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Abstract: Selective catalytic reduction (SCR) is still the most widely used process for controlling NOx

gas pollution. Specifically, commercial vanadium-based catalysts have problems such as narrow
operating temperature range and environmental pollution. Researchers have developed a series of
cerium-based catalysts with good oxygen storage performance and excellent redox performance of
CeO2. However, the anti-poisoning performance of the catalyst is the key to its application. There are
many kinds of impurities in the flue gas, which has a huge impact on the catalyst. The deposition
of substances, the reduction of active sites, the reduction of specific surface area, and the reduction
of chemically adsorbed oxygen will affect the denitration activity of the catalyst to varying degrees,
and the poisoning mechanism of different impurities on the catalyst is also different. Therefore,
this review divides the impurities contained in flue gas into different types such as alkali metals,
alkaline earth metals, heavy metals, and non-metals, and summarizes the effects and deactivation
mechanisms of various types of impurities on the activity of rare earth catalysts. Finally, we hope
that this work can provide a valuable reference for the development and application of NH3-SCR
catalysts for rare earth denitration in the field of NOx control.

Keywords: rare earth catalyst; flue gas impurities; denitration activity; poisoning mechanism

1. Introduction

Nitrogen oxides (NOx) cause a series of air pollution problems such as acid rain,
photochemical smog, and ozone depletion [1]. Typically, NOx emissions are produced by
stationary or mobile sources, including coal-fired power plants and automobile engines.
In order to reduce the emission of NOx, various denitration technologies such as SNCR
(non-selective catalytic reduction), SCR (selective catalytic reduction), and SNCR-SCR
combined method have been developed. Among them, the SCR method is a mature and
efficient denitration method [2]. Selective catalytic reduction (SCR) with NH3 is the best
technology for NOx removal in terms of removal efficiency, stability and cost. At present,
most commercial SCR denitration catalysts are vanadium-based catalysts, which are widely
used due to their better thermal stability and denitration efficiency, but vanadium-based
catalysts also have obvious shortcomings. For example, the working temperature range
is relatively narrow (300~400 ◦C), and they exhibit poor resistance to alkali metals, heavy
metals, sulfur dioxide, etc. However, because vanadium is highly toxic, usage of catalytic
material with large amounts of vanadium can lead to further hazard waste environmental
problem [3]. Therefore, the development of alternative low-temperature SCR catalysts has
attracted much attention in recent years.

In order to solve the problems existing in vanadium-based catalysts, a series of “en-
vironmental friendly” catalysts were born; for example, Cu- and Fe-exchanged zeolite
catalysts showed good SCR activities [4–7]. Other nontoxic transition metal oxide-based
catalysts such as CeO2-TiO2-based catalysts [8,9], FeOx-TiO2-based catalysts [10–13], and
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CeO2-WOx-based catalysts [14,15], etc. have also been investigated as potential alternatives.
But rare earth-based catalysts stand out among these catalysts. Today, rare earth-based
denitration catalysts have become a research focus. The rare earth elements represented
by cerium oxide have excellent oxygen storage and redox properties and unique redox
pairs Ce3+/Ce4+ [16–19], and was used as the active component of the catalyst, such as
CeO2-TiO2 [20], CeO2/WO3 [21,22], CeO2/WO3-TiO2 [23,24], CeO2-MoO3-TiO2 [25,26],
Ce/TiZrOx [27], Ce2/Cu4Al1Ox [28] and Ce-Cu/TiO2 [29]. The results of numerous studies
have shown that the rare earth-based catalysts have wider denitration temperature range,
higher efficiency, and higher resistance to SO2, especially the cerium-based polymetal-
lic oxide catalysts, which further improve the redox performance, surface acidity, and
resistance to H2O/SO2. For example, Mn-Ce/TiO2 catalyst, MnOx have many variable
valence states. Its oxides can be interconverted and exhibit good catalytic activity at low
temperature [30–33]. Meanwhile, ceria can reduce the loss of specific surface area and
pore volume during calcination, thereby improving the oxygen storage capacity and redox
performance of the catalyst. Therefore, it has great potential in the field of low-temperature
SCR catalysts [16,17,34–40], promising to replace traditional vanadium-based catalysts.

Rare earth-based flue gas denitration catalysts have broad application prospects in
sintering, coking, cement, glass and other industries. Although its denitration performance
is excellent, the denitration process performs well, there are still some problems to be solved
for rare earth-based catalysts. The sulfur dioxide, alkali metals, alkaline earth metals, heavy
metals and other impurities contained in the flue gas will irreversibly affect the denitration
efficiency and service life of the catalyst [41]. In addition, there are a large number of
non-metallic impurities in the flowing gas of coal-fired boilers and municipal solid waste in-
cinerators, such as phosphorus, hydrogen halide, etc., and the influence of these impurities
on the catalyst cannot be ignored. Therefore, researchers have carried out a lot of research
on the influence and mechanism of different impurities on the denitration performance
of catalysts. In this paper, the impurities in flue gas are classified, and the influence rules
of different types of impurities on the performance of rare earth denitration catalysts are
summarized, in order to provide a reference for the development and application of rare
earth denitration catalysts.

2. The Influence of Metal Impurities

It is well known that the influence of metal impurities on the catalyst is very large,
including alkali metals, alkaline earth metals and heavy metals. Among these metal
impurities are K, Na, Pb, and their compounds. These substances deposited on the surface
of the catalyst, thus reducing the SCR activity of the catalyst [42]. Next, the specific effects
of these metal impurities on the catalyst are discussed.

2.1. Influence of Alkali Metals

The alkali metal elements are the most harmful element to chemically poison a catalytic
material, including alkali metal oxides, alkali metal sulfates and alkali metal chlorides [43].
These substances typically come from fluid gases from static sources, such as coal, biomass,
power plants, etc. Studies had shown that in high mobility gases, the hydrolysis or ion
exchange of alkali metals (K and Na) will neutralize the acid sites on the catalyst surface,
and the presence of alkali metals will also reduce the amount of NH3 adsorbed by the
catalyst. It has a serious deactivation effect on traditional vanadium-based catalysts, and
the deactivation is more serious with the increase of its content. In addition, the different
forms of alkali metals have different effects on catalyst activity. Many researchers have
studied the influence of alkali metals on vanadium-based catalysts, but the research on
cerium-based catalysts is not in-depth. With the promotion of cerium-based catalysts, it
is necessary to study the influence of alkali metals on cerium-based catalysts from the
perspective of industrial application.

Peng et al. [22] studied the effect and mechanism of K and Na on the performance of
CeO2-WO3 catalysts. Figure 1a showed the activity comparisons of V-W/Ti and CeW catalysts
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and corresponding 1 wt% K-doped catalysts at temperature ranging from 100 to 300 ◦C under a
GHSV of 60,000 h−1. Without K doping, the activity of the CeW catalyst was slightly higher than
the V-W/Ti catalyst below 280 ◦C, with a maximum of nearly 99% NOx conversion at 220 ◦C,
maintained up to 300 ◦C. During the NOx conversion test, when 1% K was loaded, the activity
of the V-W/Ti catalyst dropped to 20% at 200 ◦C, while the CeW catalyst remained above 70%
at the same temperature. It can be concluded that the CeW catalyst is more resistant to alkali
metals than the traditional vanadium-based catalyst V-W/Ti below 300 ◦C. For CeW catalyst,
The Na&K catalyst was less active at low temperatures but yielded higher NOx conversion
above 200 ◦C compared with the 1 K and 0.58 Na catalysts. At a given molar concentration,
K gave rise to more deactivation than Na below 200 ◦C, due to its more potent neutralizing
properties (Figure 1b). At the same time, with the increase of the concentration of alkali metal
loaded on the catalyst, the denitration efficiency of the catalyst decreases more obviously at the
same temperature. NH3-TPD, in-situ infrared (DRIFTS), H2-TPR analysis, and DFT calculation
showed that K and Na decreased the content of acid sites on the catalyst surface (Figure 2),
thereby reducing the NH3 gas adsorption amount and weakening the denitration performance.
In addition, the DFT calculation in Figure 3 H2O can bond to the surface with a hydrogen
atominteracting with the moved oxygen (1.38 Å). The bond length of H−O in H2O was 1.11 Å,
which was longer than the standard H−O bond in H2O (0.98 Å) and the other H−O bond is
remained unchanged. This model indicated that the hydrolysis dissociation is H+ and OH−,
and H+ combines with the O element on the catalyst surface to form the Brønsted acidic site.
Therefore, in the experiment, the denitration efficiency of the poisoned catalyst can be restored
to 90% of that of the fresh catalyst after hot water cleaning (Figure 1c). Du et al. [3] also used
DFT calculation to find that the strong interaction of K ions with cerium oxide and titanium
oxide reduced the oxygen vacancy and NH3 gas adsorption of the catalyst, thereby reducing
the reduction and denitration performance of the cerium-titanium oxide catalyst.
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Figure 1. (a) Comparison of NH3−SCR activity of V−W/Ti and CeW catalysts with corresponding
1 wt% K-doped catalysts; (b) The NH3−SCR activity and N2 selectivity of CeW and alkali-doped
Ce W catalysts; (c) The NH3−SCR activity of the regenerated poisoned catalysts. Reaction con-
ditions: catalyst = 300 mg, [NO] = [NH3] = 500 ppm, [O2] = 3%, total flow rate = 300 mL/min,
GHSV = 60,000 h−1 [22].
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Figure 3. H2O adsorbed on the K-poisoned (110) catalyst surface [22].

Wang et al. [44] studied the effect of alkali metal K and Na loaded on the denitration
performance of Ce/TiO2 catalyst by coprecipitation method. The results showed that
the denitration efficiency of fresh catalyst reached 90% at 200 ◦C, while the denitration
efficiency of Na and K loaded with 0.2 mol ratio of Ce to Na decreased to 25% and 10%
respectively at this temperature. Zhou’s study [45] showed that the influence of alkali
metal salts on Ce-Ti catalyst was in the order of nitrate < chloride < carbonate. The catalyst
was almost completely inactivated when potassium carbonate was loaded. When sodium
carbonate was loaded, the denitration efficiency at 100 ◦C decreased from more than 90%
to about 15%.

In addition, Jiang et al. [46] also studied the influence of alkali metal compounds
sodium oxide and sodium chloride on the denitration performance of CeO2-TiO2 catalyst.
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The results in Figure 4 showed that both sodium oxide and sodium chloride lead to catalyst
deactivation, and the effect of sodium oxide is greater than that of sodium chloride. At
350 ◦C, when the molar ratio of Na: Ce = 0.5 Na2O was added, the catalyst almost had no
denitration effect. When NaCl with molar ratio of Na: Ce = 0.5 was added, the denitration
performance of the catalyst decreased to 60%. The XRD patterns of the fresh and Na-
poisoned CT samples indicated the interaction between Na species and TiO2 (Figure 5a).
From the results of XPS, NH3-TPD (Figure 5b) and in situ DRIFT studies, it was found that
the addition of Na could inhibit the transformation of Ce4+ to Ce3+, sodium oxide, and
sodium chloride decreased the specific surface area, chemical adsorption of oxygen, surface
acidity, and reduction capacity of the catalyst, inhibited the adsorption of NH3, and reduced
the denitration performance. The denitration reaction is still controlled by E-R and L-H
mixed mechanism when the catalyst is loaded with sodium oxide and sodium chloride.
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Similarly, for CeO2-TiO2 catalyst, the poisoning effect of K2O is more serious than
that of KCl, as shown in Figure 6. When K2O with molar ratio K: Ce = 0.5 was added
below 300 ◦C, the catalyst was almost completely deactivated. The characterization results
showed that, compared to KCl, K2O could significantly reduce the surface acidity, reduction,
Ce3+/Ce4+ ratio, and the concentration of surface chemisorption oxygen of CeO2-TiO2
catalyst. In-situ DRIFT results showed that K2O had a stronger inhibitory effect on NH3
adsorption on the catalyst surface than KCl. The introduction of K2O or KCl promoted the
adsorption of NO on the catalyst surface, but not all NOx species were reactive in NH3-SCR
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reaction. These results are further confirmed by DFT calculations [47]. The PDOS, oxygen
vacancy, chemical oxygen adsorption, NH3 and NOx adsorption energies of CeO2-TiO2
catalysts doped with different K species were calculated by MS Dmol 3. It was found
that the introduction of K species weakened the reaction activity on the catalyst surface,
inhibited the formation of oxygen vacancies and chemical adsorbed oxygen, and reduced
the adsorption of NH3 on the catalyst surface, all of which led to the decrease of catalytic
activity [48].
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The above studies show that the existence forms and types of alkali metals have
different effects on cerium-based catalysts.

2.2. Effect of Alkaline Earth Metal Ca

Although the low temperature SCR denitration reactor is mostly arranged after the
dust removal system, there is still a small amount of residual dust in the flue gas. The
catalyst is exposed to the flue gas with complex components for a long time, and it is
easy to be inactivated by K, Na, Ca, Si, and As [49], especially when the low temperature
SCR denitration technology is used in some industrial furnaces, such as glass furnaces,
cement furnaces, etc. A large amount of alkaline earth metal Ca in flue gas will have a great
influence on the activity of the catalyst [50,51]. The common way of catalyst poisoning
caused by alkaline earth metal is that alkaline earth metal oxides (such as CaO) react with
SO3 in their pores to form calcium sulfate, which causes the pores to be blocked. The
results of XRD on the catalyst surface by Benson et al. [52] showed that the alkaline earth
metal compounds deposited on the catalyst surface are mainly CaSO4, and the rest are
Ca3Mg (SiO4)2 and CaCO3. Among them, CaSO4 and CaCO3 are obtained by the reaction
of CaO with SO3 and CO2, respectively. In addition, similar to alkali metals, alkali-earth
metals can also interact with the Brønsted acid sites on the catalyst surface to cause the
chemical poisoning of the catalyst, but due to the weak alkaline limit, the poisoning effect
is relatively small [53].

The doping of Ca into the catalyst will have a certain effect on the structure, acid site
and activity of the catalyst. Liu et al. [54] doped Ca element in MnOx/TiO2 catalyst found
that Ca doping could have negative effect on the activities of the MnOx/TiO2 catalysts.
However, at a high Ca doping level of 10 wt%, this effect would become dilute, the SCR
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activity and NO oxidation were somewhat recovered., due to the formation of CaTiO3 that
weakened the deactivation.

Shen et al. [55] loaded Ca(NO3)2 with a molar ratio of Ca/Mn = 0.5 on a Mn-CeOx/Ti-
PILC catalyst, and found that the denitration efficiency of the catalyst decreased from 90%
before loading to 20% at 180 ◦C. Zhou et al. [56] used the impregnation method to deposit
CaCl2, CaCO3 and CaSO4 on the Mn-Ce/TiO2 catalyst, and the denitration efficiency
decreased. At 100 ◦C, the denitration efficiency of the catalyst without calcium loading
reached more than 90%, and the denitration efficiency decreased to 80%, 70% and 40%
when CaCO3, CaSO4 and CaCl2 with a mass content of 1% were loaded, respectively. BET,
XPS, TPD and other characterizations found that the main reasons for catalyst poisoning
were the change of crystal form, the destruction of pore structure, and the reduction of
surface active elements and acid sites. Wang et al. [57] studied the effects of CaCl2 and
Ca(OH)2 on the denitration efficiency of Mn-Ce-Ti catalysts. The results are shown in
Figure 7. At 270 ◦C, the denitration efficiency of Mn-Ce-Ti catalysts exceeded 90%. After
Ca(OH)2 was loaded on the Mn-Ce-Ti catalyst, the denitration efficiency decreased to 75%
and 80.8%, respectively.
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In addition, Li et al. [58] also studied the effect of CaO on the V2O5–WO3/TiO2 and
CeO2-WO3 catalyst. The results showed that CW catalyst had a better CaO resistance
effect than VWTcatalyst for SCR (Figure 8). At 200 ◦C, the denitration efficiency of the
catalyst after adding 5 wt% CaO was reduced from about 90% without CaO to 50%. XRD
Raman (Figure 9), XPS and other analysis showed that CaO inhibited the reducing ability
of the catalyst, and significantly reduced the number of Lewis acid and Brønsted acid
sites, which reduced the amount of NH3 adsorption of the catalyst. At the same time, as
shown in Figure 10, Ca and W formed CaWO4, which reduces the active components on
the catalyst surface, thereby reducing the denitration efficiency. Wang et al. [59] found that
the calcium poisoning of the CeO2-WO3/TiO2 catalyst is due to the fact that Ca2+ hinder
the conversion between Ce3+ and Ce4+, reduce the Lewis acid site, inhibit the redox ability
and NH3 adsorption, and thus reduce the denitration performance.
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Alkaline earth metals in addition to calcium will affect the activity of the catalyst, and
Mg will also affect it. Zhou [45] studied the effect of alkaline earth metal Mg deposition
on the denitration performance of Mn-Ce/TiO2 catalysts. The magnesium deposition of
different precursors (MgCO3, MgCl2, Mg(NO3)2, MgSO4) were studied, and it was found
that the deposition of different magnesium compounds reduced the catalyst activity com-
pared with the fresh catalyst, and with the increase of the alkaline earth metal Mg loading.
The inhibitory effect on catalyst de-stocking activity increased gradually. The deposition of
MgCO3 has the strongest inhibitory effect on the catalyst activity, while Mg(NO3)2 has the
weakest effect. It was found by XRD characterization that the deposition of alkaline earth
metal Mg would generate Mn3O4 peaks and Mn2O3 peaks, which transformed amorphous
Mn into crystalline Mn, which was not conducive to the catalytic reaction. It was obtained
by BET and NH3-TPD analysis that the deposition of alkaline earth metal Mg would reduce
the specific surface area of the catalyst and destroy the Lewis acid sites on the surface of
the catalyst. These changes in physical and chemical properties were the main reasons for
the decrease of the denitration activity of the catalyst.

2.3. The Influence of Pb

Lead is one of the typical heavy metals in the flue gas of coal-fired power plants and
municipal solid waste incineration power plants. Lead in fluid gases mainly exists in two
forms: particles and gases. Part of the lead is adsorbed or condensed on the surface of
the fine particles, and the other part of the lead is converted into lead monoxide or lead
chloride in the combustion reaction and enters the atmosphere [60–62]. Studies have shown
that the presence of lead has a strong toxicity to SCR catalysts. Measured by Chen et al. [63],
the content of Pb in the gas is about 0.072–0.258 µg/m3; the concentration of small particles
and gaseous Pb emitted into the atmosphere is relatively high, accounting for 67–81% of
the total Pb, and are not captured by dust collectors, which may have a serious impact on
SCR catalysts.

Jiang [64] found that when the loading of Pb on the power catalyst reaches 0.19%,
the NO conversion rate is only 12%. The low-temperature SCR activity was significantly
reduced after doping Pb in Mn-Ce/TiO2 [65]. As shown in Figure 11, when the lead loading
is 11%, the NO conversion at 180 ◦C drops from 100% of the fresh catalyst to 44%. The study
of Chen et al. [51] showed that the poisoning effect of lead on SCR catalyst is between the
alkali metals potassium and sodium. Guo et al. [66] studied the toxic effects of heavy metals
Zn and Pb on the SCR performance of Ce/TiO2 catalysts, and found that the toxic effects
of Pb were more serious. The doping of heavy metal Pb will greatly reduce the specific
surface area, pore volume, chemical adsorption oxygen content, and surface acidity of the
catalyst, as well as increase the crystallinity and grain size of anatase TiO2, resulting in
deactivation of the catalyst. In addition, the researchers compared the toxicity of PbO and
PbCl2 to certain catalysts. For the V2O5/TiO2 catalyst, the effect of PbCl2 loading is greater
than that of PbO [67,68], the BET specific surface area of the catalyst after PbCl2 loading
is smaller, and the acidity and reducibility are also lower. Yet for CeO2-TiO2 catalyst, the
result is the opposite, and the effect of PbO generation is greater [69]. From this, it can be
concluded that different lead compounds have different effects on different catalysts.

In order to test the influence of PbO on the performance of catalysts, Zhou et al. [70]
synthesized a series of Mn-Ce/TiO2 catalysts doped with PbO by impregnation method. At
200 ◦C, when the lead-manganese molar ratio reaches 0.5, the NO conversion efficiency of the
Mn-Ce/TiO2 catalyst drops from 96.75% to about 40%. The analysis shows that PbO reduces
the reducibility, specific surface area, surface Mn4+, and Ce3+ content, as well as chemisorbed
oxygen content of manganese and cerium oxides, resulting in the decrease of SCR performance.
The SEM test of Figure 12 showed that the catalyst has obvious aggregation of metal oxides
after PbO poisoning. The effect mechanism of PbO on CeO2-MoO3/TiO2 catalyst (as shown in
Figure 13) and the reduction in denitration efficiency are due to the formation of a new phase
PbMoO4 between PbO and Mo, and this formation inhibits the conversion of surface Ce4+

to Ce3+, thus significantly reducing the surface acidity and reduction in the catalyst [71]. At
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the same time, due to the influence of Pb, the amount of chemisorbed oxygen on the surface
of the catalyst is reduced, resulting in the inhibition of the NO+O2→NO2 reaction, thereby
reducing the activity of the catalyst.
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Studies have shown that PbCl2 reduces the redox properties and surface acidity of the
catalyst, resulting in a decrease in the denitration efficiency. Kong et al. [72] studied the
poisoning mechanism of PbO and PbCl2 on MC catalysts as shown in Figure 14. The toxicity
of PbCl2 is higher than that of PbO, the reason is that PbCl2 is easier to form crystalline
phase, resulting in smaller BET surface area of MC catalyst. At the same time, the newly
formed hydrochloric acid preferentially adsorbs on cerium oxide species, forming inactive
Cl− bonds and ammonium chloride deposition, which further hinders the conversion of
Ce4+ to Ce3+, and reduces the surface acid sites, resulting in deactivation of the catalyst.
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Jiang et al. [69] studied the effects of PbO and PbCl2 on the poisoning of the CeO2-
TiO2 catalyst in the denitration process. It was found that the NO conversion decreased
significantly with the increase of PbO doping amount. When the molar ratio of Pb to Ce
exceeds 0.5, the catalyst is almost completely deactivated (Figure 15a). For PbCl2-doped
catalysts, PbCl2 has little effect on the catalytic activity when the temperature is lower than
350 ◦C. In the temperature range of 350~500 ◦C, with the increase of PbCl2 content, the
catalyst showed obvious deactivation (Figure 15b). With the increasing loadings of Pb
species, PbO or PbCl2 would gather and form crystallized structure (Figure 16). Combined
the XPS, NH3-TPD and H2-TPR tests shown that the PbO doping affects the denitration
reaction due to the obvious reduction of the specific BET surface area of the catalyst,
thereby reducing the surface Ce3+ and chemisorbed oxygen content. PbCl2 reduces the
redox properties and surface acidity of the catalyst, and reduces the denitration efficiency.
According to DRIFT and other tests, the principle of lead poisoning on CT catalysts (as
shown in Figure 17), Pb reduces the Ce3+ content on the catalyst surface, which leads to the
reduction of Brønsted acid sites, and the reduction of surface chemisorbed oxygen inhibits
the progress of NO+O2→NO2 reaction, which are two key factors leading to more severe
inactivation of lead oxide.
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For deactivated catalysts, nitric acid can be used to restore the redox ability of the
catalyst and to increase the surface area and create new acid sites. The use of nitric acid to
regenerate Pb-poisoned catalysts can result in almost complete recovery of catalytic activity.
Even the catalytic activity exceeds that of fresh catalyst at 80–150 ◦C.

In conclusion, although cerium-based catalysts have stronger resistance to metal
impurities than vanadium-based catalysts, it still affects the SCR activity of catalysts.
Therefore, how to improve the resistance of cerium-based catalysts to metal impurities
has become the focus of future research. The catalyst can achieve better performance by
adjusting the ratio of substances, different synthesis methods, or additives.

3. The Influence of Non-Metallic Impurities

In addition to the influence of metal impurities, the influence of non-metallic impurities
in denitration flue gas cannot be ignored, mainly including phosphorus, fluorine, chlorine
and sulfur. Their effects on rare earth catalysts are different. The following are mainly
analyzed from two aspects: denitration activity and denitration mechanism.

3.1. The Effect of Phosphorus

Phosphorus compounds are constituents of dust in fuel gas, and their effect on the
catalytic performance of conventional vanadium-based catalysts has been extensively
studied. Some literatures point out that P doping can improve the surface acid sites and
vanadium species characteristics of V2O5-WO3/TiO2 catalysts, thereby improving the
catalytic activity of the catalysts, but the deposited phosphorus compounds may reduce
its catalytic activity, due to the reduced surface active sites and redox properties of the
catalyst [53,73–75]. And studies have found that some compounds of phosphorus element
have a passivation effect on SCR catalysts, including H3PO4, P2O5 and phosphate [76].
Kamata et al. [77] found that the activity of the catalyst decreased with the increase of P2O5
loading, and the specific surface area and specific pore volume gradually decreased with
the increase of surface P2O5 loading. Kamata et al. also explained that P will replace V and
W in V-OH and W-OH to generate P-OH groups. P-OH is not as acidic as V-OH and W-OH,
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but can provide weaker Brønsted acidic site, so the phosphorus poisoning of the catalyst
is not very obvious when the loading is small. In addition, P can also react with the V=O
active sites on the catalyst surface to generate substances such as VOPO4, thereby reducing
the number of active sites. In light of the above studies, it can be concluded that the content,
form and location of phosphorus compounds in the catalyst may have a significant impact
on the performance of NH3-SCR catalysts.

However, the effect of phosphorus on the catalytic activity of NH3-SCR ceria-based
catalysts remains controversial. To date, only a few studies have reported the effect of
phosphorus compounds on the performance of CeO2-TiO2-based catalysts for NH3-SCR. It
has been reported that phosphorus doping can significantly improve the pore structure,
thermal stability and surface acidity of TiO2 [78,79], which in turn affects the performance
of CeO2/TiO2 catalysts. Yi et al. [80] proposed that depositing phosphorus compounds
could enhance the surface acid strength of CeO2, thereby enhancing its catalytic activity.
But a large amount of phosphorus compounds would reduce the redox properties of CeO2,
thereby reducing its catalytic activity. The deposition of phosphorus compounds on the
CeO2-TiO2 surface could enhance the catalytic activity and resistance to K deactivation
of the catalyst, which is due to the enhanced surface acidity and redox properties. The
deposited phosphorus compound can deactivate CeO2-MoO3/TiO2, but the formed amor-
phous CePO4 species can improve the catalytic performance of CeO2/TiO2 catalyst due to
the incorporation of phosphorus into CeO2 [81,82].

Zeng et al. [83] studied the effect of phosphorus on the selective catalytic reduction
of NOx over CeO2/TiO2 catalysts. It was found that phosphorus disrupts the Ti-O-Ce
structure due to phosphorus-induced migration of Ti4+ from the cerium oxide-titanium
dioxide solid solution to form a separate titanium dioxide, which promotes the growth
of titanium dioxide and cerium oxide grains and reduces the specific surface area of the
BET, decreasing the electron transfer capacity and the ratio of Ce3+ to surface adsorbed
oxygen, resulting in a limitation of the redox performance of the CT catalyst. DRIFT tests
showed that phosphorus decreased Lewis acid sites and increased Brønsted acid sites. In
addition, phosphorus reduced the adsorption capacity of NOx species on the CeO2/TiO2
catalyst, changed the adsorption order of NOx and ammonia species, and reduced the
denitration efficiency.

Cao et al. [84] prepared a phosphorylated CeO2-TiO2 catalyst by impregnation method,
denoted as xP-CT. The denitration performance test in Figure 18a showed that the cat-
alytic activity of fresh CeO2-TiO2 increases rapidly with increasing temperature before
300 ◦C, and the NOx conversion exceeds 85% in the range of 250~400 ◦C. The activity of
the phosphorylation catalyst decreased with the increase of phosphorus loading in the
temperature range of 50~300 ◦C. However, in the high temperature range (above 300 ◦C),
the activity of phosphorus-supported catalysts is higher than that of CeO2-TiO2 catalysts.
The NOx conversion of CeO2-TiO2 catalyst at 450 ◦C is only 14.2%, while the activity of
2.3% P-CT catalyst is still 71.4%. As shown in Figure 19, phosphorus promotes the grain
growth of titanium dioxide and ceria in the catalyst, reduces the specific surface area of
the catalyst, and inhibits the electron transfer between Cerium and titanium ions, resulting
in a decrease in its redox performance. However, when the temperature is above 300 ◦C,
as shown in Figure 18b, P inhibits the NOx and N2O generated by the peroxidation of
ammonia gas, thereby improving the activity of the catalyst at high temperature. On the
2.3% P-CT catalyst, the adsorption capacity of ammonia on the Brønsted acid site is greater
than that on the Lewis acid site, which also promotes the improvement of the activity
at high temperature. The effect of phosphorus on the reaction pathway for NH3-SCR of
NO over the CT catalyst can be depicted as Figure 20. In addition, P does not change the
reaction mechanism of the combined action of L-H and E-R on the catalyst surface.
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3.2. The Effect of Chlorine

As the waste incineration power generation technology is becoming more and more
mature, the NOx emitted by it needs SCR denitration technology to control. However, in
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addition to heavy metals and alkali metals, the waste incineration flue gas also contains
a certain amount of hydrogen halide gas, and the content of Cl is similar to that of NOx,
which will have an adverse effect on the activity of the denitration catalyst. At present,
the research on heavy metals and alkali metals has received extensive attention, but the
research on the effect of Cl on catalyst activity is still lacking.

Over the past decade, some researchers have studied the effects of HCl on SCR
catalysts. Lisi et al. [85] studied the effect of HCl on the denitration activity of vanadium-
titanium catalyst. The results show that the introduction of HCl will lead to a significant
decrease in the activity of the catalyst. The reason is that HCl reacts with the active
component vanadium on the surface of the catalyst to generate volatile VCl5, which leads
to the decrease of the active component on the surface of the catalyst. In addition, although
HCl gas can form a new acid site on the surface of the catalyst, the performance of the new
acid site is lower than that of the original acid site, which eventually leads to the decrease
of the activity of the catalyst. However, Hou et al. [86] studied the effect of HCl gas on the
denitration activity of V2O5/AC catalyst. It was found that HCl gas could improve the
denitration activity of V2O5/AC catalyst when the concentration of HCl gas was less than
1200 ppm, the reaction temperature was 120–150 ◦C and GHSV was less than 6000 h−1.
This is because NH4Cl is formed on the surface of the catalyst during the SCR reaction after
adding HCl. On the one hand, NH4Cl can increase the adsorption capacity of NH3 on the
surface of the catalyst, and on the other hand, NH4Cl can also react with NO to avoid the
continuous accumulation of NH4Cl on the surface of the catalyst, so that the SCR reaction
continues well. However, when the concentration of HCl gas was increased or the reaction
temperature was changed, HCl gas resulted in a significant decrease in the denitration
activity of the catalyst.

It is known that the addition of cerium in the catalyst can effectively resist the influence
of Cl; the study by Jin et al. [87] had shown that HCl will react with Cu ions in the CuHM
catalyst to form Cu2Cl(OH)3, resulting in the change of valence state or phase of Cu ions
on the catalyst, reducing the content of Cu on the surface of the catalyst, resulting in the
decrease of catalyst activity. However, when Ce was added to the CuHM zeolite catalyst,
the resistance of the obtained CeCuHM catalyst to HCl gas was improved, because the
addition of Ce could not only reduce the loss of Cu ions on the catalyst, but also inhibit the
transformation of Cu2+ to Cu+ [88].

Yang et al. [89] studied the effect of Cl− on the denitration activity of Ce/TiO2 catalysts
in the temperature range of 75~225 ◦C, and the results showed that the addition of Cl−

would inhibit the adsorption of NH3 and NOx on the surface of the catalyst, which is not
conducive to the whole SCR reaction, and ultimately led to the decrease of the denitration
activity of Ce/TiO2, as shown in Figures 21 and 22. Chang et al. [90] studied the effect of
SO2 and HCl gas coexistence on Rh/Al2O3 catalyst and found that there is competition
between SO2 gas and HCl gas adsorption on the catalyst surface. When 500 ppm SO2
and 500 ppm HCl gas were introduced into the SCR reaction process, the catalyst was
completely deactivated.

Lu’s research [91] found that HCl gas has an inhibitory effect on the SCR denitration
activity of CeO2/TiO2 and CeO2-MoO3/TiO2 catalysts. In the temperature test range of
150~500 ◦C, the denitration efficiency of the catalysts are all significantly decreased, and the
temperature window was greatly reduced. Although HCl inhibits the catalyst obviously,
the CeO2-MoO3/TiO2 catalyst after HCl gas treatment still maintains a NO conversion rate
higher than 90% in the range of 400~450 ◦C. HCl led to the decrease of specific surface area,
the increase of crystallinity, the decrease of redox capacity and the substantial decrease
of surface acid sites of the catalyst, which further affected the activity of the catalyst. In
the temperature range from 150 to 300 ◦C, the effect of HCl on the activity of CMT is
more serious than that of CT, because the reduction of acid sites corresponding to CMT is
more severe.
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In light of the above research results, it can be found that Cl has different effects on the
denitration activities of different types of SCR catalysts, and there are also great differences
in the activity changes of the same catalyst under different reaction temperatures and
different concentrations of HCl gas.

3.3. Influence of Fluorine

In the metallurgical industry, the raw minerals and coal used for production often
contain fluorine, which is emitted with the flue gas during the smelting process. The
fluorine in the flue gas has great damage to the anti-corrosion layer of the flue, and many
studies have proved that the fluoride additive can enhance the catalytic activity of NH3-
SCR. Studies have shown that F-doped V2O5–WO3/TiO2 catalysts exhibit high activity for
NH3 low-temperature SCR. F doping improves the oxygen vacancy interaction between
WO3 and TiO2, resulting in the increase of superoxide ions in chemisorbed oxygen and
NO oxidation, which is of great significance for low-temperature SCR reactions [92]. For
V2O5/TiO2 catalysts, F doping improves the interaction of V species with TiO2 via oxygen



Catalysts 2022, 12, 808 18 of 30

vacancies and electrons, which significantly promotes low-temperature SCR activity [93].
For traditional vanadium-based catalysts, there are many studies on F-doping, but the
research on its effect on rare earth denitration catalysts is not yet in-depth.

Zhang et al. [94] found that F doping would promote the low-temperature SCR activity
of CeO2-TiO2 catalysts. At 180 ◦C, the NO conversion rate of Ce0.3TiF1.5 reached 92.19%,
showing excellent catalytic performance. Through BET, XRD, PL spectroscopy, Raman
spectroscopy and XPS analysis, it is known that F-doped CeO2-TiO2 catalyst can inhibit
crystallization, make the catalyst have a better amorphous structure, and increase the active
sites on the surface of the catalyst. A stronger interaction occurs between Ce and Ti, which
is favorable for electron transfer, increases oxygen vacancies and chemisorbed oxygen, and
improves the morphology of Ce3+, thereby promoting the catalytic performance. NH3-TPD
analysis showed that a moderate amount of F doping can significantly increase the number
of acid sites on the catalyst surface, especially Lewis acid sites, which are related to the
higher chemisorbed oxygen on the catalyst surface. The DRIFTS results show that the
doping of F can promote the reaction of superoxide radicals (O2

−) on the catalyst surface
with NO in the gas phase to generate nitro (NO3

−) and nitroso (NO2
−) species. These

species are the intermediate products of the reaction with the reducing gas NH3 in the
reaction gas. The increase of intermediate species can speed up the SCR reaction process,
thereby improving the denitration activity [11,95,96].

In order to explore the effect of the preparation method of the catalyst on the F-doped
CeO2/TiO2 catalyst, Zhang [94,97] also tested the performance of the F-doped catalyst
by the sol-gel-impregnation method and the co-precipitation method, respectively. The
results show that the catalyst prepared by the sol-gel-impregnation method can improve
the denitration performance after F doping, but the conversion rate of NOx is still lower
than 55% in the low temperature region below 210 ◦C, which has no practical signifi-
cance. However, the catalyst prepared by the coprecipitation method showed excellent
performance, and its sulfur resistance and water resistance were also enhanced. When the
space velocity is 28,000 h−1 and the reaction temperature is 210 ◦C, the denitration effi-
ciency of the Ce0.3TiF1.5 catalyst is almost 100%, and when the space velocity is 41,000 h−1,
the catalyst can still obtain 95% denitration at the reaction temperature of 210 ◦C effi-
ciency, as shown in Figure 23. The F-doped cerium-titanium catalysts prepared by the co-
precipitation method all showed an amorphous structure with high redox ability, Figure 24
indicated that F-doping resulted in more oxygen vacancies, especially the number of
single-electron-trapped oxygen vacancy (F+ center). Oxygen vacancies could absorb O2
to form chemisorbed oxygen. F-doping might enhance the interaction between titanium
and cerium, which was in good agreement with the XRD results in Figure 25. These are all
important factors for the improvement of catalyst activity.

In addition, some scholars have also studied the effect of HF on the denitration
performance of SCR catalysts. For example, Yang et al. [98] studied the effect of HF
treatment on the SCR performance of CeO2 catalysts. The experimental results show that HF
treatment can greatly enhance the SCR activity of CeO2 catalysts. From the characterization
results, it can be found that HF treatment of CeO2 catalyst will lead to lower crystallinity,
better reducibility, stronger NH3 adsorption capacity, and more surface adsorption of
oxygen, all of which will lead to enhanced catalyst activity. The CeO2 was treated with
HF gas, and the treated CeO2 showed good denitration activity in the range of 100–400 ◦C.
In addition, Jin et al. [99] obtained similar results when they studied CeO2(ZrO2)/TiO2
catalysts modified by HF solution. The addition of HF improved the oxygen storage
capacity of the catalysts. Figure 26 showed HR-TEM images of TiO2-0F and TiO2-10F. The
average size of TiO2-10F (15–20 nm) was much larger than that of TiO2-0F (5–10 nm). In
addition, the lattice fringes with an interplanar spacing of 0.35 nm and 0.235 nm were
consistent with the d-spacing of (1 0 1) and (0 0 1) facets, respectively. The synergistic effect
of (1 0 1) and (0 0 1) crystal planes and the increase of surface chemisorbed oxygen and
Ce3+ concentrations are beneficial to the improvement of catalytic activity, as shown in
Figure 27.
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In conclusion, appropriate amounts of fluorine and hydrogen fluoride can improve
the denitration activity of rare earth catalysts, and can also appropriately improve sulfur
resistance and water resistance, and are also closely related to the preparation method of
the catalyst.

3.4. The Effect of Sulfur

It has been pointed out that transition metal oxides (eg, VOx [100], MnOx [101],
CeOx [102], CuOx [103] and FeOx [104], etc.) are the main active components of low-
temperature SCR denitration catalysts, although low-temperature SCR catalysts exhibit
excellent low-temperature SCR activity [105–107], most fossil fuels contain sulfur, resulting
in large amounts of SO2 in exhaust gas, these traditional catalysts have poor resistance to
SO2, and even lead to deactivation directly. The resistance of denitration catalysts to SO2 is
an important characterization of catalyst performance. In general, the influence of SO2 on
the catalyst is mainly manifested in two aspects: first, SO2 in the flue gas will react with
ammonia to form sulfates, such as (NH4)2SO3 and NH4HSO4, which do not decompose at
low temperatures and eventually deposit on the catalyst surface, the specific surface area
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of the catalyst is reduced and the active site of the SCR catalyst is blocked. Second, SO2
will compete with NH3 for adsorption and sulfate, as well as the surface-active substances,
thereby inhibiting the activity of the catalyst [108,109]. Therefore, research on improving
the sulfur tolerance of low-temperature SCR catalysts has received extensive attention.
Some studies have found that doping rare earth elements (Ce [110], Pr [111], Sm [112], and
Eu [113], etc.) can effectively improve the resistance of catalysts to SO2. CeO2 is often
selected as the promoter or active component of SCR catalyst because of its excellent oxygen
storage/release ability and strong redox performance. The addition of cerium has been
reported to alleviate the sulfation of catalyst active sites and the formation of ammonium
sulfate [108], promoting the anti-sulfur properties of SCR catalysts. However, the effect of
SO2 on the activity of cerium-based catalysts and the specific mechanism still need to be
further explored.

Sheng et al. [114] showed that SO2 can form Mn(SO4)2 and Ce2(SO4)3 with MnOx and
CeO2 in Mn-Ce/TiO2 catalysts, resulting in the decrease of catalyst activity. Jin et al. [18]
also studied the effect of Mn-Ce/TiO2 catalyst on SO2 tolerance, as shown in Figure 28, and
found that under the same reaction conditions in SO2 atmosphere, Mn/TiO2 catalyst only
retained 25% of NO conversion, while the Mn-Ce/TiO2 catalyst retained about 60% NO
conversion. In-situ DRIFT analysis (Figure 29) found that the formed sulfate species on
Mn-Ce/TiO2 surface decomposed much more easily than those on Mn/TiO2 surface. The
lower thermal stability of the sulfation species on Mn-Ce/TiO2 may lead to an increase in
its sulfur tolerance. In the presence of SO2, sulfate species can be preferentially formed on
the Ce dopant, less sulfonation of the main active phase MnOx, and retention of some Lewis
acid sites on MnOx (mechanism Figure 30) to meet the low temperature SCR cycle. The
calculation of the exchange correlation function between VASP4.6 and GGA+PW91 [115]
showed that the doping of Ce reduced the binding energy of ammonium and sulfate ions,
thus making ammonium sulfate easier to decompose. TG-DSC results also confirmed that
the decomposition temperature of NH4HSO4 on Mn-Ce/TiO2 is about 70 ◦C lower than
that on Mn/TiO2. In addition, Gu et al. [116] also found that the surface sulfonation of CeO2
can improve the SCR activity. Wang et al. [110] also found that the formation of MnCeOx
solid solution and the preferential sulfation of CeO2 make the MnCe/Ti catalyst have
higher SCR activity and stronger resistance to SO2 performance. These results indicate that
Ce doping can effectively delay the formation of sulfated species on the surface, thereby
improving the sulfur tolerance of Ce-modified catalysts, so rare earth catalysts have better
resistance to SO2 than traditional catalysts.
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It has also been suggested that the addition of modifiers to cerium-based catalysts can
further improve the sulfur tolerance of the catalysts. For example, Shan et al. [23] added
WO3 to CeO2-TiO2 to form Ce0.2W0.2TiOx. This catalyst maintained a NOx conversion rate
of nearly 100% in the presence of 100 ppm SO2 at a temperature of 300 ◦C. Shen et al. [117]
also found that the zirconium additive had a similar promoting effect on the catalytic
performance of Ti0.8Ce0.2O2. Iron doping also has a positive effect on the SO2 tolerance of
the Mn-Ce/TiO2 catalyst, as iron oxides significantly reduce the sulfate formation rate [118].
Liu et al. [119] reported that Ce/TiO2-SiO2 had stronger SO2 resistance than Ce/TiO2,
and the study showed that the introduction of SiO2 further weakened the basicity of the
Ce/TiO2–SiO2 catalyst surface. Compared with Ce/TiO2, Ce/TiO2-SiO2 has less sulfate
accumulation on the surface. However, Yu et al. [120] believed that in the SCR reaction of
NO and NH3 at low temperature, the catalyst structure rather than the catalyst composition
determines the ability of the catalyst to resist SO2 poisoning. Furthermore, the mesoporous
structure promotes SO2 resistance compared with the microporous structure. There are
also studies showing that the preparation method also affects the resistance of CeO2-TiO2
catalysts to SO2. For example, the samples prepared by the sol-gel method by Gao et al. [20]
exhibited better SO2 resistance than the samples prepared by the impregnation method
and co-precipitation method. In addition, Shan et al. [121] reported that on Ce-Ti mixed
oxides prepared by uniform precipitation, the NO conversion was almost unchanged at
300 ◦C with the addition of 100 ppm SO2 for 24 h. Therefore, the resistance of cerium-based
catalysts to SO2 is not only related to the composition and structure of the catalyst but also
to the preparation method.

Although cerium-based catalysts have good resistance to SO2, the research on catalyst
deactivation regeneration is still important due to the different application environments.
A considerable part of the literature studies the regeneration of deactivated catalysts, and
there are many methods to regenerate deactivated catalysts, such as water washing, thermal
regeneration, and reductive regeneration. The study by Sheng et al. [114] found that water
washing has the best regeneration performance for toxic catalysts, especially under the
action of ultrasonic vibration, the catalytic activity can recover to 91.3%, as shown in
Figure 31, almost reaching the level of fresh catalysts. Other studies have drawn similar
conclusions: after deionized water washing and regeneration, it was found that the NO
conversion rate of the Mn-Ce/TiO2 catalyst could be restored to more than 90%, while
the NO conversion rate of the Mn/TiO2 catalyst was only restored to 60% [18]. This is
because the SO2 deactivation mechanism of the NH3-SCR catalyst is due to active phase
sulfation and surface ammonium sulfate/bisulfate deposition, which can be easily removed
by water washing. And the main washing products Nitrate NO3

–, Sulfate SO4
2−, and

ammonium NH4
+ can be recycled to improve the economic benefits of the low temperature

SCR technology.
Wang et al. [122] also found that although the coexistence of H2O and SO2 aggravated

the deactivation of the catalyst, the surface hydroxylation of the catalyst prevented the
metal sulfation and significantly alleviated the irreversible poisoning. Thermal treatment
with H2O or O2 has been proven can regenerate the SO2 poisoned catalyst effectively, for
both operations facilitate the decomposition of the deposited (NH4)2SO4 or NH4HSO4 and
induce the sub-bulk/bulk S atom out-migration.

In short, non-metallic impurities widely exist in denitration flue gas, and the harm to
the catalyst is inevitable. Rare earth catalysts with excellent performance and good resis-
tance to impurities are bound to become the focus of industry research in the future, some
people have achieved good results in this regard. Although it has excellent performance,
some aspects need to be further explored. It is urgent to explore new synthesis methods
and new material ratio.

Finally, the effects of different types of impurities on rare earth catalysts are summa-
rized in Table 1.
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Table 1. Effects of Various Impurities on Rare Earth Catalysts.

Types of Impurities Effect on Rare Earth Catalysts

Na, K

K and Na will decrease the acid sites of the catalyst, and their oxides and chlorides will weaken the
reaction activity of the catalyst surface, inhibit the formation of oxygen vacancies and chemical adsorbed
oxygen, thereby reducing the NH3 adsorption amount and weakening the denitrification performance.
The influence of K is greater than that of Na, and the influence of oxides is more serious than that
of chlorides.

Ca Ca deposition can destroy the pore structure of the catalyst, reduce the surface active elements and acid
sites, and Mg has a similar effect.

Pb
Lead will reduce the redox performance, chemical adsorption of oxygen and specific surface area of the
catalyst. The toxicity of lead chloride is higher than lead oxide, because lead chloride is easier to form
crystalline phase.

P

At low temperature, P promotes the grain growth of TiO2 and CeO2 in the catalyst, reduces the specific
surface area of the catalyst, inhibits the electron transfer between Ce and Ti ions, and reduces its redox
performance. At high temperature, P inhibits NOx and N2O produced by ammonia peroxidation,
thereby increasing its activity.

Cl HCl led to the decrease of specific surface area, the increase of crystallinity, the decrease of redox ability,
and the significant decrease of surface acid sites, which further affected the catalyst activity.

F
F can inhibit crystallization, so that the catalyst has more surface active sites, increasing oxygen vacancies
and chemisorption oxygen. In addition, the addition of F can bring more NOx adsorption sites and the
formation of intermediate species, thereby promoting the activity of the catalyst.

S
Ce in rare earth catalysts can effectively delay the formation of surface sulfating substances, reduce the
binding energy of ammonium and sulfate ions, so that ammonium sulfate is easier to decompose and
improve the sulfur resistance of Ce modified catalysts.



Catalysts 2022, 12, 808 25 of 30

4. Conclusions and Perspectives

In conclusion, cerium-based catalysts exhibit good denitration activity and have been
widely studied, but the composition of denitration flue gas is complex, and the influence
on catalyst activity is unavoidable. Alkali metals will reduce the acid sites of the catalyst
and reduce the amount of NH3 gas adsorption; the deposition of alkaline earth metals
will destroy the pore structure of the catalyst; lead will reduce the redox performance
and specific surface area of the catalyst; P and Cl will promote grain growth and lead to
increased crystallinity. However, F can inhibit crystallization, increase oxygen vacancies
and chemical adsorption of oxygen, make the catalyst have more surface-active sites,
and promote the formation of intermediate substances, improving the activity of the
catalyst. Compared with vanadium-based catalyst, the great oxygen storage performance
and excellent redox performance of CeO2 make cerium-based catalysts more resistant
to various impurities, especially to SO2. Some people have carried out fruitful work on
the synthesis methods and modification of catalysts and the regeneration of deactivated
catalysts. Nevertheless, some aspects need to be further investigated, the resistance of
cerium-based catalysts to different impurities at low temperature. Second, the traditional
synthesis methods of catalysts also need further research to explore and develop new
synthesis methods to enhance the interaction between active components and weaken the
influence of impurities on the active site. Furthermore, in order to provide more excellent
performance of cerium-based catalysts, it is necessary to further study the optimal ratio
of active components. In addition, considering the cost of catalysts, some metal oxides
have high costs, so the regeneration of poisoned catalysts is also a key research direction in
the future.
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