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Abstract: Zinc–air batteries are one of the most excellent of the next generation energy devices. How-
ever, their application is greatly hampered by the slow kinetics of oxygen reduction reaction (ORR)
and oxygen evolution reaction (OER) of air electrode. It is of great importance to develop good oxygen
electrocatalysts with long durability as well as low cost. Here, A-site deficient (SmSr)0.95Co0.9Pt0.1O3

perovskites have been studied as potential OER electrocatalysts prepared by EDTA–citrate acid
complexing method. OER electrocatalytic performance of (SmSr)0.95Co0.9Pt0.1O3 was also evaluated.
(SmSr)0.95Co0.9Pt0.1O3 electrocatalysts exhibited good OER activities in 0.1 M KOH with onset poten-
tial and Tafel slope of 1.50 V and 87 mV dec−1, similar to that of Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF-5582).
Assembled rechargeable Zn–air batteries exhibited good discharge potential and charge potential with
high stability, respectively. Overall, all results illustrated that (SmSr)0.95Co0.9Pt0.1O3 is an excellent
OER electrocatalyst for zinc–air batteries. Additionally, this work opens a good way to synthesize
highly efficient electrocatalysts from A-site deficient perovskites.

Keywords: perovskites; oxygen evolution reaction; rechargeable Zn–air battery

1. Introduction

Rechargeable zinc–air battery has been paid much more attention due to its excellent
energy density, safety, and economic costs [1–4]. OER is restricted due to slow kinetics as
well as high overpotential [5]. Until now, IrO2 and RuO2 have been regarded as efficient
commercial OER electrocatalysts. However, the high cost and scarcity greatly restricted
the wide commercialization of rechargeable zinc–air batteries [6]. Hence, it is urgent to
develop non-platinum substances to replace RuO2 and IrO2 electrocatalysts. Among what
has been mentioned above, perovskite electrocatalysts have been considered practicable
electrocatalysts because of low cost, high electronic conductivity, and electrocatalytic
activity [7–12].

Perovskite oxides (ABO3) are able to show good OER activities because of increas-
ing ionic, electronic conductivities and flexible compositional diversification properties.
Suntivich et al. [13] studied ABO3 electrocatalysts with OER activity and concluded
that the increasing OER activity was due to, e.g., orbital of first-row transition metal.
Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF-5582) perovskites [13] have been reported to be highly active
catalysts, which could be comparable to IrO2, however, BSCF-5582 perovskite structure
could easily become amorphous after a long-time test. Therefore, a lot of perovskite oxides
have been studied as potential OER electrocatalysts, such as SrNb0.1Co0.7Fe0.2O3-δ [14],
SrCo0.9Ti0.1O3-δ [15], BaCo0.9-xFexSn0.1O3-δ [16], La0.3(Ba0.5Sr0.5)0.7Co0.8Fe0.2O3 [17], and
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SrCo0.95P0.05O3 (SCP) [18]. Great efforts could be made to develop perovskite OER catalysts
with a good activity as well as stability.

There have been many reports regarding tuning A-site deficient perovskites by yield-
ing positive effects on the electrocatalytic activity toward OER [19–28]. Zhu YL et al. [19]
reported that La0.95FeO3-delta (L0.95F) demonstrated the highest OER activity due to sur-
face oxygen vacancies, highlighting the importance of cation deficiency in perovskites
by enhancing OER activity. Moreover, Wu XY et al. [20] reported A-site deficient BSCF
nanofibers (300 nm diameter) prepared by electrospinning and found OER potential of op-
timized BSCF, which was stable after long-time tests. It was also reported that it had a great
potential in the field of aqueous and flexible zinc–air batteries. However, the universality
of deficient effects and mechanisms on ABO3 perovskite were ambiguous and needed to
be clarified.

In this paper, A-site deficient (SmSr)0.95Co0.9Pt0.1O3 perovskites with OER perfor-
mance under alkaline condition in the application of rechargeable zinc–air batteries were
studied in detail. (SmSr)0.95Co0.9Pt0.1O3 delivered good OER activity and stability. As-
sembled initial Zn–air battery by (SmSr)0.95Co0.9Pt0.1O3 exhibited good cycling stability.
This work sheds light on a facile method to prepare (SmSr)0.95Co0.9Pt0.1O3 perovskite
electrocatalyst and enhance its potential application of rechargeable zinc–air battery.

2. Results and Discussions
2.1. Phase and Microstructure Characterization

Figure 1 illustrates the XRD patterns of (SmSr)0.95Co0.9Pt0.1O3 sample sintered at
850 ◦C for 3 h. The sample showed perovskite structure, which was similar to that of
published results regarding Sm0.5Sr0.5CoO3. The inverted triangles in the XRD pattern
referred to different crystal planes of perovskite structure [29]. ICP-OES test results can
indicate that Co was 25.4290 wt%, Pt was 7.2015 wt%, Sm was 22.2669 wt%, Sr was
19.7917 wt%, and O was 25.3109 wt%. Figure 2a shows SEM images of the catalyst for
(SmSr)0.95Co0.9Pt0.1O3 sample. Nanoparticles were columnar and the average size was
around 150–250 nm. TEM images for (SmSr)0.95Co0.9Pt0.1O3 catalysts are also shown in
Figure 2b. The large size was probably due to the sintering and aggregation during heat
treatment. As shown in the HADDF images (Figure 3), homogeneity features were found
in (SmSr)0.95Co0.9Pt0.1O3, which suggested the distributing of particle sizes in TEM. Sm, Sr,
Co, Pt, and O elements were overlapped well and distributed homogeneously within the
structure according to the element mapping result. Figure 2c,d demonstrate that the SAED
pattern of (SmSr)0.95Co0.9Pt0.1O3 gave Debye–Scherrer rings, confirming the crystalline
nature. The d-spacing of 0.297 nm was indexed to the (110) plane of ABO3 perovskites, as
shown in Figure 2c. The selected-area electron diffraction (SAED) pattern of nanoparticles
is shown in Figure 2d, imparting a crystalline nature.

Catalysts 2022, 12, x FOR PEER REVIEW 3 of 11 
 

 

30 40 50 60 70 80

(310)

(100) (220)

(211)

(200)(111)

(SmSr)0.95Co0.9Pt0.1O3 ∇  

 ∇  
 ∇   ∇  

 ∇   ∇  
 ∇  

 ∇  

 

 

In
te

ns
ity

 (a
.u

.)

2 Theta (degree)

(110)

 
Figure 1. XRD patterns of as-prepared (SmSr)0.95Co0.9Pt0.1O3. 

 

Figure 2. (a) SEM image of (SmSr)0.95Co0.9Pt0.1O3. (b,c) HRTEM images for (SmSr)0.95Co0.9Pt0.1O3. (d) 
Corresponding higher resolution SAED patterns. 

Figure 1. XRD patterns of as-prepared (SmSr)0.95Co0.9Pt0.1O3.



Catalysts 2022, 12, 703 3 of 10

Catalysts 2022, 12, x FOR PEER REVIEW 3 of 11 
 

 

30 40 50 60 70 80

(310)

(100) (220)

(211)

(200)(111)

(SmSr)0.95Co0.9Pt0.1O3 ∇  

 ∇  
 ∇   ∇  

 ∇   ∇  
 ∇  

 ∇  

 

 

In
te

ns
ity

 (a
.u

.)
2 Theta (degree)

(110)

 
Figure 1. XRD patterns of as-prepared (SmSr)0.95Co0.9Pt0.1O3. 

 

Figure 2. (a) SEM image of (SmSr)0.95Co0.9Pt0.1O3. (b,c) HRTEM images for (SmSr)0.95Co0.9Pt0.1O3. (d) 
Corresponding higher resolution SAED patterns. 

Figure 2. (a) SEM image of (SmSr)0.95Co0.9Pt0.1O3. (b,c) HRTEM images for (SmSr)0.95Co0.9Pt0.1O3.
(d) Corresponding higher resolution SAED patterns.

The electrocatalytic behavior of perovskites was strongly relied on the valence state of
transition metal as well as O anion ordering on catalysts’ surface [30–33]. Figure 4a shows
the survey scan of the catalysts for (SmSr)0.95Co0.9Pt0.1O3 electrocatalysts, indicating the
presence of Sm, Sr, Co, and O elements. Moreover, some unknown elements? were also
detected, which might be due to the contamination of tests. Deconvoluted Co 2p and Pt 4f,
O1s spectra of the electrocatalyst are shown in Figure 4b,c. Upon deconvolution, Co2p3/2
(about 780.0 eV) and Co2p1/2 (about 795.2 eV) peaks corresponding to Co3+ were observed.
Besides, O 1s spectra (Figure 4c) was deconvoluted into two peaks [31]. The first one was a
highly oxidative oxygen species (530.4 eV for O2

2−/O−) and the second one was hydroxyl
group or the surface-adsorbed oxygen (531.4 eV for OH− or O2) [34]. From what has been
mentioned in the paper, good OER activity in an alkaline solution might be attributed to
O2

2−/O− on the surface of catalysts [17,35].
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2.2. Electrocatalytic Performance

Figure 5a shows OER activity of (SmSr)0.95Co0.9Pt0.1O3 electrodes under O2–0.1 M
KOH at 5 mV/s at 1600 rpm. (SmSr)0.95Co0.9Pt0.1O3 showed good OER activity with onset
potential of ~1.58 V, which was similar to that of BSCF (1.61 V). The maximum current
density measured at 2.0 V was 27 mA cm−2 for (SmSr)0.95Co0.9Pt0.1O3, which was similar
to that of BSCF (26.7 mA cm−2). Table 1 lists the OER activity of (SmSr)0.95Co0.9Pt0.1O3 with
BSCF perovskite-based catalysts in 0.1 M KOH. The results showed its great potential as a
highly efficient OER electrocatalyst. Nitrogen adsorption/desorption isotherm patterns of
(SmSr)0.95Co0.9Pt0.1O3 and BSCF-5582 are also shown in Figure 6.
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Table 1. Physical and electrocatalytic properties of the perovskite-based catalyst materials studied in
0.1 M KOH including Ba0.5Sr0.5Co0.8Fe0.2O3 and (SmSr)0.95Co0.9Pt0.1O3.

Sample Ba0.5Sr0.5Co0.8Fe0.2O3 (SmSr)0.95Co0.9Pt0.1O3

BET surface area (m2 g−1) 10.84 ± 0.02 14.77 ± 0.03
ECSA(m2 g−1) 1.79 ± 0.01 1.56 ± 0.02

Onset potential (V) 1.61V ~1.58 V
Jmax (mA cm−2) (η = 0.77 V) 26.7 27

Tafel slope (mV dec−1) 80 82
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Figure 5b shows Tafel slope plots for (SmSr)0.95Co0.9Pt0.1O3 and BSCF, measured in
0.1 M KOH solution at 1 mV/s. Tafel slope of (SmSr)0.95Co0.9Pt0.1O3 was 82 mV dec−1,
which was similar to that of 80 mV dec−1 obtained on BSCF. Zhu et al. reported Tafel
slope of 76 and 94 mV dec−1 at low overpotentials for SrNb0.1Co0.7Fe0.2O3 and BSCF [14].
Figure 5c further compares the mass activity of (SmSr)0.95Co0.9Pt0.1O3 and BSCF catalysts.
Mass activity for (SmSr)0.95Co0.9Pt0.1O3 at (η = 0.77 V) was 66 A g−1, while for BSCF was
65 A g−1. According to the results, the electrochemical activity of (SmSr)0.95Co0.9Pt0.1O3 cat-
alysts was also comparable with that of BSCF. The BET surface area of (SmSr)0.95Co0.9Pt0.1O3
sample is shown in Figure 6. Relatively lower Tafel slope might indicate higher increase
of current density, lower overpotential, faster reaction coefficient, which can indicate the
relatively higher electrochemical performance.

The electrochemically active surface area (ECSA) of (SmSr)0.95Co0.9Pt0.1O3 and BSCF was
calculated from CDL of catalytic surface (a general specific capacitance Cs = 0.040 mF cm−2

was used to estimate ESA for carbon proposed by McCrory et al. [36]). Figure 7 shows that
based on the slopes, ECSA was 1.79, and 1.56 m2 g−1 for BSCF-5582 and (SmSr)0.95Co0.9Pt0.1O3,
respectively. The ECSA of catalysts was smaller than BET surface area.
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studied (Figure 8b), and the potential under 10 mA/cm2 was 1.605 V, and the potential 
was around 1.615 V after 10 h. The schematic diagram of (SmSr)0.95Co0.9Pt0.1O3 catalysts for 
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Figure 8a shows chronopotentiometry results at different current densities for BSCF
and (SmSr)0.95Co0.9Pt0.1O3 catalysts measured in 0.1 M KOH. Potential to achieve 2, 5, and
10 mA/cm2 for (SmSr)0.95Co0.9Pt0.1O3, which was fired at 850 ◦C, was 1.534, 1.568, and
1.590 V, respectively. The potential of BSCF was 1.630, 1.646, and 1.694 V, which was higher
than (SmSr)0.95Co0.9Pt0.1O3. The durability of (SmSr)0.95Co0.9Pt0.1O3 fired at 850 ◦C was
studied (Figure 8b), and the potential under 10 mA/cm2 was 1.605 V, and the potential
was around 1.615 V after 10 h. The schematic diagram of (SmSr)0.95Co0.9Pt0.1O3 catalysts
for OER in alkaline solution can be seen in Figure 9. Therefore, (SmSr)0.95Co0.9Pt0.1O3 is a
good OER catalyst in alkaline condition.
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5 mA cm−2; testing time from 2400 to 3600 s, current density was 10 mA cm−2.
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2.3. Cell Performance

The practical applicability of (SmSr)0.95Co0.9Pt0.1O3 electrocatalyst was tested in aque-
ous rechargeable Zn–air battery. Figure 9 shows the stability of Zn–air battery, which
was evaluated by charging for 10 min and discharging for 10 min over repeated cycles at
5 mA cm−2 for nearly 100 h. Initially, it showed the discharge potential and charge potential
of 1.10 V and 2.02V. Therefore, it could be calculated that the voltage gap (∆η) was 0.92 V.
After 100 h, voltage gap increased to 1.0 V, respectively. Such a phenomenon was probably
due to irreversible Zn plating–stripping process. It can be seen that (SmSr)0.95Co0.9Pt0.1O3-
Zn–air battery had potential recharge ability. Moreover, (SmSr)0.95Co0.9Pt0.1O3 is cheaper
than commercial IrO2, which shows its high economic potential.

3. Materials and Methods
3.1. Powder Synthesis

(SmSr)0.95Co0.9Pt0.1O3 powders were synthesized by EDTA–citrate acid complexing
method. Stoichiometric mole amounts of Sm(NO3)3·6H2O, Sr(NO3)2, Co(NO3)3·9H2O, and
H2PtClO4 (CAS: 26023-84-7) were mixed in distilled water with calculated molar ratios
of total metal ions/citric acid/EDTA(1:1.5:1). Sol was prepared after mixing and stirring
at 80 ◦C for several hours, and then gel was put into an oven for 12 h at 200 ◦C to form
precursor. Then, the precursor was calcined in air for 3 h at 850 ◦C. BSCF-5582 powders
were prepared as mentioned in our previous paper [37].

3.2. Catalysts Characterization

XRD (Bruker, D8 Advances) was used to test the prepared samples’ phase in the
range of 5–80◦ (2θ). N2 adsorption/desorption isotherms were tested by Micromerit-
ics TriStar II instrument at P/P0 from 0.05 to 0.35. The samples were analyzed by XPS
(Thermo Fisher company, ESCALAB 250Xi instrument). SEM from ZEISS was used to
characterize the prepared powders’ morphology. TEM and EDS were conducted by Titan
G2 60–300 microscope.

3.3. Electrochemical Tests

(SmSr)0.95Co0.9Pt0.1O3 (4 mg) was mixed with 1 mL of an ethanol–Nafion mixture
(with ethanol:Nafion = 9:1) to form suspension. Pt wire was used as a counter electrode,
and Hg/HgO electrode was used as a reference electrode. Suspension (10 µL) was dipped
into glassy carbon rotating disk electrode (GC-RDE, 0.196 cm2, Pine Research Instrumenta-
tion, USA). The catalyst loading was 0.2 mg/cm2. CV measurements [36] were tested as
mentioned in the procedure, which was the same as our previous published paper [37].
The flow rate of oxygen supply was 10 mL/min. Before starting the electrochemical test,
oxygen was flowed for 30 min to fill the reaction tank with saturated oxygen. CV was
conducted at a 5 mV/s between −1 and 1 V for 5 cycles to obtain stable data. LSV was
conducted at a 5 mV/s between 0 and 1 V. Tafel plots were tested at 1 mV/s with rotating
speed of 1600 rpm. Chronopotentiometry was conducted at different current densities.

3.4. Battery Assembly and Test

Catalyst inks were prepared as mentioned above and then it was distributed uniformly
on the carbon cloth with Ni-foam (current collector). Then, carbon cloth (cathode) and
polished zinc plate (anode) were assembled in rechargeable Zn air battery by 6M KOH
including 0.2 M ZnCl2. Aqueous Zn–air battery tests were carried out by a LAND CT2001A
testing device. Charge and discharge data were obtained at 5 mA cm−2.

4. Conclusions

In conclusion, A-site efficient (SmSr)0.95Co0.9Pt0.1O3 oxygen electrocatalysts were suc-
cessfully prepared by EDTA–citrate complexing sol-gel approach and adopted as a potential
OER electrode in Zn–air battery. Optimized (SmSr)0.95Co0.9Pt0.1O3 electrocatalysts showed
a higher OER intrinsic activity and durability, which was comparable with that of BSCF.
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Moreover, it had a high durability, good rechargeable Zn–air battery discharge performance
and high cycle stability, which could be due to the efficient mass transferring and higher
active sites. The results clarified a facile way to prepare non-platinum electrocatalysts for
energy storage devices.
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