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Abstract: The advent of fuel cells has led to a series of studies on hydrogen production. As an
excellent hydrogen carrier, methanol can be used for reforming to produce hydrogen. Copper-based
catalysts have been widely used in methanol reforming due to their high catalytic activity and
low-cost preparation. However, copper-based catalysts have been subjected to poor stability due
to spontaneous combustion, sintering, and deactivation. Thus, the research on the optimization of
copper-based catalysts is of great significance. This review analyzes several major factors that affect
the stability of copper-based catalysts, and then comments on the progress made in recent years to
improve the catalytic stability through various methods, such as developing preparation methods,
adding promoters, and optimizing supports. A large number of studies have shown that sintering
and carbon deposition are the main reasons for the deactivation of copper-based catalysts. It was
found that the catalysts prepared by the modified impregnation method exhibit higher catalytic
activity and stability. For the promoters and supports, it was also found that the doping of metal
oxides such as MgO and bimetallic oxides such as CeO2-ZrO2 as the support could present better
catalytic performance for the methanol reforming reaction. It is of great significance to discover some
new materials, such as copper-based spinel oxide, with a sustained-release catalytic mechanism for
enhancing the stability of Cu-based catalysts. However, the interaction mechanism between the
metal and the support is not fully understood, and the research of some new material copper-based
catalysts in methanol reforming has not been fully studied. These are the problems to be solved in
the future.

Keywords: hydrogen production; methanol reforming; Cu-based catalysts; stability

1. Introduction

With the booming economy, energy consumption and harmful gas emissions have
increased sharply [1–3], and the decline of fossil fuels has become a major obstacle to
sustainable development. With the needs of global sustainable development, we urgently
need some new fuels. Hydrogen is a well-known clean energy carrier, and fuel cells can
convert the chemical energy in fuel hydrogen and oxidant oxygen into electricity (sustain-
able energy). Hydrogen can come from many sources [4,5], for example, photolysis of
water for hydrogen production [6–8], traditional fossil fuel hydrogen production [9,10],
biomass hydrogen production [11–13], and hydrogen production from water electroly-
sis [14,15]. In recent years, more and more studies have been conducted on methanol
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steam reforming. Methanol reforming produces hydrogen with low CO selectivity and
high hydrogen selectivity, and has little effect on the electrode toxicity of proton exchange
membrane fuel cells [16]. Moreover, methanol steam reforming does not require the va-
porization step in hydrogen production, which can bring good economic benefits [17,18].
Liquid methanol (CH3OH) is a perfect hydrogen carrier that is more facile to transport than
hydrogen gas [19–21]. There are many ways to produce methanol, such as the synthesis
gas to methanol and the direct oxidation of methane to methanol [22]. However, many
scientists have called for “green methanol” from renewable hydrogen and CO2 hydro-
genation [23]. There are also many ways to synthesize methanol from renewable energy
such as biomass, wind power, and solar energy. For example, many works have reported
methanol synthesis directly from photo/electronic catalytic CO2 reduction in water [24]. It
is very useful for the industry and our society to produce methanol from renewable energy
using CO2 as a raw material. In addition, when the captured CO2 source is biomass, it is
called bio-methanol [25]. This means that methanol could also be obtained through thermo-
chemical and biochemical conversion of biomass gasification and electrolysis [26]. Gautam
et al. have provided an excellent review on the current trends and future perspective of
bio-methanol as a renewable fuel from waste biomass [26]. Bio-fuels (e.g., bio-methanol,
bio-ethanol, biodiesel) would be a significant alternative fuel for the future. Compared
with other fossil fuels, methanol with a low carbon atom and high hydrogen-to-carbon
ratio can significantly reduce the occurrence of side reactions [27–29].

There are four typical ways to produce hydrogen from methanol: methanol decom-
position (MD) [30–32], partial oxidation of methanol (POM) [33–35], steam reforming
of methanol (SRM) [9,36], and oxidative steam reforming of methanol (OSRM) [37–39].
Methanol reforming can produce a large amount of hydrogen, which is one of the impor-
tant reasons why it is widely studied by researchers [40–42]. SRM also contains two side
reactions, which are methanol decomposition and water gas shift reactions [43].

The catalyst is the key factor that affects the hydrogen production efficiency of
methanol reforming. The deactivation of the catalyst can easily reduce the yield of hy-
drogen and the lifetime of the catalyst. Noble metals have high catalytic activity and
stability, but the cost is too high, limiting their large-scale application [44–46]. Copper-
based catalysts have low cost and excellent catalytic activity, and they are good candidates
for methanol reforming for hydrogen production process [19,20,27]. For example, CuO-
ZnO-Al2O3 catalysts are often used in methanol reforming to produce hydrogen, and their
performance is also very good [47,48]. Bagherzadeh et al. investigated the effect of adding
ZrO2-CeO2 to CuO-ZnO-Al2O3 catalysts, and found that the selectivity for H2 was high
and the selectivity for CO was low [49]. Mohtashami et al. introduced ZrO2 to a Cu/ZnO
catalyst and studied its MSR (Methanol Steam Reforming) performance, and the methanol
conversion reached up to 97.8% with the selectivity for H2 of 99% [48]. However, Cu-based
catalysts suffer thermal instabilities [50], such as spontaneous combustion, sintering, and
deactivation [22,51,52]. The reports have shown that when the temperature is higher than
300 ◦C, the copper particles in the copper-based catalyst are easy to sinter [53]. There is
also a by-product methyl formate produced in methanol reforming that promotes catalyst
deactivation through pyrolysis [22]. Thus, how to improve their stability is an important
and meaningful topic.

In addition to the factors of the copper-based catalyst itself, the methanol reforming
hydrogen production reactor also has a great influence on the stability of the catalyst, for
example, methanol steam reforming is a strong endothermic reaction, which requires the
reactor temperature not to be too high [54]. Moreover, the production of the reactor is
relatively complicated, and requires relatively complex technology and high cost With the
development of technology, the design of the reactor can become simpler and simpler, and
the more likely it is that a reactor that makes the catalyst more stable can be created. It
has been reported in the literature that the reactors used for hydrogen production from
methanol reforming are mainly packed bed reactors [55]. However, this kind of reactor
requires high temperature, which is its disadvantage, so other reactors have been studied in
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recent years, such as membrane reactors [56,57] and microporous reactors [58,59]. Moreover,
in recent years, many researchers have made great efforts in the design of methanol
reforming reactors and have achieved good results; for example, Mironova et al. designed
a flow reactor with a Pd-Cu membrane in which methanol steam reforming can achieve a
high hydrogen yield compared to conventional reactors [60], while Wang et al. designed
a rib-type microreactor for methanol steam reforming and found that the conversion
rate of methanol reached 99.4% [59]. With the development of science and technology, 3D
printing technology is also used to design catalysts [61]; this technology can design a reactor
suitable for catalysts. Moreover, other technologies, such as plasma-assisted reactors and
solar-powered MSR reactors [55,62] or the novel solar triple-line photothermal chemical
energy and heat storage medium reactor proposed by Du et al. can effectively prevent the
deactivation of the catalyst and achieve the stability of the reaction [62].

To improve the stability of copper-based catalysts, we should understand the various
reasons for the deactivation of copper-based catalysts. This review discusses several factors
that affect the stability of copper-based catalysts, and then summarizes some strategies
made by researchers in optimizing the stability of copper-based catalysts in recent years,
such as improving preparation methods and supports, adding promoters, and designing
novel Cu-based catalytic materials. This will have certain significance for the optimization
of copper-based catalysts.

2. Deactivation Analysis of Copper-Based Catalysts

Many factors affect the stability of copper-based catalysts, and the deactivation mecha-
nisms are also different. The study of the deactivation mechanism is of great significance for
optimizing copper-based catalysts. Researchers have employed various characterization
methods, such as Raman, X-ray diffraction (XRD), transmission electron microscopy (TEM),
X-ray photon spectroscopy (XPS), and thermogravimetric (TG) to characterize the catalyst
and the cause of catalyst deactivation.

According to the continuous efforts of researchers, the main factors that affect the
deactivation of copper-based catalysts are summarized as follows: (1) The interaction of
the active metal and support forms an alloy, which leads to the deactivation [63,64]. Then,
the alloying process reduces the adsorption of relevant reactants. For example, Cheng et al.
investigated the reasons for the deactivation of Cu/ZnO, and found that Zn dissolves
into the Cu lattice, resulting in the deactivation of the catalyst [64]. (2) Carbon deposition
also deactivates Cu-based catalysts. Researchers typically use TG to analyze the carbon
deposition of catalysts. For instance, Li et al. analyzed the carbon deposition over a Cu/SAC
catalyst and P-modified Cu/SAC catalyst after use in methanol reforming by TG [65]. They
found that carbon deposition mainly occurred at 150–350 ◦C, and carbon deposits were
about 4%, which was deactivated after 24 h. (3) The other obvious deactivation reason
is the sintering and agglomeration of copper nanoparticles (NPs). When the dispersion
of copper particles is high, the catalyst has more active sites, but the Cu NPs are sintered
and aggregated under a high-temperature reaction for a long-term stability test. Yao et al.
reported a Cu/ZrO2 catalyst containing ZrO2 with better copper dispersion and greatly
improved stability [66]. On the contrary, the aggregation of copper particles reduces
the active sites, resulting in reduced catalyst activity. Researchers usually analyze the
dispersion of Cu-based catalysts by XRD, N2O pulse titration, TEM, and H2 temperature-
programmed reduction (H2-TPR) [67]. The factors that affect the sintering and aggregation
of copper particles are also different. In general, the larger the specific surface area of the
catalyst, the less likely the copper nanoparticles are to aggregate [68]. When the active
metal–support interaction is weak, the catalyst is more easily sintered [69]; (4) the catalyst
poisoning by foreign substances also leads to deactivation. For example, some elements
such as chlorides and sulfur can cause catalyst poisoning [70,71]. They usually occupy the
acidic sites of the catalyst, leading to catalyst deactivation [72–74].
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3. Method for Avoiding Deactivation of Cu-Based Catalysts

As depicted above, we know what causes the catalyst to deactivate; thus, we can
optimize the catalyst through various methods, such as by optimizing the preparation
method, adding promoters, changing the support, and exploring new catalysts. An ex-
cellent catalyst should be a combination of activity, selectivity, and stability; thus, it is
significant to optimize the catalyst based on the comprehensive consideration.

3.1. Improving Preparation Methods

The preparation method affects the copper dispersion, microstructural properties,
and surface areas of copper-based catalysts, which determine the catalytic performance,
especially the catalytic stability. Herein, we selected the preparation of Cu-ZnO series
catalysts as examples. According to the previous literature, there is an interaction between
Cu and Zn [20,75], and this interaction is helpful to enhance the catalyst activity. In addition,
the preparation method has a great influence on the metal–support interaction. Therefore,
optimizing the preparation method is of great significance for the improvement of catalyst
activity. There are several traditional preparation methods for the synthesis of methanol
reforming catalysts, such as the hydrothermal method, dipping method, co-precipitation
method, and sol-gel method [48,76,77]. Sanches et al. prepared a Cu/ZnO catalyst by
the co-precipitation method [75], and Liao et al. synthesized a CuO/ZnO/CeO2/ZrO2
catalyst by the one-step hydrothermal method [78]. A series of CuZn/MCM-41 catalysts
were prepared by the co-impregnation method [77] and achieved good results. After the
catalyst was operated for 5 h, the methanol conversion rate was stable at 88%, and the H2
selectivity was 91%. The effects of synthesis methods on the catalyst were also compared.
By comparing the performance of catalysts synthesized by one-pot hydrothermal synthesis,
co-impregnation, continuous impregnation, and copper impregnation in MSR, it was found
that the catalyst synthesized by the co-impregnation method had the best activity.

Mohtashami et al. also compared the effects of three different methods, namely sol-gel,
conventional impregnation, and modified impregnation, on Cu/ZnO catalysts [48]. The
results showed that the catalyst prepared by the improved impregnation method exhibited
better catalytic activity and stability. The methanol conversion and H2 selectivity were
as high as 97.8% and 99.0%, respectively, while the CO selectivity was 0.4% at 300 ◦C.
The activity of the catalyst was still stable after 40 h of operation. Catalysts prepared by
traditional preparation methods have some defects, such as an uneven surface, poor contact
between the two metals, and uncontrolled particle morphology with agglomeration [79,80].
Therefore, there is a need to improve the traditional synthesis method to optimize the
performance of the catalyst.

Some reports have also explored novel preparation methods. For example, the Ce-
CuZn/CNTs catalyst prepared by microwave-assisted polyols had a better catalytic perfor-
mance than those prepared by impregnation and coprecipitation [80]. There have also been
CuO/ZnO/Al2O3 catalysts prepared by microwave-assisted solution combustion [76], and
the effect of the preparation method was also obvious. As shown in Figure 1, Bagherzadeh
et al. used a novel oxalate gel coprecipitation method to prepare CuO-ZnO-Al2O3-ZrO2-
CeO2 nanocatalysts, and found that all samples performed excellently in the methanol
reforming reaction [49]. The methanol conversion reached 100% at 240 ◦C, and the selec-
tivity for H2 was 75%. Moreover, the methanol conversion remained stable at 100% for
300 h. In addition to the above fresh preparation methods, there are several other novel
preparation methods such as the ultrasonic-assisted method and ammonia evaporation
method [81]. Ye et al. prepared three Cu-ZnO/SiO2 catalysts by modified Stöber, sol-gel,
and ammonia evaporation methods (Figure 2), which have been applied to methanol
synthesis and methanol reforming reactions [81]. They demonstrated that the prepara-
tion method influences the location and dispersion of metal species, with the ammonia
evaporation method exposing a high concentration of Cu+ species and suitable Cu-ZnOx
interaction for MSR. Figure 2d shows the mechanism diagram of the CuZnSi-AEM catalyst
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used for methanol synthesis and methanol reforming reactions, with the formate as a key
intermediate for these two reactions.

Figure 1. The synthesis of ZrO2-CeO2-promoted CuO-ZnO-Al2O3 nanocatalyst for methanol-to-
hydrogen production: (a) Illustration of oxalate gel coprecipitation synthesis method; (b) influence of
ZrO2-CeO2 loading on catalytic performance; and (c) runtime performance testing of methanol-to-
hydrogen production. Reproduced with permission [49]. Copyright Elsevier, 2017.

Figure 2. A series of CuZnSi catalysts were reported for CO2 hydrogenation and methanol reforming
reaction: (a–c) Schematic illustration of the preparation of three CuZnSi catalysts by different methods
and (d) the mechanism of CuZnSi-AEM catalyst used for methanol synthesis and methanol reforming.
Reproduced with permission [81]. Copyright Wiley-VCH, 2021.

In addition to the above-mentioned Cu/ZnO-based systems, the preparation methods
of Cu/ZrO2-based catalysts are also frequently investigated. Supporting copper on ZrO2
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can improve the dispersion and reducibility of active metal copper [41]. It has been reported
that Cu/ZrO2 catalysts can be prepared in various ways, such as co-precipitation of metal
salts, copper impregnation on ZrO2 supports, amorphous aerogel formation, and polymer
templating techniques [82]. Ploner et al. prepared a Cu/ZrO2 catalyst based on a similar
procedure of water impregnation, which improved the activity and selectivity of methanol
reforming for hydrogen production by changing the copper loading [40]. It was found
that the Cu/ZrO2 catalyst prepared by the fractional precipitation method can improve
the activity and stability of the catalyst. The above preparation method affects the ratio of
active metal and carrier, which in turn affects the catalyst activity [83]. In addition, some
researchers have improved the microstructure of the catalyst. As is shown in Figure 3,
Ploner et al. also prepared Cu/ZrO2 by a sol-gel spontaneous combustion method, and
obtained catalysts with a high stability [84]. The Cu/ZrO2 prepared by this method
possessed better stability and activity than the catalyst prepared by impregnation and
co-precipitation methods.

Figure 3. Sol-gel spontaneous combustion synthesis of Cu/ZrO2 catalyst for methanol steam reform-
ing: (a) Schematic diagram of sol-gel spontaneous combustion of three samples; (b) methanol steam
reforming curves of three samples between 100 ◦C and 350 ◦C; (c) isothermal long-term methanol
steam reforming testing of sample Cu/ZrO2 at 300 ◦C; and (d) comparison of Cu/ZrO2 with other
catalysts. Reproduced with permission [84]. Copyright Royal Society of Chemistry, 2021.

In the past few years, copper-based spinel catalysts have shown their advantages in
many chemical reactions, such as SRM [85], OSRM [86], WGSR [87], and CO oxidation [88].
Researchers have employed Cu-based spinel catalysts for methanol reforming. The active
copper of copper-based spinel is gradually released from the spinel bulk phase to the
surface, which promotes the stability of the catalyst. As with other Cu-based catalysts, the
preparation method also has a great influence on the Cu-based spinel. Parsaee et al. [89]
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prepared a Cu-Zn-Ce-Al spinel catalyst by two methods, namely the sol-gel method and
homogeneous precipitation method. They explored the effect of temperature on catalyst
performance, and found that in all preparation methods, the homogeneous precipitation
method is beneficial to improving the methanol conversion rate. Liu et al. explored
the effect of different preparation temperatures on the catalytic performance of Cu-Al
spinel catalysts, and the catalytic performance was the best when the catalyst preparation
temperature was at 950 ◦C. The source of the raw material for the catalyst preparation
also has an effect on the catalyst. Qin et al. explored the effect of three different copper
sources on the performance of the catalyst [90]. They compared the performance of catalysts
prepared from Cu(OH)2, (CH3COO)2Cu, and Cu(NO3)2, and the results showed that the
catalyst synthesized from Cu(OH)2 had the best activity and stability in MSR, and the
catalyst showed a trend of slow-release catalysis.

Table 1 summarizes the work of some researchers to avoid catalyst deactivation by
improving the preparation method in the last three years. From Table 1, we can find that
researchers have achieved good results by improving the traditional preparation method.
The catalytic performance, especially the stability of the catalyst, has been improved. The
problem of carbon deposition has been decreased by developing new preparation methods.
However, it would be useful to develop a catalyst with an even better catalytic performance
in the future.

Table 1. Copper-based catalysts for MSR prepared by different preparation methods.

Entry Catalyst Preparation Conv.CH3OH/% Select.H2/% T/◦C Coke
Formation/% Lifetime/h Ref.

1 Cu-ZnO-ZrO2/MCM-41
Modified

impregnation
method

97.8 99.0 300 3.11 60 [48]

2 Cu-ZnO-ZrO2/MCM-41 Sol-gel 96.3 98.8 300 3.89 40 [48]

3 Cu-ZnO-ZrO2/MCM-41 Conventional
impregnation 94.0 98.5 300 4.69 20 [48]

4 CuO/ZnO/CeO2/ZrO2

One step
hydrothermal

process
99.8 - 330 2.2 30 [78]

5 Ni-Cu/Al2O4
Green template-free

method >99.0 42.17 300 <1.0 30 [91]

3.2. Doping Promoters

Adding promoters to copper-based catalysts is also an effective way to optimize
catalysts. Promoters can improve the dispersion of copper particles or stabilize the support
metals. Promoters can also alloy the active metal with the support metal [63,64]. Different
auxiliaries have different effects on the same catalyst, and the same auxiliaries have different
effects on different catalysts. We introduce the effect of adding promoters on optimizing
catalysts below.

The Cu/ZnO catalyst is one of the most common catalysts in the methanol reforming
process. It has been reported that the stability of copper-based catalysts is closely related
to ZnO, and there is a certain interaction between metallic copper and ZnO which has a
great influence on the catalyst activity [92,93]. In order to improve catalyst stability and
activity, researchers have added various promoters. For instance, Pu et al. added Sc2O3
to Cu/ZnO and found that it has good stability and activity in methanol reforming for
hydrogen production [92], in which Sc3+ increases the copper dispersion and enhances the
intermetallic interaction. A similar effect makes it suitable to add Mg to Cu/ZnO/Al2O3,
which enhances the catalyst activity by enhancing the Cu-ZnO interaction and increasing
the Cu dispersion [94]. The addition of promoters changes the structural properties of the
catalyst. For example, Sanches et al. [75] added ZrO2 to Cu/ZnO, and found that ZrO2
clusters in the catalyst could reduce the formation of CO. The addition of ZrO2 induces
microstrains in the Cu and ZnO lattices and promotes the formation of CuO, and CuO
is easily reduced. Mohtashami et al. found that ZrO2 can reduce CuO size and increase
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CuO dispersion [48]. Some researchers have also worked to prevent catalyst sintering. The
addition of ZrO2 to Cu/ZnO by Huang et al. improved catalyst durability [95]. Different
promoters have different effects on the same catalyst. To reduce carbon deposition, Lorenzut
et al. introduced Ni and Co into Cu/ZnO/Al2O3, and the carbon deposition was also
improved due to the alloying of Ni with Cu [96]. For the traditional Cu/ZnO catalyst,
the biggest problem is its durability. ZrO2 is a good promoter and we need to find more
useful promoters.

In addition to ZnO, there are some other supports for copper-based catalysts. It is
also common to use SiO2 as a support because SiO2 is inert in MSR. Bossola et al. found
In-promoted Cu/SiO2 catalysts with high H2 selectivity [97], which was attributed to the
addition of In improving the electronic properties of Cu and making water easier to activate
(Figure 4). Al2O3 can effectively improve the dispersion of copper particles; thus, it is often
used as a catalyst carrier [98], Li et al. [99] added MgO to Cu/Al2O3 and found that MgO
could reduce CO formation and increase H2 selectivity (Figure 5). The interaction between
Cu and MgO can avoid the sintering of copper particles, thereby increasing the stability of
the catalyst. H2 selectivity up to 99.3% and CO selectivity as low as 0.15% was achieved
in all samples. The copper particle size is almost unchanged after 10 cycles of reaction,
which increases the stability of the catalyst. Cu-MgO/Al2O3 is a bimetallic catalyst, and
intermetallic interactions play an important role in improving catalyst activity. Therefore,
it is suggested to explore more bimetallic catalysts. MgO can adsorb methanol and is
often used in copper-based catalysts, which improves the efficiency of methanol steam
reforming [100]. It is a good idea to improve methanol steam reforming by enhancing the
adsorption of reactants, and more adsorbents could be explored in the future. To prevent
catalyst poisoning caused by alkaline earth metals and heavy metals occupying the acidic
sites of the support, doping CeO2 into the catalyst can alleviate catalyst poisoning because
CeO2 has the ability to trap heavy metals [74,101].

Table 2 indicates some representative works to improve the catalyst deactivation
problem by doping different promoters. From Table 2, we can find that the dispersion
of active species has a great influence on the stability of the catalyst, and the doping of
MgO can greatly increase the dispersion of active species, thereby improving the stability
of the catalyst. In addition to oxides, pure metal doping has also achieved good results.
For example, the doping of In can make the active species dispersion reach up to 56.4%.
However, the interaction of dopant species and active ingredients is still unclear, which
is a problem that needs to be solved in the future, and this will provide ideas for finding
better additives.

Figure 4. The complete reaction path for the dissociation of H2O to *H + *O [97]. Copyright
Elsevier, 2021.
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Figure 5. Cu-MgO/Al2O3 bifunctional catalyst for methanol steam reforming: (a) The level of CO2

adsorption and desorption of different catalysts. (b) methanol conversion and H2 selectivity in
MSR over time for different samples. (c) catalytic performance of 8 wt% Cu/Al2O3 and 0 wt%
Cu-MgO/Al2O3 mechanical mixture within 10 cycles. (d) catalytic performance of the 8 wt% Cu-
MgO/Al2O3 catalyst within 10 cycles. Reproduced with permission [99]. Copyright Elsevier, 2020.

Table 2. Copper-based catalysts doped with different promoters for MSR.

Entry Catalyst Dopant
Species Conv.CH3OH/% Select.H2/% T/◦C Dispersion/% Lifetime/h Ref.

1 Cu/Sc2O3-ZnO Sc2O3 95.0 - 220–600 6.9 16 [92]
2 Cu-Al spinel oxide MgO 96.5 96.5 255 - 450 [102]
3 CuZn/CNTs Ce.Zr 94.2 98.2 300 18 48 [80]
4 Cu-MgO/Al2O3 MgO ~100 99.3 220 62 30 [99]
5 Cu/SiO2 In 57.1 ~100 260 56.4 18 [97]
6 CuFeMg/Al2O3 FeOx 85 97.8 250 24.1 100 [103]

3.3. Optimizing Supports

As an important component of the catalyst, the influence of the support on the activity
and stability of the catalyst cannot be ignored. Catalyst supports can affect the dispersion
and size of active metals and can also enhance catalyst activity and stability by interacting
with active metals [104]. The various catalyst supports proposed in the Section 3.2 (such
as ZnO, SiO2, Al2O3, and CeO2) play different roles. Loading copper on different oxides
has different effects; for example, as a common carrier for copper-based catalysts, ZrO2
is often studied in the synthesis of excellent catalyst materials [105,106]. A study found
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that ZrO2 in the catalyst can increase the dispersion of copper particles and the reducibility
of the catalyst. Furthermore, CeO2 can increase the oxygen storage capacity [107]. Some
researchers explored the adsorption and hydrogenation of CO2 to produce methanol [108].
They found that the two supports (CeO2 and ZrO2) have different effects on the catalyst.
CeO2 can generate more oxygen vacancies on the catalyst and ZrO2 can increase the
dispersion of copper particles. Therefore, it is also important to revise the supports and
thus optimize the catalyst.

To prevent the deactivation of copper-based catalysts, some workers have studied
the original supports. As a common support, ZrO2 is often used to support copper-based
catalysts. The influence of two crystal structures of ZrO2, namely monoclinic m-ZrO2 and
tetragonal t-ZrO2, has been investigated, and it was found that the m-ZrO2 supported Cu
catalyst was highly selective for CO2 (Figure 6) [109]. The CO2 selectivity never dropped
below 90% in 160 h, and there was still an upward trend. Bagherzadeh et al. [49] investigate
how the amount of support affects the catalyst. They found that with the increase of CeO2
and the decrease of ZrO2, the catalytic performance could be better. Through the stability
test of the catalyst, it was found that the selectivity of CO, CO2, and H2 remained stable for
1440 min. Some researchers doped ZrO2 with Ce to support copper metal catalysts [29].
They found that the catalysts showed good catalytic performance in MSR, showing, for
example, high hydrogen selectivity and good stability. At high temperatures, the hydrogen
selectivity of the Ce-added catalyst was not lower than 99.8%, and there was no obvious
deactivation after 90 h of operation.

Figure 6. Methanol steam reforming catalyzed by Cu/ZrO2 catalyst: (a) Methanol steam reforming
curves of m-ZrO2 supported catalysts between 100 ◦C and 350 ◦C. (b) methanol steam reforming
curves of catalysts at long time. Reproduced with permission [109]. Copyright Elsevier, 2020.
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Since CeO2 has many oxygen vacancies and these oxygen vacancies are important
to enhance the catalyst activity, CeO2 is often used as a support for the preparation of
copper-based catalysts [110–112]. The morphology and structure of the CeO2 support can
affect the crystal plane of the catalyst, thereby affecting the oxygen storage capacity of CeO2
and thus the performance of the catalyst. Therefore, it is very important to study the effect
of supports with different morphologies and structures on catalysts to prevent catalyst
deactivation. Some researchers compared the catalytic performance of three different
structures of CeO2, namely nanorods, nanoparticles, and sponges, and their CeO2 with a
nanorod morphology showed better catalytic performance than the other two structures of
CeO2 [113]. They found that the nanorod-shaped CeO2-supported copper-based catalyst
had the smallest copper size of 23.2 nm, and the highest copper dispersion of 16.01%, which
indicates that the catalyst had the best anti-sintering ability. Some researchers have also
treated the catalyst support. For example, Mohtashami et al. treated MCM-41 with acetic
acid [48]. After the treatment, the metal particles of the Cu/ZnO supported by the support
were smaller in size and higher in dispersion, which showed good performance and better
catalytic stability in methanol reforming for hydrogen production.

In addition to the optimization of traditional supports, some researchers have also
explored some new catalyst supports. He et al. prepared a new catalyst precursor, namely
ZnAl-LDHs, on γ-Al2O3 to support copper, and they found that the CH3OH conversion
rate could reach up to 99.98% [114]. Generally, when the temperature is above 300 ◦C,
Cu-based catalysts are easy to deactivate, while the Cu/γ-Al@MMO catalyst does not
decrease the methanol conversion rate when the temperature is higher than 300 ◦C. This
suggests that the carrier can protect the copper from sintering. Khani et al. prepared a
new type of sponge-like ceramic support. The support contains Zn, La, and Al. These
elements have different effects on methanol reforming for hydrogen production. They
found that compared with γ-Al2O3, these carrier-supported catalysts have lower reduction
temperatures and larger pore sizes [115]. Through the thermal stability test of the carrier,
after heat treatment at 1000 ◦C for 12 h, the surface area of γ-Al2O3 decreased by 91%,
while the prepared new carrier only decreased by 8%, which greatly improved the stability
of the catalyst. This reminds us that in order to explore multifunctional vehicles, we should
know the role of each element and then combine them.

Sintering is the major problem with copper-based catalysts. To reduce the sintering
of copper-based catalysts, many researchers have explored mesoporous materials with
a high surface area, because such materials can increase the dispersion of active metals,
thereby reducing catalyst sintering, for example, MCM-41, KIT-6, and SBA-15 [21,116,117].
Taghizadeh et al. [118] supported KIT-6 on Ce-promoted copper-based catalysts. They
found that 3D mesoporous KIT-6 supports could greatly reduce the deactivation rate of
copper-based catalysts and reduce the sintering of copper particles. Therefore, in order
to reduce the sintering degree of copper-based catalysts, it is a good method to introduce
some support materials with large pore sizes.

Table 3 presents the research on the stability of copper-based catalysts with different
supports. From Table 3, we can find that ZrO2-Al2O3 has a great influence on the disper-
sion of copper components, which greatly reduces the deactivation rate of the catalyst
and improves the catalytic stability. Some new supports, such as KIT-6, exhibit low Cu
dispersion, which also reminds us that it is necessary to find an effective new support.

Table 3. Copper-based catalysts on different supports for MSR.

Entry Catalyst Support Conv.CH3OH/% Select.H2/% T/◦C Dispersion/% Lifetime/h Ref.

1 Cu-Zr/AZ Zeolite-supported - 90.6 400 - 50 [119]
2 Ce-Cu/KIT-6 KIT-6 ~92 99.0 300 9.8 24 [118]
3 CuO/CeO2 CeO2 100 - 280 15.33 40 [111]
4 CuZrAlX ZrO2-Al2O3 96.0 - 270 23.1 30 [105]

5 Cu/Zn1.11La1.26Al0.5O4.27
Ceramic
support 97 91 300 11.5 12 [115]

6 10% Cu/g-Al@MMO ZnAl-LDHs/g-Al2O3 99.98 97.8 300 14.16 20 [113]
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3.4. Emerging Materials and Technologies
3.4.1. Copper-Based Spinel Oxide

To solve the sintering problem of copper-based catalysts, spinel-structured copper-based
catalysts have been extensively studied in recent years [43,120,121]. The spinel-structured
copper-based catalysts were found to perform in MSR without prereduction [85,122]. Com-
pared to traditional copper-based catalysts, this type of catalyst is more stable. The sustained-
release catalytic mechanism is a major reason for maintaining the stability of copper-based
spinel catalysts. Slow-release catalysis means that the copper species in the catalyst can be
gradually released, and the release rate is not fast; thus, the stability is improved [121,123].
Meanwhile, the unreleased Cu2+ can stabilize these released copper species [124]. It can be
seen that copper-based spinel oxide catalysts have great potential in the methanol reform-
ing reaction; researchers have also conducted a lot of research on this [125–127]. Figure 7
shows the microstructure of the Cu−Al spinel oxide catalyst and its slow−release catalytic
mechanism, we can find that it can be basically not deactivated within 160 h and has excel-
lent stability.

Figure 7. Cu-Al spinel catalyst for hydrogen production from methanol: (a) CuAlO2 cell; (b) variation
of CuAl2O4 catalytic activity with time; (c) catalytic activity of samples prepared at 900 ◦C as a
function of time; and (d) variation of catalytic performance of different Cu-Al oxide catalysts with
time. Reproduced with permission [43]. Copyright Elsevier, 2018.

In order to study the effect of copper-based spinel oxides on MSR, different copper-
based spinel oxides were prepared. Huang et al. explored the catalytic activity of CuFe2O4,
CuAl2O4, CuMn2O4, and CuLa2O4 in MSR [128], and Li et al. explored the catalytic
activity of CuAl2O4, CuFe2O4, and CuCr2O4 in MSR [85]; they found that Cu-Al spinel
had the best catalytic activity, and various studies have shown that Cu-Al spinel is of great
significance [43,85,129]. Researchers have explored the effect of preparation conditions
and doping promoters on Cu-Al spinel [89]. For example, after doping Mg into Cu-Al
spinel [102,120], the surrounding environment of the copper species changes and the
stability is also improved. During catalyst testing, it was found that the Mg-doped catalyst
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released copper components more slowly and had higher copper dispersion and specific
surface area (Figure 8). Others have doped Ni into Cu-Al spinel [121,122], and they found
that Ni not only stabilized the released copper species but also inhibited the formation of
Cu2+. Our research group studied the doping of Fe, Co, and Ni into CuAl2O4 and found
that Ni and the other two elements are easily doped in different positions, and the charge
transfer ability follows the order of Fe > Co > Ni [128]. Through theoretical calculations,
our research group also explored the adsorption of high-coverage water molecules on
the surface of CuAl2O4. The study found that the interaction of water molecules on
the surface of 110 is stronger. This conclusion is conducive to the development of more
effective catalysts [126]. The preparation conditions also have a great influence on the
copper-aluminum spinel. The activities of catalysts prepared at different temperatures
were studied, and it was found that the preparation temperature of 950 °C had the best
activity [124]. Copper-based spinel oxides show a great potential in solving sintering
problems, which indicates that they should be further explored.

Figure 8. MgO-modified Cu-Al spinel oxide catalyst for methanol steam reforming: (a) Reaction
process on catalyst; (b) the degree of reduction varying with the reduction time; (c) stability testing of
original samples and Mg-doped catalysts; and (d) copper dispersion and surface area versus time.
Reproduced with permission [102]. Copyright Elsevier, 2020.

3.4.2. Plasmonic Copper-Based Catalysts

It is well known that the process of methanol reforming for hydrogen production
requires high temperatures, and copper-based catalysts are easy to sinter at high temper-
atures, which greatly reduces the stability of the catalyst. In order to solve this problem,
researchers must look for photocatalytic materials. Although photocatalytic methanol
reforming for hydrogen production has been studied by many researchers [130–133], these
catalytic materials cannot make good use of light energy, and the hydrogen production
efficiency is also low. It has been reported that catalysts with plasmonic structures have
higher solar energy utilization efficiency, which utilizes solar energy to excite local sur-
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face plasmon resonance (LSPR) for synergistic heating, and plasma catalysts have been
presented in recent years as an emerging type of catalyst [134–140]. Plasma copper-based
catalysts have greater research interest than other metals because of the lower cost of
copper. Luo et al. [140] prepared a plasmonic ZnCu alloy catalyst which is solar powered in
methanol reforming for hydrogen production and exhibits high hydrogen yield; Figure 9a
shows the reaction mechanism of this catalyst. Plasma copper-based catalysts are also
frequently studied in other reactions. Copper-based catalysts are often used in methanol
synthesis as the reverse reaction of methanol reforming for hydrogen production. A plasma
Cu/ZnO catalyst was proposed for methanol synthesis [139], showing an improved activity
for methanol synthesis by 54%. Zhou et al. prepared a copper nanoparticle plasmonic pho-
tocatalyst for methane dry reforming, and they found that the catalyst can efficiently utilize
light energy [138]. Recently, Luo et al. reported a plasmonic Ni-Cu bimetallic catalyst for
photocatalytic ethanol dehydrogenation, which exhibited high activity due to the localized
surface plasmon resonance mechanism [141]. Plasma catalysts have shown advantages in
various photocatalytic reactions, especially in terms of energy saving, which is of great sig-
nificance for future energy conservation and emission reduction. More plasmonic catalysts
should be explored.

Figure 9. Solar-driven plasma ZnCu alloys for H2 production: (a) Mechanism of plasma ZnCu alloy
catalyzed methanol steam reforming reaction; (b) methanol steam reforming activity of different
catalytic materials; (c) stability test of Zn1.3Cu98.7 alloy; and (d) XRD of Zn1.3Cu98.7 catalysts before
and after reaction. Reproduced with permission [140]. Copyright American Chemical Society, 2021.

3.4.3. Metal-Organic Framework-Derived Cu-Based Catalysts

In recent years, the research of metal-organic frameworks (MOFs) has become a popu-
lar topic [142,143]. Metal-organic frameworks exhibit a special 3D network structure, and
their morphology and properties are relatively easy to change. MOFs have the advan-
tages of rich structural types, low density, and high specific surface areas [144], which are
very useful in heterogeneous catalysis [142,145]. For example, metal-organic frameworks
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such as HKUST-1, ZIF-8, copper-based MOF [Cu(mipt)(H2O)](H2O)2,and Cu(BDC) are
often studied in heterogeneous catalysis [146–148]. Among them, HKUST-1 is a typical
Cu-containing MOF, and MOF-derived copper-based catalysts have also been studied and
used in methanol reforming to produce hydrogen. As is shown in Figure 10, Chen et al.
prepared MOF-derived CuO-CeO2 catalysts and used them in methanol reforming for hy-
drogen production with HKUST-1 as the copper precursor [149]. By the MSR performance
tests, they found that the higher the temperature, the higher the methanol conversion of
the catalyst, and the rate of deactivation of MOF-derived catalysts was higher than that
of conventionally prepared catalysts due to their stronger metal–support interaction and
higher copper dispersion, which provides ideas for designing more stable catalysts. Ye et al.
also used HKUST-1 as a copper precursor. To prevent the deactivation of copper-based
catalysts, they prepared a MOF-derived Cu/SiO2 catalyst [150]. It was found that this
catalyst can easily generate more stable Cu2O and does not deactivate within 220 h. In
addition to using MOFs as a copper precursor, they have also been used to prepare copper-
based catalyst supports, and achieved good results. Varmazyari et al. used Cu(BDC) as a
catalyst carrier for MSR, and explored the effect of different promoters on the catalyst [151].
Finally, they found that Cu/Ce-Cu(BDC) had the strongest resistance to deactivation and
the highest CH3OH conversion. Carbon deposition was minimal within 32 h, and the
researchers believe that MOFs as a catalyst support can improve the dispersion of Cu and
strengthen support–metal interaction. This is the same as the conclusion of Chen et al.,
which shows that MOFs have a great influence on strengthening support-metal interaction
and improving the dispersion of Cu particles. These two characteristics are important for
enhancing the stability of Cu-based catalysts.
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Figure 10. MOF-derived CuO-CeO2 catalysts for methanol steam reforming: (a) Methanol steam
reforming reaction mechanism over MOF-derived CuO-CeO2 catalyst; (b) stability testing of CuO-
CeO2 (black dots) and CuO-CeO2-I (red dots), (square: methanol conversion; circle: CO selectivity);
(c) catalytic performance of CuO-CeO2 (black line) and CuO-CeO2-I (red line) as a function of
temperature, (square: methanol conversion; circle: CO selectivity); and (d) TG-DTG plots of the
HKUST-1-CeO2 composite, (black line: thermogravimetric curve, red line: differential curve of
thermogravimetric curve). Reproduced with permission [149]. Copyright Elsevier, 2020.
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Table 4 lists some emerging copper-based catalysts. We found that the catalytic
stability of Cu-Al spinel was greatly improved, which was due to its slow-release catalytic
mechanism. Although the catalytic activity of MOF-derived catalysts was high, the stability
has not been greatly improved. In the future, researchers should pay more attention to the
stability of MOF-derived copper-based catalysts.

Table 4. Emerging materials for copper-based catalysts.

Entry Catalyst Conv.CH3OH/% Select.H2/% T/◦C Lifetime/h Ref.

1 Cu1-xMgxAl3 96.5 96.5 255 500 [120]

2 Cu-Ni-Al spinel
oxides 90.0 — 255 2000 [122]

3 Cu/X-Cu(BDC) ~100 ~99 250 32 [151]

4 MOF-derived
CuO-CeO2

95.0 97.7 330 30 [149]

4. Conclusions

This review discussed the Cu-based catalysts for MSR, especially with regard to the
catalytic stability. First, we summarized several major causes of the deactivation of Cu-
based catalysts. Sintering and carbon deposition are the main reasons for the deactivation of
Cu-based catalysts. In order to solve the problem of deactivation of copper-based catalysts,
this work summarized the progress made by researchers in recent years from three main
aspects, including the preparation methods, promoters, and supports. Some researchers
have also developed new preparation methods. Although the problem of carbon deposition
has been solved and the stability has been improved, the catalytic effect is not good. From
the literature we investigated, among all the preparation methods, the catalysts prepared
by the modified impregnation method and the one-step hydrothermal method have higher
catalytic activity, and for the stability, the modified impregnation method is the best;
therefore, the improved impregnation method has a good effect on improving the stability
and activity of the catalyst. Different additives and supports have different effects on the
stability. For example, Ce has a good oxygen storage capacity, and ZrO2 can disperse
copper particles and reduce the size of copper particles. The dispersion of active species
has a great influence on the stability of the catalyst, and doping of some pure metals can
achieve very good results, even better than oxide doping. From the literature, the doping
of MgO has achieved good results, with the selectivity of hydrogen reaching 99.3% and
the conversion rate of methanol being close to 100%. Furthermore, it does not deactivate
for 30 h. Among the supports, the copper-based catalysts supported by CeO2 and ZrO2
have higher stability and better catalytic activity. With technological innovation, more
and more new copper-based catalysts have been developed for the methanol reforming
reaction, such as Cu-based spinel oxide, MOF-derived Cu-based catalysts, and plasmonic
copper-based catalysts. Among the copper-based catalysts prepared from these emerging
materials, copper-aluminum spinel is promising as it remains stable for 2000 h.

Although a lot of research has been done on preventing the deactivation of Cu-based
catalysts, there are still many challenges in this field. Firstly, the preparation method
could be designed and developed with the idea of green chemistry, which can improve the
performance of the catalyst without polluting the environment. Secondly, the microscopic
mechanism of many supports and promoters in improving catalytic stability is still unclear.
The interaction mechanism between the metal and support is not fully understood. More
theoretical calculations could be done to understand them at the atomic and molecular
levels. Thirdly, plasmonic and MOF-derived copper-based catalysts have not been fully
studied for the methanol reforming reaction, and more efforts could be made in this
area in the future. Although the catalytic activity of MOF-derived catalysts is high, the
stability has not been greatly improved. In addition, more advanced technologies under
mild reaction conditions for methanol reforming could be developed, such as photo-
catalytic, plasma-catalytic, and electro-catalytic methanol reforming. This kind of catalyst
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can efficiently utilize renewable energies such as solar energy and biomass and has great
research significance in solving the energy crisis in the future. Through extensive literature
reports, it was found that few review articles have focused on the design of reactors for
methanol reforming. Thus, the optimization of reaction process conditions and reactor
design would also be significant for the stability of Cu-based catalysts.
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