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Abstract: The two-electron oxygen reduction reaction (2e−ORR) pathway electrochemical synthesis
to H2O2 has the advantages of low investment and environmental protection and is considered to
be a promising green method. Herein, the oxidized Mo2TiC2 MXene (O-Mo2TiC2) was successfully
synthesized by a facile hydrothermal method as an electrocatalyst in electrocatalytic H2O2 production.
The O-Mo2TiC2 achieved the 90% of H2O2 selectivity and 0.72 V vs. RHE of the onset potential.
Moreover, O-Mo2TiC2 showed high charge transfer ability and long-term stable working ability of
40 h. This significantly enhanced electrocatalytic H2O2 production capacity is assigned the oxidation
treatment of Mo2TiC2 MXene to generate more oxygen-containing groups in O-Mo2TiC2. This work
provides a promising catalyst candidate for the electrochemical synthesis of H2O2.

Keywords: two-electron oxygen reduction reaction; electrochemical H2O2 production; Mo2TiC2

MXene; oxidation treatment

1. Introduction

Hydrogen peroxide (H2O2) is a green and crucial oxidant that has been widely used
in the chemical industry, environmental remediation, and textile manufacturing [1–3].
Currently, the industrial production of H2O2 mainly relies on the energy-intensive an-
thraquinone technology, which is a multi-step process that not only requires complex and
large-scale facilities but also generates large amounts of waste chemicals [4–6]. In addition,
the high-concentration H2O2 may pose high cost and safety issues during storage and
transportation [7–10]. In fact, in most applications, only diluted H2O2 (0.1–3% g·L−1) is
required [11–13]. For these reasons, it is an emerging trend to develop an energy-efficient
route that reduces the cost of H2O2 synthesis, storage, and transportation [14–17]. Recently,
the electrochemical generation of H2O2 from the oxygen reduction reaction (ORR) via a
2e− transfer has attracted the attention of the academic community [18–21]. Besides, the
electrochemical generation of H2O from the ORR via a 4e− transfer is the crucial pathway
in fuel cell applications and metal-air batteries [22–26]. Therefore, the development of
highly selective and performance 2e− ORR electrocatalysts is the prerequisite for producing
H2O2 [27–29].

For this purpose, noble metal and alloy catalysts have been verified to have high
ORR activity and H2O2 selectivity, such as Pt, Pd, and Au-based catalysts [6,30,31]. How-
ever, their high cost and scarcity hinder their large-scale applications [32,33]. So far, two-
dimensional (2D) carbon-based materials have shown good performance in the electro-
chemical synthesis of H2O2 due to their abundant reserve, tunable electronic structures,
and composition versatility [34–37]. Recently, researchers have been developing other
potential electrocatalysts, such as MXenes, which are two-dimensional metal carbides or
nitrides [38–40]. MXenes are considered promising catalysts for the generation of H2O2 via
2e− transfer [41–45].
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MXenes have recently attracted great attention in the field of electrocatalysis due to
their tunable composition and excellent chemical properties [35,46,47]. For instance, Yury
et al. used Mo2TiC2Tx to support Pt single atom, showing excellent hydrogen evolution
reaction (HER) performance [48]. Additionally, Xiao Huang et al. prepared Ti3C2Tx, V2CTx,
and Nb2CTx for H2O2 electrosynthesis and found that MXenes are inherent 2e−ORR
catalysts with high H2O2 selectivity [42]. Not only that, MXenes can be used in other appli-
cations. For instance, Tang et al. found that the MXenes and their fluorinated/hydroxylated
derivative materials were advantageous materials for Li-ion battery applications [49]. Ad-
ditionally, Xu et al. also developed a strategy to prepare rGO/Ti3C2Tx electrodes using
Ti3C2Tx as the active conductive binder between rGO nanosheets [50]. Apart from this,
Li et al. reported MXene quantum dots and graphitic carbon nitride nanosheets for the
preparation of heterostructured g-C3N4@Ti3C2 quantum dots, which showed improved
photocatalytic ability [51]. It can be seen that MXenes have a wide range of applications;
however, its research of 2e−ORR in the electrochemical synthesis of H2O2 should be fur-
ther strengthened.

In the present work, we have developed a facile synthetic method for preparing
oxidized Mo2TiC2 MXene (O-Mo2TiC2) catalysts. O-Mo2TiC2 materials provide high
selectivity and are active in the electrochemical synthesis of hydrogen peroxide under
alkaline conditions. Catalyst evaluation for different pH environments also reveals that
pH has an effect on performance. Furthermore, the electrocatalytic H2O2 production
performance of the catalyst is indeed affected by the variation of catalyst loading on the
working electrode, which has been demonstrated. This study opens up new directions in
search of more active and selective electrocatalysts for the efficient production of H2O2.

2. Results and Discussion

The preparation of the O-Mo2TiC2 is schematically demonstrated in Scheme 1. Firstly,
the Mo2TiAlC2 was added into hydrofluoric acid to etch Al to obtain a layered Mo2TiC2
MXene, which was further exfoliated by adding tetrabutylammonium hydroxide. Finally,
the O-Mo2TiC2 was obtained via hydrothermal treatment with high concentrations of
potassium hydroxide.
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Scheme 1. Schematic illustration of O-Mo2TiC2 preparation process.

To investigate the structural features of Mo2TiAlC2, Mo2TiC2 MXene, and O-Mo2TiC2,
we performed X-ray diffraction (XRD) analysis on these three materials (Figure 1a,b). Com-
pared with Mo2TiAlC2, the (002) diffraction peak of Mo2TiC2 MXene has shifted to a lower
angle (2θ from 9◦ to 7◦), indicating that the interlayer spacing increases after the addition
of tetrabutylammonium hydroxide. In addition, there is a characteristic weak peak of
the (004) crystal plane, which is consistent with the formation of the MXene phase. As
shown in Figure 1b, the diffraction peaks of MoO3 and TiO2 are observed in O-Mo2TiC2,
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which is consistent with literature reports [52–55], indicating the successful synthesis of
oxidized Mo2TiC2. According to Figure S1, compared with the Mo2TiC2 EDX spectrum,
there is no Al peak in the Mo2TiC2 MXene, indicating that the aluminum element was
completely removed during the etching process. Figure 1c,d depict the morphology of
the O-Mo2TiC2 forming process. As shown in Figure 1c, Mo2TiC2 MXene has obvious
layered and sheet-like structures. The morphology and structure of O-Mo2TiC2 synthesized
by the hydrothermal method did not change in Figure 1d. Compared with the Mo2TiC2
MXene, the O-Mo2TiC2 still maintains the corresponding layered structure, indicating that
the layered structure and crystallinity of Mo2TiC2 MXene are hardly influenced by the
oxidation process. In order to further determine the morphology and structural charac-
teristics of Mo2TiC2 MXene and O-Mo2TiC2, we also carried out transmission electron
microscopy (TEM) analysis, and the analysis results are shown in Figure 1e,f. It can be seen
from the TEM images that the O-Mo2TiC2 and Mo2TiC2 MXene maintain a nearly similar
layered structure.
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Figure 1. (a) XRD spectra of Mo2TiC2 MXene and Mo2TiAlC2. (b) XRD spectra of O-Mo2TiC2.
SEM images of (c) Mo2TiC2 MXene and (d) O-Mo2TiC2. TEM images of (e) Mo2TiC2 MXene and
(f) O-Mo2TiC2.
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In order to verify the distribution of C, O, Ti, and Mo, we used energy dispersive X-ray
spectrometer (EDX) elemental mapping to analyze the O-Mo2TiC2. In Figure 2a–g, we can
clearly see that the distribution of C, O, Ti, and Mo in the O-Mo2TiC2 is very uniform, indi-
cating that the O element has been successfully introduced into the O-Mo2TiC2. The elemen-
tal contents (atomic %) for EDX analysis is: C = 38.70%, O = 31.95%, Ti = 9.91%, Mo = 19.45%,
and the mass ratio: C = 14.01 wt%, O = 15.41 wt%, Ti = 14.31 wt%, Mo = 56.27 wt%. The
specific surface areas of Mo2TiC2 MXene and O-Mo2TiC2 were measured via N2 adsorption–
desorption in Figure 2h, and the Brunauer–Emmett–Teller (BET) specific surface area is
5.41 m2 g−1 and 12.80 m2 g−1, respectively, suggesting that the oxidation process is in
favor of improving the specific surface area of Mo2TiC2 MXene. The Raman spectra of the
O-Mo2TiC2 are recorded in Figure 2i. Raman modes can be observed at around 170, 245,
310, and 770 cm−1 in all samples [56]. These modes closely match previous reports on the
Raman spectra of Mo2TiC2, giving further evidence of the successful synthesis of Mo2TiC2.
It has been reported that the peak around 170 cm−1 results from the Eg vibration of both
Mo and Ti atoms, and the peak at around 245 cm−1 corresponds directly to the Eg vibration
of the O atoms, which suggests the presence of Mo-O in this MXene. The peaks at 310 and
770 cm−1 are all thought to mostly originate from the vibrations of C atoms in the MXene.
The sharp bands at 385 and 442 cm−1 correspond to Raman active modes of TiO2 [57]. The
presence of Mo-O bands can be confirmed since its characteristic main bands at 282,666 and
710 cm−1 (Ag) cm−1 are observed, which is in accordance with previous analysis [57–59].
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We also conducted X-ray photoelectron spectroscopy (XPS) analysis of the Mo2TiC2
MXene and O-Mo2TiC2, from which the chemical composition and valence state of each
element during the oxidation reaction could be determined, which clearly confirmed the
surface functional groups of the samples before and after the reaction. The XPS survey
spectrum (Figure 3a,b) shows the presence of O, Ti, C, and Mo as the main components of
Mo2TiC2 MXene and O-Mo2TiC2.
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Figures S2 and 4a–d show the high-resolution XPS spectra of Mo2TiC2 MXene and
O-Mo2TiC2, where the changes of C 1s, Mo 3d, Ti 2p, and O 1s before and after the oxidation
process are clearly observed. The three peaks of C 1s are C-O (286.1 eV), C-C (384.5 eV),
and Mo(Ti)-C (282.0 eV) in Figure S2a [56]. Mo 3d has peaks of Mo-C (234.3 eV and
231.1 eV) and Mo-Ox (237.4 eV and 234.7 eV) in Figure S2b [56]. The three peaks of Ti
2p are Ti-O (458.9 eV), Ti-C (463.4 eV and 457.4 eV) in Figure S2c [56]. The three peaks
of O 1s are Mo2TiC2-OH (531.4 eV), Mo2TiC2-Ox (529.9 eV), and Mo(Ti)-Ox (529.0 eV) in
Figure S2d [56]. For O-Mo2TiC2 in Figure 4a–d, C 1s is mainly a new peak COO (288.3 eV)
and an increase in C-O (285.6 eV) content in Figure 4a [48]. Figure 4b,c show that the
original oxygen-containing peak areas of the other two elements also increased to varying
degrees, and new oxygen-containing peaks also increased. After the oxidation treatment,
the new peaks of Mo-Ox (235.3 eV and 232.0 eV in Figure 4b) and Ti-Ox (463.7 eV in
Figure 4c) were introduced [44]. We can conclude that the oxidation process of O-Mo2TiC2
introduces more oxygen-containing groups. These oxygen-containing groups, including
Mo-Ox and Ti-Ox, are important for the electrocatalytic process. Therefore, both Mo and Ti
are important for the electrocatalytic process.
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The electrocatalytic H2O2 production activity of the as-prepared O-Mo2TiC2 was
evaluated by cyclic voltammetry (CV) in alkaline and neutral electrolytes, respectively, in
Figure S3. Figure S3a shows almost no characteristic curve in the N2-saturated 0.1 M KOH
solution, while a distinct reduction peak appears in the O2-saturated 0.1 M KOH solution
(Figure S3b). Moreover, similar CV test results can also be observed in neutral solutions
(Figure S3c,d), indicating that the O-Mo2TiC2 has a remarkable electrocatalytic activity for
oxygen reduction. Especially in 0.1 M KOH electrolyte, the reduction peak is very obvious,
indicating that the ORR activity is significantly enhanced in an alkaline solution. Following
the above results, we evaluated the electrocatalytic activity of the O-Mo2TiC2 using an
RRDE. Because the ORR can be divided into 4e−pathway and 2e−pathway, the electro-
catalytic production of H2O2 is a typical 2e−ORR pathway. To study the electrocatalytic
H2O2 production capability of O-Mo2TiC2 under both alkaline and neutral conditions,
we employed two electrolytes: 0.1 M KOH solution (pH~13) and 0.1 M Na2SO4 solution
(pH~7). Figures 5a and S4 show the electrochemical results of the catalysts in the two elec-
trolytes (the rotation speed of the RRDE electrode at 1600 rpm), where the oxygen reduction
current (solid line) was measured on the disk electrode, and the H2O2 oxidation current
(dotted line) were measured on platinum ring electrodes. According to Figures 5a and S4,
whether in 0.1 M KOH solution or 0.1 M Na2SO4 solution, compared with Mo2TiC2 MXene,
O-Mo2TiC2 has a stronger ability to electrochemically synthesize H2O2, that is, higher ring
current and corrected onset potential (0.1 M KOH solution: 0.72 V vs. RHE; 0.1 M Na2SO4
solution: 0.33 V vs. RHE). Therefore, combined with the above analysis, the electrocatalytic
activity of Mo2TiC2 for H2O2 production is much higher than that of Mo2TiC2 MXene.
This is because the surface oxidation treatment makes Mo2TiC2 MXene generate more
oxygen-containing functional groups, which greatly increases the active sites of the reaction
and improves the electrocatalytic ability of the catalyst O-Mo2TiC2 to produce H2O2.
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Figure 5. (a) Polarization curves (solid line) and H2O2 detection current densities (dashed lines)
at the ring electrode for Mo2TiC2 MXene and O-Mo2TiC2t at 1600 rpm in 0.1 M KOH solution.
(b–d) Transfer electron number, H2O2 selectivity, and Faradaic efficiency of Mo2TiC2 MXene and
O-Mo2TiC2 in 0.1 M KOH solution. (e) Nyquist plots of catalysts O-Mo2TiC2 and Mo2TiC2 MXene in
0.1 M KOH solution. (f) Stability test of catalyst O-Mo2TiC2 in 0.1 M KOH solution for 40 h.
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As shown in Figure 5b, the number of transferred electrons of O-Mo2TiC2 is closer to
2e−. Therefore, O-Mo2TiC2 is easier to carry out the 2e−ORR process so as to achieve the
purpose of H2O2 production. The H2O2 selectivity of O-Mo2TiC2 is maintained above 83%
(Figure 5c), and the H2O2 selectivity reached the peak of 90% at 0.7 V vs. RHE, which is
much higher than the highest H2O2 selectivity (70%) of Mo2TiC2 MXene. Similar results
were observed in neutral solution (0.1 M Na2SO4 solution). The H2O2 selectivity of O-
Mo2TiC2 reached 83% (Figure S5), which is higher than the 59% selectivity of Mo2TiC2
MXene in a neutral solution. Moreover, the number of transferred electrons also confirms
this result in Figure S6. We also calculated the Faradaic efficiency (FE) of H2O2 in a
0.1 M KOH solution; the FE of O-Mo2TiC2 is 81% at 0.7 V vs. RHE (Figure 5d), which
is much higher than Mo2TiC2 MXene (56%). The FE of O-Mo2TiC2 (Figure S7) is 70%
in 0.1 M Na2SO4 solution, which is also much higher than the 42% of Mo2TiC2 MXene.
Therefore, the above results indicate that the O-Mo2TiC2 exhibits a higher electrocatalytic
H2O2 production capacity than the Mo2TiC2 MXene in both neutral and alkaline solutions.
The impedance and interfacial electron transfer ability of O-Mo2TiC2 and Mo2TiC2 MXene
in alkaline solution and neutral solution were analyzed via electrochemical impedance
spectroscopy (EIS). According to Figures 5e and S8, O-Mo2TiC2 showed lower charge
transfer resistance, indicating the better electrochemical performance and fast dynamics,
and the EIS fitting results are shown in Table S1. The internal resistance (R1) is consistent,
while the transfer resistance (R2) is smaller than that of Mo2TiC2 MXene. Therefore, it is
indicated that the O-Mo2TiC2 achieves a fast faradaic process and excellent reaction kinetics
due to the introduction of oxygen element, which is consistent with the above-mentioned
results of H2O2 activity and selectivity analysis. The stability is an important basis for
studying whether the catalyst can be commercialized. Combined with the above analysis
and test results, the O-Mo2TiC2 exhibited a high electrocatalytic ability to produce H2O2 in
0.1 M KOH solution. Therefore, we mainly tested the stability of O-Mo2TiC2 in an alkaline
solution. As shown in Figure 5f, the O-Mo2TiC2 can continue to work for 40 h under the
voltage of 0.7 V vs. RHE, and no obvious overpotential change is observed. Therefore, the
O-Mo2TiC2 show good stability and great potential for large-scale practical application,
which makes O-Mo2TiC2 a promising candidate catalyst to further enhance the potential of
electrocatalytic H2O2 production at the industrial level.

The effects of loading amount on the H2O2 selectivity were also investigated in alkaline
and neutral solutions (Figures 6a and S9). The LSV curves of ring current and disk current
in alkaline solution are consistent with the neutral solution. The onset potential of the LSV
curve is the highest when the O-Mo2TiC2 loading is 50 µg cm−2 and the H2O2 oxidation
current is the highest. In alkaline solution, the different loadings of O-Mo2TiC2 have
obvious effects on the number of transferred electrons, H2O2 selectivity, and Faradaic
efficiency in Figures 6b–d and S10–S12. With the decrease in the O-Mo2TiC2 loading,
the ability of 2e−ORR to produce H2O2 gradually increased, the number of transferred
electrons gradually approached 2e−, and the H2O2 selectivity and Faradaic efficiency
also gradually increased. In 0.1 M KOH solution, when the catalyst loading gradually
decreased, the number of transferred electrons gradually approached 2e− (from 3.2e− to
2e−) in Figure 6b, the H2O2 selectivity was gradually increased from 41% to 90% (Figure 6c),
and the FE increased gradually from 25% to 80% (Figure 6d). Similar to an alkaline solution,
when the catalyst loading was gradually decreased in neutral solution, the number of
transferred electrons gradually approached 2e− (from 3.4 e− to 2.3e−) in Figure S10, and
the H2O2 selectivity gradually increased from 32% to 83% (Figure S11), and the FE increased
gradually from 19% to 70% (Figure S12). Based on the above experimental results, the
O-Mo2TiC2 loading was very low, such as 50 µg cm−2, and the O-Mo2TiC2 showed lower
4e−ORR activity and higher H2O2 activity. Therefore, we believe that when the O-Mo2TiC2
layer is very thin, the generated H2O2 would quickly escape from the active site of the
O-Mo2TiC2 layer and avoid being further reduced.
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In order to verify the effect of thickness on catalytic performance, we tested the
electrocatalytic performance of O-Mo2TiC2 with a larger thickness. Figure S13 shows
an SEM image of O-Mo2TiC2 with a thicker thickness. The test results are shown in
Figures S14–S17. Comparing the results of Figures S14–S17 with Figures 5a–d and 6a–d, it
can be seen that the thicker O-Mo2TiC2 has a lower ring current and smaller onset potential
(onset potential: 0.64 V vs. RHE). The H2O2 selectivity of the thicker thickness O-Mo2TiC2
is 41% in Figure S15, which is lower than that of the thinner thickness O-Mo2TiC2. In
addition, the results of the number of transferred electrons (3.2 e−) in Figure S16, and the
Faradaic efficiency (25%) in Figure S17, were calculated. Combined with the above analysis,
the electrocatalytic activity of the thinner O-Mo2TiC2 for H2O2 production is much higher
than that of the thicker O-Mo2TiC2. The reason is that the thinner O-Mo2TiC2 provides
more reaction sites, greatly improving the electrocatalytic activity of O-Mo2TiC2.

3. Materials and Methods
3.1. Reagents and Chemicals

Potassium hydroxide (KOH, AR) was purchased from Shanghai McLean (Shanghai
Aladdin Biochemical Technology Co., Ltd, Shanghai, China), aqueous hydrofluoric acid
(HF, 40 wt%) was purchased from Fuchen (Fuchen Chemical Reagent Co., Ltd, Tianjin,
China), carbon-aluminum-titanium-molybdenum (Mo2TiAlC2, AR) was purchased from
Yiyi Technology (Jilin Province Yiyi Technology Co., Ltd, Jilin, China), argon gas (High
purity) from Beijing Millennium (Beijing Millennium Jingcheng Gas Co., Ltd, Beijing,
China), and tetrabutylammonium hydroxide (C16H37NO, 40 wt%) was purchased from
Energy Chemical (Sarn Chemical Technology Co., Ltd, Shanghai, China). The ultrapure
water used in all experiments was purified with a Milli-Q system.

3.2. Synthesis of Mo2TiC2 MXene and O-Mo2TiC2
3.2.1. Synthesis of Mo2TiC2 MXene

Mo2TiAlC2 (1 g) powder was slowly added to 40 wt% HF (20 mL), and the solution
was stirred in an oil bath at 55 ◦C for 72 h. After 72 h, the solution was cooled at room
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temperature and then washed and centrifuged with deionized water continuously. The
multilayered Mo2TiC2 MXene powder was collected when the decanted supernatant pH
was neutral. The as-synthesized dry multilayer Mo2TiC2 MXene powder was dispersed
into 60 mL of deionized water, and then, 1 mL of 40 wt% tetrabutylammonium hydroxide
(TBAOH) was added. After sonication for 1 h under the continuous flow of argon and
centrifugation at 3000 rpm for half an hour, the supernatant in the test tube was collected
to obtain a layered Mo2TiC2 MXene solution. The solution was frozen overnight in a
refrigerator and dried with a freeze dryer to obtain a layered Mo2TiC2 MXene powder,
which was collected and frozen for later use.

3.2.2. Synthesis of Oxidized Mo2TiC2-Based MXene Materials

In this experiment, the hydrothermal method was used to prepare the oxidized
Mo2TiC2-based MXene material; that is, the Mo2TiC2 MXene powder was oxidized with a
high concentration (10 M) KOH solution in a polytetrafluoroethylene kettle. Briefly, about
50 mg of the previously prepared Mo2TiC2 powder was dispersed in 40 mL of 10 M KOH
solution, stirred by ultrasonic for 30 min, and then transferred to an oven for 12 h at 180 ◦C.
After 12 h, the product solution was naturally cooled to room temperature and then washed
and centrifuged with deionized water and absolute ethanol continuously. When the pH of
the poured supernatant was neutral, the product was transferred to a vacuum drying oven
at 60 ◦C for about 10 h to dry it completely. The prepared sample is simply referred to as
O-Mo2TiC2 in the rest of the paper.

3.3. Characterization of Mo2TiC2 MXene and O-Mo2TiC2

Scanning electron microscopy (SEM) measurements were performed with a Hitachi
SU8010 scanning electron microscope at 200 kV. Transmission electron microscopy (TEM)
was measured with a Tecnai F20 at 200 kV. Wide-angle X-ray diffraction (XRD) was per-
formed with a Burker D8-advance X-ray diffractometer (operating current: 40 mA, op-
erating voltage: 40 KV) under Cu-Kα (λ = 0.15406 nm) radiation. X-ray photoelectron
spectroscopy (XPS) was measured with Mg-KR radiation (BE) at 1253.6 eV. Nitrogen
adsorption–desorption isotherms were measured with a micromertics ASAP 2460 ana-
lyzer (USA) at liquid nitrogen temperature (77 K), and the samples were measured after
degassing in a vacuum at 80 ◦C for 6 h. The surface area was obtained using the Brunauer–
Emmett–Teller (BET) method. Raman spectra were collected using a Raman spectrometer
(HORIBA labRAM HR Evolution).

3.4. Electrochemical Performance Tests

The tests on electrocatalytic hydrogen peroxide (H2O2) production in this paper were
all completed by a CHI760E electrochemical workstation and rotating disk electrode device.
The working electrode was a rotating ring disk electrode (RRDE) assembly (AFE7R9GCPT,
Pine Research Instrumentation Inc, Shanghai, China) composed of a glassy carbon rotating
disk electrode (area: 0.196 cm2) and a platinum ring, with a theoretical collection efficiency
of 35%. The counter electrode is a carbon rod, and the reference electrode is Hg/HgO elec-
trode. Test in normal temperature and pressure environment, test two different electrolytes:
0.1 M KOH solution (alkaline, “pH = 13”) and 0.1 M Na2SO4 solution (neutral, “pH = 7”).

In order to ensure the accuracy of the experiment, we determined the collection
efficiency of the RRDE electrode used by a specific experiment, that is, measuring the RRDE
electrode in a nitrogen-saturated solution of 1 M KNO3 and 10 mM K3Fe(CN)6 (Macklin,
AR, >99.5%) Apparent collection efficiency (N) in as shown in Figure S18 the apparent
collection efficiency N was 34.3% at 1600 rpm. Because the apparent collection efficiency of
the RRDE electrode is only related to the electrode itself and has nothing to do with other
conditions such as catalyst and electrolyte, the measured data (N = 34.3%) can be directly
used in subsequent experiments.
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Here is a full description of the experiment:

(1) Catalyst preparation:

Add 600 µL ultrapure water, 400 µL absolute ethanol, and 10 µL Nafion solution
(5 wt%) to a 2 mL centrifuge tube. Another 5 mg of catalyst was weighed and mixed with
it. Sonicate for half an hour to form a uniform ink and be ready to use. Use a pipette to
drop the ink onto a glass carbon disk (surface area 0.196 cm2, the catalyst loading can be
adjusted at any time according to the experimental needs, about 500 µg cm−2~50 µg cm−2),
and dry at room temperature. On the glassy carbon disk electrode, the catalyst layer is
uniform with no obvious pinholes or exposed edges.

(2) RRDE measurement:

Before the electrochemical performance test, in order to eliminate the air in the elec-
trolyte as much as possible, it is necessary to ventilate the electrolyte with N2 for 30 min.
Then, the cyclic voltammetry (CV) curve was tested at a scan rate of 50 mV·s−1, with at
least 40 cycles until the CV curve remained stable. Then ventilate the electrolyte with
O2 for 30 min. After that, the cycle was repeated 20 times at a scan rate of 10 mV·s−1

until the CV curve remained stable. Finally, the linear sweep voltammogram (LSV) in
the O2-saturated electrolyte was measured by polarization curves and a rotating ring disk
electrode (RRDE). The ORR polarization curve was saved by adjusting the rotating disk
electrode device to keep the electrode rotation speed at 1600 rpm and the scan rate at
10 mV·s−1 for measurement.

To detect the generated H2O2 while avoiding other ORR currents, the Pt ring potential
was kept at 1.4 V vs. RHE during LSV. All LSV curves were corrected with resistance
compensation and potential scales given relative to a reversible hydrogen electrode (RHE).

From the disc current (ID) and ring current (IR) results, determine the H2O2 selectivity
and transfer number of electrons (n) with the following formulas:

H2O2% = 200
IR/N

ID + IR/N
(1)

n = 4
ID/N

ID + IR/N
(2)

The formula for calculating the Faradaic efficiency (FE) of H2O2:

Faradaic efficiency of H2O2% = 100
IR/N
|ID|

(3)

(3) Electrochemical impedance spectroscopy (EIS) was acquired in the range of 106 Hz
to 0.1 Hz, measured in an oxygen-saturated 0.1 M KOH aqueous solution at 0.65 V
vs. RHE. All measurement potentials using the three-electrode setup are manually
100% compensated.

(4) The stability of the catalyst in this experiment was tested by the potentiostatic method,
and the catalyst was tested under fixed voltage conditions for 40 h (0.7 V vs. RHE).

3.5. Mechanism

The 2e−ORR pathway for H2O2 production proceeds through Equations (4) and (5):

O2 + H2O + e− → OOH ∗+OH (4)

OOH ∗+e− → HO−2 (5)

First, hydrogenation of oxygen occurs on active sites via proton-electron transfer to
form OOH* intermediate, and then, OOH* intermediate is reduced to HO2

− with second
electron transfer. Therefore, the OOH* intermediate plays a key role in the 2e−ORR for
H2O2 formation, and the adsorption energy of OOH* is used as the descriptor to evaluate
the catalytic activity of different active sites [60,61].
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4. Conclusions

Mo2TiC2 MXene was synthesized using hydrofluoric acid as an etchant and then
oxidized with a high concentration of KOH solution by hydrothermal method to obtain
O-Mo2TiC2. The H2O2 selectivity of O-Mo2TiC2 in alkaline solution reached up to 90%, and
the onset potential reached 0.72 V vs. RHE. Moreover, O-Mo2TiC2 exhibited high charge
transfer ability and long-term stable working ability (40 h). The significantly enhanced
electrocatalytic H2O2 production is mainly due to the oxidation treatment of Mo2TiC2
MXene to generate more oxygen-containing groups in O-Mo2TiC2, which are beneficial
to the improvement of electrocatalytic H2O2 production performance via increasing the
active sites. It was also found that the electrocatalytic H2O2 production performance of
the catalysts was indeed affected by the variation of the catalyst loading on the working
electrode. This work provides a promising catalyst for the electrochemical synthesis
of H2O2.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12080850/s1, Figure S1: TEM-EDAX patterns of Mo2TiC2
MXene and O-Mo2TiAlC2; Figure S2: High-resolution XPS spectra of Mo2TiC2 MXene (a) C 1s, (b) Mo
3d, (c) Ti 2p, and (d) O 1s; Figure S3: CV curves of O-Mo2TiC2 in two different electrolytes, with a scan
rate of 50 mV s−1; 0.1 M KOH solution: (a) saturated with N2, (b) saturated with O2; 0.1 M Na2SO4
solution: (c) N2 saturated, (d) O2 saturated; Figure S4: Polarization curves (solid line) and H2O2
detection current densities (dashed lines) at the ring electrode for Mo2TiC2 MXene and O-Mo2TiC2t at
1600 rpm in 0.1 M Na2SO4 solution; Figure S5: H2O2 selectivity of Mo2TiC2 MXene and O-Mo2TiC2
in 0.1 M Na2SO4 solution; Figure S6: Transfer electron number of Mo2TiC2 MXene and O-Mo2TiC2
in 0.1 M Na2SO4 solution; Figure S7: Faradaic efficiency of Mo2TiC2 MXene and O-Mo2TiC2 in
0.1 M Na2SO4 solution; Figure S8: Nyquist plots of catalysts Mo2TiC2 MXene and O-Mo2TiC2 in
0.1 M Na2SO4 solution; Figure S9: Different loadings of O-Mo2TiC2 LSV curves in 0.1 M Na2SO4
solution at 1600 rpm; Figure S10: Number of transferred electrons of O-Mo2TiC2 with different
loadings in 0.1 M Na2SO4 solution; Figure S11: H2O2 selectivity of O-Mo2TiC2 with different loadings
in 0.1 M Na2SO4 solution; Figure S12: Faradaic efficiency of O-Mo2TiC2 with different loadings in
0.1 M Na2SO4 solution; Figure S13. SEM image of O-Mo2TiC2 with thicker thickness; Figure S14. LSV
curves of O-Mo2TiC2 with thicker thickness in 0.1M KOH; Figure S15. H2O2 selectivity of O-Mo2TiC2
with thicker thickness in 0.1 M KOH; Figure S16. Number of transferred electrons of O-Mo2TiC2 with
thicker thickness in 0.1 M KOH; Figure S17. Faradaic efficiency of O-Mo2TiC2 with thicker thickness
in 0.1M KOH; Figure S18: Collection efficiency of pure RRDE electrodes: N = 34.3%; Table S1: EIS
data obtained by fitting the experimental data, R1 is the simulated internal resistance, R2 is the charge
transfer resistance.
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