron transfers from
the electrode to the exposed MoSe2 edges [16]. Despite such great achievements that have
been made, it is urgent to design and synthesize novel MoSe2-based bimetallic selenides
for further improving HER performance compared with noble metal-based catalysts.

In addition to this strategy, carbon-based materials such as MOF-derived carbon [25],
carbon nanotube [26], graphene [27], etc., are broadly applied in enhancing the catalytic
performance of transition-metal selenides. In particular, graphene has been demonstrated
as an ideal carbon matrix for the transition-metal selenide catalysts, owing to its large
surface area, adjustable porosity, high conductivity, and uniform catalyst distribution [28].
Considering the above, it is expected that a simple method can be developed to synthesize
Mo-based bimetallic selenides incorporated with graphene as efficient hybrid electrocata-
lysts for HER under alkaline conditions.

In this work, we proposed a simple hydrothermal reaction to construct a NiSe2-MoSe2
heterostructures grown on graphene nanosheets (NiSe2-MoSe2 HTs/G). It demonstrated
that the NiSe2-MoSe2 HTs constructed by metallic NiSe2 nanocrystallites embedded in few-
layer MoSe2 nanosheets show a remarkably enhanced HER performance in alkaline media
compared to pure MoSe2 and NiSe2. When supported on graphene, its HER performance
can be further improved. The enhanced HER activity of NiSe2-MoSe2 HTs/G can be mainly
attributed to the synergistic effects between metallic NiSe2 nanocrystallites and MoSe2
nanosheets, which can efficiently promote the rapid electron transfer from metallic NiSe2
to the exposed MoSe2 edges. Furthermore, the unique nanostructure of NiSe2-MoSe2
heterostructures supported on highly conductive graphene can not only efficiently expose
the active sites on the heterostructures but also greatly enhance the overall conductivity of
the composite, thus resulting in superior HER performance. This work might shed new
light on the rational synthesis of graphene-supported bimetallic selenide heterostructures
of the tunable HER activities.

2. Results and Discussion

NiSe2-MoSe2 heterostructures grown on graphene nanosheets (NiSe2-MoSe2 HTs/G)
were synthesized by a one-step hydrothermal method. In the hydrothermal process,
the graphene oxides (GO) were reduced to graphene nanosheets by hydrazine hydrate.
Meanwhile, the Ni2+ and Mo4+ cations reacted with Se2- anions to form NiSe2-MoSe2
heterostructures, which were in situ grown on reduced graphene nanosheets to obtain
NiSe2-MoSe2 HTs/G composite. The crystalline structures of NiSe2, MoSe2, NiSe2-MoSe2
HTs, and NiSe2-MoSe2 HTs/G were determined by X-ray diffraction (XRD). The diffrac-
tion peaks at 13.25◦, 31.78◦, 37.98◦, and 56.01◦ in the XRD pattern of MoSe2 (Figure S1a)
correspond to the (002), (100), (103), and (110) planes of hexagonal 2H-MoSe2, respectively
(JCPDS No. 87-2419). In the XRD patterns of NiSe2 (Figure S1b), NiSe2-MoSe2 HTs, and
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NiSe2-MoSe2 HTs/G (Figure 1a), the diffraction peaks at 29.95◦, 33.58◦, 36.89◦, 42.86◦,
50.74◦, 55.52◦, and 57.81◦ are ascribed to the (200), (210), (211), (220), (311), (023), and
(321) planes of cubic NiSe2, respectively (JCPDS No. 89-7161). It is worth noting that
there are no obvious diffraction peaks of MoSe2 appear in both NiSe2-MoSe2 HTs and
NiSe2-MoSe2 HTs/G samples, suggesting the MoSe2 in the composites with few layers or
low crystallinity. This demonstrates that the formation of NiSe2-MoSe2 heterostructures
can prevent the restacking of the adjacent layers for 2D MoSe2. As shown in Raman profiles
(Figure 1b), both NiSe2-MoSe2 HTs and NiSe2-MoSe2 HTs/G samples present bands that
are identical with the characteristic peaks observed on pure NiSe2 and MoSe2 counterparts
(Figure S2), implying the coexistence of NiSe2 and 2H-MoSe2 in these two composites.
In detail, the band at 215.2 cm−1 is corresponded to the Ag signal of NiSe2, while the
bands at 238.1 and 287.6 cm−1 are associated with the A1g and E1

2g vibration modes of
2H-MoSe2 [16]. Moreover, the D (1348.8 cm−1) and G (1592.1 cm−1) bands of graphene are
observed in the Raman spectrum of NiSe2-MoSe2 HTs/G, which suggests the formation
of the NiSe2-MoSe2 HTs/G hybrid [29]. The high ID/IG value (1.14) indicated that the
reduced graphene has abundant carbon defects, which can efficiently promote the growth
of NiSe2-MoSe2 heterostructures on the surfaces of graphene nanosheets [30].
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Figure 1. (a) XRD patterns of NiSe2-MoSe2 HTs and NiSe2-MoSe2 HTs/G composite. (b) Raman spec-
tra of NiSe2-MoSe2 HTs and NiSe2-MoSe2 HTs/G composite. The inset is the enlarged Raman spectra.

The chemical states of as-prepared NiSe2/MoSe2 Hs/G composite were measured by
X-ray photoelectron spectroscopy (XPS). As shown in Figure 2a, the predominant elements
of Ni, Mo, Se, and C are observed in the XPS survey spectrum of the NiSe2/MoSe2 Hs/G
composite. The Ni 2p spectrum (Figure 2b) demonstrates that peaks located at 853.6 and
870.9 eV are assigned to the Ni0 2p3/2 and Ni0 2p1/2 of metallic NiSe2, and a couple of
peaks located at 856.1 and 873.7 eV belong to the Ni2+ 2p3/2 and Ni2+ 2p1/2 of Ni oxidation
state [31]. Moreover, the remaining two peaks located at 860.8 and 877.9 eV are ascribed
to the satellite peaks of Ni 2p [32]. In the Mo 3d spectrum (Figure 2c), the Mo4+ 3d5/2
and Mo4+ 3d3/2 peaks are observed at 228.4 and 231.7 eV, which are ascribed to Mo4+

in MoSe2 [33]. Furthermore, the relatively smaller peak at 230.1 eV is attributed to the
Se 3s, while the high binding-energy peaks of Mo6+ 3d5/2 (232.7) and Mo6+ 3d3/2 (235.5 eV)
correspond to MoO3 species, which may result from the oxidation of the catalyst sample
in air [24]. In the Se 3d spectrum (Figure 2d), the Se 3d5/2 and Se 3d3/2 peaks appear at
54.1 and 55.2 eV, respectively, revealing the existence of Se2- [34]. In addition, another peak
at 58.9 eV is originated from the oxidation states of the exposed Se edge [35]. The XPS
data of Ni 2p, Mo 3d and Se 3d including peak positions and amounts for the composite
material is summarized in Table S1. The ratio of Ni to Mo in the hybrid material is ~1.16:1,
which is close to the raw materials. In the C 1s spectrum (Figure S3), the peaks located at
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284.6, 286.7, and 288.9 eV are attributed to the C-C, C-O, and COOH bonds of graphene,
respectively [36]. These XPS results further confirm that the NiSe2-MoSe2 HTs/graphene
composite was successfully formed in the one-step hydrothermal process.
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Figure 2. XPS spectra of NiSe2-MoSe2 HTs/G composite: (a) survey, (b) Ni 2p, (c) Mo 3d, and
(d) Se 3d.

The morphologies of MoSe2, NiSe2, NiSe2-MoSe2 HTs, and NiSe2-MoSe2 HTs/G were
first characterized by SEM. The SEM images shown in Figure S4 indicate that pure MoSe2
has a flower-like morphology with many nanosheets. In sharp contrast, pure NiSe2 presents
large globular nanostructures with an average size of 100 nm (Figure S5). Notably, the
NiSe2-MoSe2 HTs show a similar morphology with no obvious stack compared to pure
MoSe2 (Figure 3a). More importantly, there are no large globular NiSe2 nanostructures
that appear in the NiSe2-MoSe2 HTs (Figure 3b), which suggests that the NiSe2-MoSe2
heterostructures prevented the growing up of pure NiSe2. As shown in Figure 3c, the
NiSe2-MoSe2 HTs have been uniformly grown on the graphene matrix in the hydrothermal
process because of the rich oxidizing functional groups on graphene oxide are beneficial
to the growth of the catalysts [37]. Undoubtedly, the porous graphene matrixes with high
conductivity can remarkably enhance the electron transfer from the electrode to the active
sites on NiSe2-MoSe2 HTs and further improve the HER performance [38]. Furthermore,
the high-resolution SEM image (Figure 3d) indicates that the graphene matrixes efficiently
prevent the aggregation of NiSe2-MoSe2 HTs, thus promoting the maximumly exposed
reactive sites.
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The TEM analysis was further used to characterize the nanostructures of the NiSe2-
MoSe2 HTs/G composite. The TEM images (Figure 4a,b) show that the uniform NiSe2-
MoSe2 HTs nanostructures are tightly supported on the surfaces of graphene, which is
consistent with SEM images. The high-resolution TEM image (Figure 4c) further indicates
that many nanosheet-like MoSe2 nanostructures present abundant exposed few-layered
edges, implying that combining MoSe2 with NiSe2 and graphene can be advantageous
to prevent the stack of MoSe2 layers and maximally expose more active MoSe2 edges.
Moreover, the HRTEM images (Figures 4d and S6) demonstrate the formation of the
NiSe2-MoSe2 heterostructures, which are constructed by NiSe2 nanocrystallites uniformly
embedded in few-layered MoSe2 nanosheets (<10 layer). Compared to pure NiSe2, the
NiSe2 nanocrystallites show a smaller particle size of ~10 nm. The discontinuous and
distortion lattice fringes reveal that the NiSe2 and MoSe2 in the heterostructures possess
rich defects, which can be employed as active sites in HER reaction [39]. Compared with
bulk MoSe2 (0.65 nm), the highly expanded lattice fringe of about 0.68 nm corresponds
to the (002) planes of 2H-MoSe2 [40]. The clear lattice fringes of 2H-MoSe2 indicate that
the MoSe2 in the NiSe2-MoSe2 hybrid is not amorphous. In addition, the lattice fringes
of 0.27 nm on ultra-small NiSe2 nanocrystallites correspond to the (210) planes of cubic
NiSe2 [41]. The relevant element-mapping images of NiSe2-MoSe2 heterostructure-grown
graphene (Figure 4e–h) display that the Ni, Mo, and Se elements are evenly distributed
across the nanosheet-like nanostructure (Figure S7), suggesting that the ultra-small NiSe2
nanoparticles are uniformly distributed in the MoSe2 nanosheets.
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The NiSe2, MoSe2, NiSe2-MoSe2 HTs, NiSe2-MoSe2 HTs/G, and Pt-C samples were
used as HER catalysts to assess their electrocatalytic performance in 1.0 M KOH solution
using the linear-sweep voltammetry measurement. Before tests, the electrolyte was bubbled
with N2 saturation for 30 min. As displayed in Figure 5a, the LSV curves indicate that
the 20% Pt-C catalyst delivers the highest HER activity in 1.0 M KOH, which is consistent
with the previous report [42]. Compared to pure NiSe2 and MoSe2, the NiSe2-MoSe2 HTs
composite exhibits a remarkedly improved electrocatalytic performance. Since the pure
NiSe2 and MoSe2 in our work show inferior electrocatalytic activity, the much-enhanced
HER performance of NiSe2-MoSe2 HTs can be attributed to the synergistic effect of NiSe2
nanocrystallites and MoSe2 nanosheets. The metallic NiSe2 nanocrystallites embedded
in MoSe2 nanosheets can boost the electrons’ rapid transfer from the graphene matrix to
the exposed MoSe2 edges to take part in the HER reaction, and thus promoting the HER
kinetics [43]. More importantly, the electrocatalytic HER performance of NiSe2-MoSe2
HTs/G is remarkably improved compared with NiSe2-MoSe2 HTs, which suggests that
the adding of graphene further enhances their HER performance. It can be expected that
the highly conductive graphene nanosheets can accelerate the electron transfers from the
electrode to NiSe2-MoSe2 HTs, and therefore further promoting the HER kinetics. As a
result, NiSe2-MoSe2 HTs/G delivers a much lower onset overpotential of 69 mV, compared
with NiSe2-MoSe2 HTs (119 mV), NiSe2 (164 mV), and MoSe2 (196 mV). More importantly,
a current density of 10 mA cm−2 was achieved at a relatively small overpotential of 144 mV,
which is lower than that of NiSe2-MoSe2 HTs (212 mV), NiSe2 (258 mV), and MoSe2
(319 mV). In addition, NiSe2-MoSe2 HTs/G possesses favorable catalytic HER perfor-
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mance compared to most of the TMDs-based HER electrocatalysts reported in recent years
(Table S2), such as CoSe2-MoSe2/rGO-C (215 mV) [44], MoSe2-NiSe@C heterostructures
(154 mV) [33], 10% Ni–WSe2 (215 mV) [45], MoSe2–CoSe2 NTs (206 mV) [24], NiSe2/MoS2
heterostructures (188 mV) [46], and so on, suggesting the potential practical application of
NiSe2-MoSe2 HTs/G in alkaline electrolyte.
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Figure 5. (a) Polarization curves of MoSe2, NiSe2, NiSe2-MoSe2 HTs, NiSe2-MoSe2 HTs/G, and Pt/C.
(b) Tafel plots of MoSe2, NiSe2, NiSe2-MoSe2 HTs, NiSe2-MoSe2 HTs/G, and Pt/C. (c) EIS spectra
of MoSe2, NiSe2, NiSe2-MoSe2 HTs, and NiSe2-MoSe2 HTs/G. (d) Estimated Cdl of MoSe2, NiSe2,
NiSe2-MoSe2 HTs, and NiSe2-MoSe2 HTs/G.

As shown in Figure 5b, the HER kinetics of as-prepared catalysts were first investi-
gated by Tafel plots. It is noted that the Tafel slope of NiSe2-MoSe2 HTs/G is 65 mV dec−1,
which is lower than those of 82 mV dec−1 for NiSe2-MoSe2 HTs hybrid, pure NiSe2
for 89 mV dec−1, pure MoSe2 for 109 mV dec−1, and close to the commercial Pt-C of
34 mV dec−1, indicating the faster kinetics of NiSe2-MoSe2 HTs/G for HER in alkaline
solution [47]. A smaller Tafel slope of 65 mV dec−1 for NiSe2-MoSe2 HTs/G suggests that
the HER kinetics on this composite abides by the Volmer-Heyrovsky mechanism with the
Heyrovsky step being rate-limiting in the alkaline HER process [48]. Furthermore, EIS
measurement was employed to study the HER kinetics. The calculated charge-transfer
resistance (Rct) of NiSe2-MoSe2 HTs/G (Figure 5c) is 58.7 Ω, which is much lower than
that of NiSe2-MoSe2 HTs (392.4 Ω), NiSe2 (1462 Ω), and MoSe2 (3764 Ω), demonstrating
more rapid charge transfers within the composite [49]. According to these results, we can
surmise that the faster HER kinetic in alkaline solution is attributed to the promoted charge
transfer by metallic NiSe2 and conductive graphene. In addition, the electrochemical active
surface areas (ECSA) of NiSe2-MoSe2 HTs/G, NiSe2-MoSe2 HTs, pure NiSe2, and pure
MoSe2 were assessed by extracting the electrochemical double-layer capacitances (Cdl) from
their corresponding voltammograms (Figure S8) to obtain insight into catalytic active sites
for HER. As shown in Figure 5d, a very large Cdl value (74.3 mF/cm2) for NiSe2-MoSe2
HTs/G was achieved, which is much higher than those of 11.6 mF/cm2 for NiSe2-MoSe2
HTs, 2.2 mF/cm2 for pure NiSe2, and 6.1 mF/cm2 for pure MoSe2, demonstrating the rich
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electrocatalytic active sites in the composite. These abundant active sites can be attributed
to the unique heterostructures supported on graphene that efficiently prevent the stack of
the MoSe2 layers and the aggregation of NiSe2 [21].

To measure the stability of the as-prepared NiSe2-MoSe2 HTs/G composite during
HER testing under alkaline conditions, a successive 3000 CV measurement was performed
(Figure 6a). It indicated that the LSV curve shape of NiSe2-MoSe2 HTs/G after 3000 CV cy-
cles is very close to the initial one, revealing the excellent stability under alkaline condition.
Moreover, the HER stability of NiSe2-MoSe2 HTs/G was also evaluated by using a time
dependence of the current density (i-t) test at a constant overpotential of 144 mV. As shown
in Figure 6b, the current density at 10 mA cm−2 displays no significant variation from 0 to
24 h, suggesting the long-term stability in the alkaline HER.
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3. Experimental Section
3.1. Synthesis of NiSe2-MoSe2 HTs/G

NiSe2-MoSe2 heterostructures grown on graphene nanosheets (NiSe2-MoSe2 HTs/G)
were synthesized by a simple hydrothermal method. In a typical procedure, 8 mmol of
Se powder was dispersed and slowly dissolved in 8 mL of hydrazine hydrate (HHA) to
form a red solution A. Subsequently, 120 mg of GO powder was dispersed in 52 mL of
distilled water, and then 2 mmol of nickel chloride hexahydrate (NiCl2·6 H2O) and 2 mmol
of sodium molybdate tetrahydrate (NaMoO4·4 H2O) were successively dissolved in above
dispersion to obtain solution B. Finally, solution A was slowly poured into the solution B
under continuous stirring for 20 min and was carefully transferred into 100 mL of autoclave
and then heated to the reaction temperature of 200 ◦C for 20 h. The as-obtained black
precipitate was filtered from the solution and washed using distilled water and ethanol
repeatedly. After drying at 60 ◦C, the above product was collected.

3.2. Synthesis of NiSe2/MoSe2 HTs

The synthetic procedure of NiSe2/MoSe2 HTs was the same as that of NiSe2-MoSe2
HTs/G without adding GO.

3.3. Synthesis of NiSe2 or MoSe2

The synthetic procedures of NiSe2 or MoSe2 were the same as that of NiSe2/MoSe2 HTs
just using 4 mmol of NiCl2·6 H2O or 4 mmol of NaMoO4·4 H2O as metal sources, respectively.
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3.4. Characterizations

X-ray diffraction (XRD) measurement (Rigaku D/MAX-rA, Rigaku, Tokyo, Japan) was
conducted to obtain the crystallography of the as-synthesized samples. Raman spectroscopy
(Horiba, Lille, France) with a 532 nm Argon laser, was used to determine the bonding nature
of as-synthesized materials. The morphology and microstructure of as-obtained products
were observed by a scanning electron microscope (SEM, FEI Inspect F50, Thermo Fisher
Scientific, Waltham, USA) and transmission electron microscopy (TEM, FEIG2F20, Thermo
Fisher Scientific, Waltham, USA). The surface chemistries and information of NiSe2-MoSe2
HTs/G were collected by X-ray photoelectron spectroscopy (XPS) equipped with Al Kα

source (AXI Sultra DLD, Kratos, Manchester, UK).

3.5. Electrochemical Measurements

Electrochemical measurements were conducted using a CHI670E workstation. The
HER catalytic activities of as-synthesized catalysts were evaluated by a three-electrode
system in 1.0 M KOH solution. In this system, a Hg/HgO electrode was used as the
reference electrode, and a graphite rod was used as the counter electrode. In this work, the
working electrodes were prepared as follows. Firstly, 4 mg of the 20% Pt/C or as-prepared
catalysts were mixed with 600 µL deionized water and 350 µL of absolute ethanol by
sonication for 30 min. Subsequently, 50 µL of Nafion solution (5 wt%) was added into the
former aqueous dispersion under continuing sonication for 10 min to form the catalyst
ink. A droplet of the ink (10 µL) was dripped onto a working electrode (glassy carbon
electrode, 3 mm diameter) and left to dry in natural conditions. For the activation, 30 cyclic
voltammetry (CV) cycles should be performed at 100 mV s−1 from −0.7 to −1.4 V (vs.
Hg/HgO) before all the tests. The polarization curves were carried out at a scan rate of
5 mV s−1. We applied the EIS measurement to study the HER catalytic kinetics, which is
measured at an overpotential of 150 mV vs. RHE with an AC voltage (5 mV amplitude,
0.1 Hz–100 kHz). The electrochemical double-layer capacitance (Cdl) was assessed by the
CV tests in a potential range of 0.1–0.2 V vs. RHE with different scan rates (10–80 mV s−1).
The electrochemical stability in the HER process was investigated at a constant overpotential
of 144 mV vs. RHE. All potentials in our work need to be switched to a reversible hydrogen
electrode (RHE) by this equation (E(RHE) = EHg/HgO + 0.099 + 0.059 × pH).

4. Conclusions

In summary, NiSe2-MoSe2 heterostructures constructed by embedding metallic NiSe2
nanocrystallites in few-layer MoSe2 nanosheets have been supported on graphene nanosheets
by a simple hydrothermal reaction. The metallic NiSe2 and conductive graphene play key
roles to enhance HER performance. The metallic NiSe2 can prevent the restacking of MoSe2
layers in the hydrothermal process to expose much more active edges. Furthermore, the
graphene provides a conductive matrix for the growth of NiSe2-MoSe2 heterostructures,
thus facilitating the fast electron transfers and HER kinetics. As a result, NiSe2-MoSe2
HTs/G composite exhibits a small overpotential of 144 mV at 10 mA cm−2, a low Tafel slope
of 65 mV dec−1, and long-term stability for 24 h in alkaline media, which are comparable
with most TMD-based catalysts (Table S2). The superior HER performance is ascribed to
the unique NiSe2-MoSe2 heterostructures supported on graphene that can synergistically
modulate the conductivity as well as exposed active sites. Our work provides a simple
vision to synthesize graphene-supported bimetallic selenide heterostructures as highly
efficient and stable electrocatalysts for HER.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12070701/s1, Figure S1: XRD patterns of pure MoSe2 and
NiSe2; Figure S2: Raman spectra of pure MoSe2 and NiSe2; Figure S3: XPS spectrum of C 1s for NiSe2-
MoSe2 HTs/G; Figure S4: SEM images of pure MoSe2; Figure S5: SEM images of pure NiSe2; Figure S6:
TEM image of NiSe2-MoSe2 HTs/G; Figure S7: STEM image and corresponding EDS elemental
mapping area of NiSe2-MoSe2 HTs/G; Figure S8: Voltammogram of the different catalysts; Table S1:
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XPS data including peak positions and amounts of NiSe2-MoSe2 HTs/G; Table S2: Comparison of
electrochemical performances. References [50–66] are cited in the Supplementary Materials.
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