Revealing the Synergetic Effects between Reactants in Oxidative Coupling of Methane on Stepped MgO(100) Catalyst
Abstract
:1. Introduction
2. Computation Setup
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Galadima, A.; Muraza, O. Revisiting the Oxidative Coupling of Methane to Ethylene in the Golden Period of Shale Gas: A Review. J. Ind. Eng. Chem. 2016, 37, 1–13. [Google Scholar] [CrossRef]
- Li, X.; Pei, C.; Gong, J. Shale Gas Revolution: Catalytic Conversion of C1–C3 Light Alkanes to Value-Added Chemicals. Chem 2021, 7, 1755–1801. [Google Scholar] [CrossRef]
- Siirola, J.J. The Impact of Shale Gas in the Chemical Industry. AIChE J. 2014, 60, 810–819. [Google Scholar] [CrossRef]
- Schwarz, H. Chemistry with Methane: Concepts Rather than Recipes. Angew. Chem. Int. Ed. 2011, 50, 10096–10115. [Google Scholar] [CrossRef] [PubMed]
- Schwach, P.; Pan, X.; Bao, X. Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chem. Rev. 2017, 117, 8497–8520. [Google Scholar] [CrossRef] [PubMed]
- Amenomiya, Y.; Birss, V.I.; Goledzinowski, M.; Galuszka, J.; Sanger, A.R. Conversion of Methane by Oxidative Coupling. Catal. Rev. 1990, 32, 163–227. [Google Scholar] [CrossRef]
- Lomonosov, V.I.; Sinev, M.Y. Oxidative Coupling of Methane: Mechanism and Kinetics. Kinet. Catal. 2016, 57, 647–676. [Google Scholar] [CrossRef]
- Michorczyk, B.; Sikora, J.; Kordon-Łapczyńska, B.; Gaweł, D.; Czekaj, I. Raw Biogas as Feedstock for the OCM Process. Catalysts 2022, 12, 54. [Google Scholar] [CrossRef]
- Lunsford, J.H. The Catalytic Oxidative Coupling of Methane. Angew. Chem. Int. Ed. 1995, 34, 970–980. [Google Scholar] [CrossRef]
- Sekine, Y.; Tanaka, K.; Matsukata, M.; Kikuchi, E. Oxidative Coupling of Methane on Fe-Doped La2O3 Catalyst. Energy Fuels 2009, 23, 613–616. [Google Scholar] [CrossRef]
- Le Van, T.; Louis, C.; Kermarec, M.; Che, M.; Tatibouët, J.M. Temperature and Conversion Dependence of Selectivities in the Oxidative Coupling of Methane on La2O3 Catalysts. Catal. Today 1992, 13, 321–328. [Google Scholar] [CrossRef]
- Xiong, J.; Yu, H.; Wei, Y.; Xie, C.; Lai, K.; Zhao, Z.; Liu, J. Metal Ions (Li, Mg, Zn, Ce) Doped into La2O3 Nanorod for Boosting Catalytic Oxidative Coupling of Methane. Catalysts 2022, 12, 713. [Google Scholar] [CrossRef]
- Zavyalova, U.; Geske, M.; Horn, R.; Weinberg, G.; Frandsen, W.; Schuster, M.; Schlögl, R. Morphology and Microstructure of Li/MgO Catalysts for the Oxidative Coupling of Methane. ChemCatChem 2011, 3, 949–959. [Google Scholar] [CrossRef]
- Tang, L.; Yamaguchi, D.; Wong, L.; Burke, N.; Chiang, K. The Promoting Effect of Ceria on Li/MgO Catalysts for the Oxidative Coupling of Methane. Catal. Today 2011, 178, 172–180. [Google Scholar] [CrossRef]
- Maitra, A.M.; Campbell, I.; Tyler, R.J. Influence of Basicity on the Catalytic Activity for Oxidative Coupling of Methane. Appl. Catal. A Gen. 1992, 85, 27–46. [Google Scholar] [CrossRef]
- Choudhary, V. Acidity/Basicity of Rare-Earth Oxides and Their Catalytic Activity in Oxidative Coupling of Methane to C2-Hydrocarbons. J. Catal. 1991, 130, 411–422. [Google Scholar] [CrossRef]
- Kim, J.; Park, L.-H.; Ha, J.-M.; Park, E.D. Oxidative Coupling of Methane over Mn2O3-Na2WO4/SiC Catalysts. Catalysts 2019, 9, 363. [Google Scholar] [CrossRef]
- Ito, T.; Wang, J.; Lin, C.H.; Lunsford, J.H. Oxidative Dimerization of Methane over a Lithium-Promoted Magnesium Oxide Catalyst. J. Am. Chem. Soc. 1985, 107, 5062–5068. [Google Scholar] [CrossRef]
- Campbell, K.D.; Lunsford, J.H. Contribution of Gas-Phase Radical Coupling in the Catalytic Oxidation of Methane. J. Phys. Chem. 1988, 92, 5792–5796. [Google Scholar] [CrossRef]
- Schwach, P.; Willinger, M.G.; Trunschke, A.; Schlögl, R. Methane Coupling over Magnesium Oxide: How Doping Can Work. Angew. Chem. Int. Ed. 2013, 52, 11381–11384. [Google Scholar] [CrossRef]
- Schwach, P.; Hamilton, N.; Eichelbaum, M.; Thum, L.; Lunkenbein, T.; Schlögl, R.; Trunschke, A. Structure Sensitivity of the Oxidative Activation of Methane over MgO Model Catalysts: II. Nature of Active Sites and Reaction Mechanism. J. Catal. 2015, 329, 574–587. [Google Scholar] [CrossRef]
- Kwapien, K.; Paier, J.; Sauer, J.; Geske, M.; Zavyalova, U.; Horn, R.; Schwach, P.; Trunschke, A.; Schlögl, R. Sites for Methane Activation on Lithium-Doped Magnesium Oxide Surfaces. Angew. Chem. Int. Ed. 2014, 53, 8774–8778. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, H.R.; Baer, R. Exothermic Mechanism for the Abstraction of Hydrogen from Methane on Li-Doped MgO. J. Phys. Chem. C 2015, 119, 196–215. [Google Scholar] [CrossRef]
- Ishikawa, A.; Tateyama, Y. What Is the Active Site for the Oxidative Coupling of Methane Catalyzed by MgO? A Metadynamics-Biased Ab Initio Molecular Dynamics Study. J. Phys. Chem. C 2020, 124, 6054–6062. [Google Scholar] [CrossRef]
- Sun, X.; Li, B.; Metiu, H. Methane Dissociation on Li-, Na-, K-, and Cu-Doped Flat and Stepped CaO(001). J. Phys. Chem. C 2013, 117, 7114–7122. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Hammer, B.; Hansen, L.B.; Nørskov, J.K. Improved Adsorption Energetics within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals. Phys. Rev. B 1999, 59, 7413–7421. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Henkelman, G.; Uberuaga, B.P.; Jonsson, H. A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef]
ΔQ(H)/e | ΔQ(CH3)/e | ΔQ(O2)/e | |
---|---|---|---|
Pathway I | 0.69 | −0.66 | |
Pathway II | 0.73 | 0.05 | −0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Liu, Y.; Li, X.; Yu, Z.; Li, B.; Zhao, Z. Revealing the Synergetic Effects between Reactants in Oxidative Coupling of Methane on Stepped MgO(100) Catalyst. Catalysts 2022, 12, 903. https://doi.org/10.3390/catal12080903
Sun X, Liu Y, Li X, Yu Z, Li B, Zhao Z. Revealing the Synergetic Effects between Reactants in Oxidative Coupling of Methane on Stepped MgO(100) Catalyst. Catalysts. 2022; 12(8):903. https://doi.org/10.3390/catal12080903
Chicago/Turabian StyleSun, Xiaoying, Yue Liu, Xinyu Li, Zhan Yu, Bo Li, and Zhen Zhao. 2022. "Revealing the Synergetic Effects between Reactants in Oxidative Coupling of Methane on Stepped MgO(100) Catalyst" Catalysts 12, no. 8: 903. https://doi.org/10.3390/catal12080903
APA StyleSun, X., Liu, Y., Li, X., Yu, Z., Li, B., & Zhao, Z. (2022). Revealing the Synergetic Effects between Reactants in Oxidative Coupling of Methane on Stepped MgO(100) Catalyst. Catalysts, 12(8), 903. https://doi.org/10.3390/catal12080903