Trimeric Ruthenium Cluster-Derived Ru Nanoparticles Dispersed in MIL-101(Cr) for Catalytic Transfer Hydrogenation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Stepwise Synthesis of Ru/ED-MIL-101(Cr)
2.2. Characterization of MIL-101(Cr) and Its Derivatives
2.3. Catalytic Transfer Hydrogenation of Benzene Using Isopropanol over Ru Catalysts
3. Materials and Methods
3.1. Materials
3.2. Syntheses of Ru3 Cluster (μ3-oxo-hexakis(μ-acetato)tri(aqua)triruthenium(III) acetate, [Ru3(μ3-O)(μ-CH3COO)6(H2O)3]CH3COO)
3.3. Synthesis of MIL-101(Cr)
3.4. Synthesis of ED-MIL-101(Cr)
3.5. Synthesis of Ru3-ED-MIL-101(Cr)
3.6. Synthesis of Ru/ED-MIL-101(Cr)
3.7. Characterization
3.8. Catalytic Transfer Hydrogenation of Benzene Using Isopropanol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.C.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418. [Google Scholar] [CrossRef] [PubMed]
- Valekar, A.H.; Lee, M.; Yoon, J.W.; Kwak, J.; Hong, D.-Y.; Oh, K.-R.; Cha, G.-Y.; Kwon, Y.-U.; Jung, J.; Chang, J.-S.; et al. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol under Mild Conditions over Zr-MOFs: Exploring the Role of Metal Node Coordination and Modification. ACS Catal. 2020, 10, 3720–3732. [Google Scholar] [CrossRef]
- Valekar, A.H.; Oh, K.R.; Hwang, Y.K. Chemoselective Transfer Hydrogenation of Flavoring Unsaturated Carbonyl Compounds over Zr and Hf-based Metal-Organic Frameworks. Bull. Korean Chem. Soc. 2021, 42, 467–470. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, T.; Liu, S.; Lv, H.; Fan, L.; Zhang, X. Flourine-Functionalized NbO-Type {Cu2}-Organic Framework: Enhanced Catalytic Performance on the Cycloaddition Reaction of CO2 with Epoxides and Deacetalization-Knoevenagel Condensation. Inorg. Chem. 2022, 61, 11949–11958. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, H.; Lv, H.; Qin, Q.-P.; Fan, L.; Zhang, X. Chemorobust 4p-5p {InPb}-organic framework for efficiently catalyzing cycloaddition of CO2 with epoxides and deacetalization-Knovenagel condensation. Mater. Today Chem. 2022, 24, 100984. [Google Scholar]
- Yoon, J.W.; Chang, H.; Lee, S.J.; Hwang, Y.K.; Hong, D.Y.; Lee, S.K.; Lee, J.S.; Jang, S.; Yoon, T.U.; Kwac, K.; et al. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. Nat. Mater. 2017, 16, 526–531. [Google Scholar] [CrossRef]
- Cha, G.-Y.; Sivan, S.E.; Lee, M.; Oh, K.-R.; Valekar, A.H.; Kim, M.K.; Jung, H.; Hong, D.-Y.; Hwang, Y.K. Ag-exchanged mesoporous chromium terephthalate with sulfonate for removing radioactive methyl iodide at extremely low concentrations in humid environments. J. Hazard. Mater. 2021, 417, 125904. [Google Scholar] [CrossRef]
- Yang, J.; Dai, Y.; Zhu, X.; Wang, Z.; Li, Y.; Zhuang, Q.; Shi, J.; Gu, J. Metal–organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect. J. Mater. Chem. A 2015, 3, 7445–7452. [Google Scholar] [CrossRef]
- Oh, K.-R.; Valekar, A.H.; Cha, G.-Y.; Kim, Y.; Lee, S.-K.; Sivan, S.E.; Upare, P.P.; Lee, M.-J.; Kwon, Y.-U.; Hwang, Y.K. In Situ Synthesis of Trimeric Ruthenium Cluster-Encapsulated ZIF-11 and Its Carbon Derivatives for Simultaneous Conversion of Glycerol and CO2. Chem. Mater. 2020, 32, 10084–10095. [Google Scholar] [CrossRef]
- Sivan, S.E.; Lee, M.; Lee, S.-K.; Yoon, J.W.; Kim, K.; Hong, D.-Y.; Cho, K.-H.; Lee, U.H.; Chang, J.-S.; Jung, J.; et al. Molecular Encapsulation of Trimeric Chromium Carboxylate Clusters in Metal-Organic Frameworks and Propylene Sorption. Chem. Eur. J. 2019, 25, 12889–12894. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.-R.; Han, Y.; Cha, G.-Y.; Valekar, A.H.; Lee, M.; Sivan, S.E.; Kwon, Y.-U.; Hwang, Y.K. Carbonic Anhydrase-Mimicking Keplerate Cluster Encapsulated Iron Trimesate for Base-Free CO2 Hydrogenation. ACS Sustain. Chem. Eng. 2021, 9, 14051–14060. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Q. Metal-Organic Framework Composites for Catalysis. Matter 2019, 1, 57–89. [Google Scholar] [CrossRef]
- Hermes, S.; Schroter, M.K.; Schmid, R.; Khodeir, L.; Muhler, M.; Tissler, A.; Fischer, R.W.; Fischer, R.A. Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew. Chem. Int. Ed. 2005, 44, 6237–6241. [Google Scholar] [CrossRef]
- Lu, G.; Li, S.; Guo, Z.; Farha, O.K.; Hauser, B.G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Aijaz, A.; Karkamkar, A.; Choi, Y.J.; Tsumori, N.; Ronnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: A double solvents approach. J. Am. Chem. Soc. 2012, 134, 13926–13929. [Google Scholar] [CrossRef]
- He, L.; Liu, Y.; Liu, J.; Xiong, Y.; Zheng, J.; Liu, Y.; Tang, Z. Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem. Int. Ed. 2013, 52, 3741–3745. [Google Scholar] [CrossRef]
- Hwang, Y.K.; Hong, D.Y.; Chang, J.S.; Jhung, S.H.; Seo, Y.K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Ferey, G. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angew. Chem. Int. Ed. 2008, 47, 4144–4148. [Google Scholar] [CrossRef]
- Hong, D.-Y.; Hwang, Y.K.; Serre, C.; Férey, G.; Chang, J.-S. Porous Chromium Terephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis. Adv. Func. Mater. 2009, 19, 1537–1552. [Google Scholar] [CrossRef]
- Sivan, S.E.; Oh, K.-R.; Yoon, J.-W.; Yoo, C.; Hwang, Y.K. Immobilization of a trimeric ruthenium cluster in mesoporous chromium terephthalate and its catalytic application. Dalton Trans. 2022. [Google Scholar] [CrossRef]
- Valekar, A.H.; Cho, K.-H.; Chitale, S.K.; Hong, D.-Y.; Cha, G.-Y.; Lee, U.H.; Hwang, D.W.; Serre, C.; Chang, J.-S.; Hwang, Y.K. Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over zirconium-based metal–organic frameworks. Green Chem. 2016, 18, 4542–4552. [Google Scholar] [CrossRef]
- Oh, K.-R.; Valekar, A.H.; Cha, G.-Y.; Lee, M.; Yoo, C.; Hwang, Y.K. Simultaneous transformation of sugars and CO2 into sugar derivatives and formate at room temperature: Effect of alcohols and cations. J. CO2 Util. 2022, 60, 101981. [Google Scholar] [CrossRef]
- Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science 2005, 309, 2040. [Google Scholar] [CrossRef]
- Hitrik, M.; Sasson, Y. Aggregation of catalytically active Ru nanoparticles to inactive bulk, monitored in situ during an allylic isomerization reaction. Influence of solvent, surfactant and stirring. RSC Adv. 2018, 8, 1481–1492. [Google Scholar] [CrossRef]
- Jhung, S.H.; Lee, J.H.; Yoon, J.W.; Serre, C.; Férey, G.; Chang, J.S. Microwave Synthesis of Chromium Terephthalate MIL-101 and Its Benzene Sorption Ability. Adv. Mater. 2007, 19, 121–124. [Google Scholar] [CrossRef]
- Foppa, L.; Dupont, J. Benzene partial hydrogenation: Advances and perspectives. Chem. Soc. Rev. 2015, 44, 1886–1897. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, H.; Peng, Z.; Gao, J.; Li, B.; Liu, Z.; Liu, S. Selective Hydrogenation of Benzene: Progress of Understanding for the Ru-Based Catalytic System Design. Ind. Eng. Chem. Res. 2019, 58, 13794–13803. [Google Scholar] [CrossRef]
- Wang, D.; Astruc, D. The golden age of transfer hydrogenation. Chem. Rev. 2015, 115, 6621–6686. [Google Scholar] [CrossRef]
- Collas, F.; Kuit, W.; Clement, B.; Marchal, R.; Lopez-Contreras, A.M.; Monot, F. Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains. AMB Express 2012, 2, 45. [Google Scholar] [CrossRef]
- Hitrik, M.; Dandapat, A.; Sasson, Y. A new mechanism for allylic alcohol isomerization involving ruthenium nanoparticles as a ‘true catalyst’ generated through the self-assembly of supramolecular triruthenium clusters. RSC Adv. 2016, 6, 68041–68048. [Google Scholar] [CrossRef]
- Jae, J.; Zheng, W.; Karim, A.M.; Guo, W.; Lobo, R.F.; Vlachos, D.G. The Role of Ru and RuO2 in the Catalytic Transfer Hydrogenation of 5-Hydroxymethylfurfural for the Production of 2,5-Dimethylfuran. ChemCatChem 2014, 6, 848–856. [Google Scholar] [CrossRef]
- Tang, J.; Cao, H.; Tao, Y.; Heeres, H.J.; Pescarmona, P.P. Transfer hydrogenation from glycerol over a Ni-Co/CeO2 catalyst: A highly efficient and sustainable route to produce lactic acid. Appl. Cat. B Environ. 2020, 263, 118273. [Google Scholar] [CrossRef]
- Baertsch, C.D.; Funke, H.H.; Falconer, J.L.; Noble, R.D. Permeation of Aromatic Hydrocarbon Vapors through Silicalite-Zeolite Membranes. J. Phys. Chem. 1996, 100, 7676–7679. [Google Scholar] [CrossRef]
- Chaudhary, D.K.; Maharjan, Y.S.; Shrestha, S.; Maharjan, S.; Shrestha, S.P.; Joshi, L.P. Sensing Performance of a ZnO-based Ammonia Sensor. J. Phys. Sci. 2022, 33, 97–108. [Google Scholar] [CrossRef]
- Sun, H.; Guo, W.; Zhou, X.; Chen, Z.; Liu, Z.; Liu, S. Progress in Ru-Based Amorphous Alloy Catalysts for Selective Hydrogenation of Benzene to Cyclohexene. Chin. J. Catal. 2011, 32, 1–16. [Google Scholar] [CrossRef]
- West, J.G.; Huang, D.; Sorensen, E.J. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nat. Commun. 2015, 6, 10093. [Google Scholar] [CrossRef] [PubMed]
- Spencer, A.; Wilkinson, G. μ3-Oxo-triruthenium Carboxylate Complexes. J. Chem. Soc. Dalton Trans. 1972, 1570. [Google Scholar] [CrossRef]
- Cha, G.-Y.; Oh, K.-R.; Lee, J.S.; Yoon, J.W.; Lee, M.; Lee, U.H.; Hong, D.-Y.; Hwang, Y.K. Selective hydrophobic decoration of metal-organic framework for effective removal of ppb-level CH3I from humid streams. Chem. Eng. J. 2022, 439, 135612. [Google Scholar] [CrossRef]
Materials | Textural Properties a | Amount of N b | Amount of Ru c | |||
---|---|---|---|---|---|---|
SBET (m2/g) | Vt (cm3/g) | wt% | mmol/g | wt% | mmol/g | |
MIL-101(Cr) | 3121 | 1.6 | - | - | - | - |
ED-MIL-101(Cr) | 2681 | 1.4 | 2.8 | 2.0 | - | - |
Ru3-ED-MIL-101(Cr) | 2258 | 1.3 | 2.7 | 1.9 | 1.98 | 0.20 |
Ru/ED-MIL-101(Cr) | 2366 | 1.3 | 2.7 | 1.9 | 2.03 | 0.20 |
Entry | Catalysts | Yield (%) | TON |
---|---|---|---|
1 | Ru3 cluster | 24.0 | 49 |
2 | Ru3 cluster, pre-reduced | 3.4 | 7 |
3 | RuCl3∙xH2O | 5.4 | 11 |
4 | RuO2∙xH2O | 44.5 | 91 |
5 | Ru/C | 82.6 | 169 |
6 | Ru/ED-MIL-101(Cr) | 93.9 | 192 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, K.-R.; Sivan, S.E.; Yoo, C.; Hong, D.-Y.; Hwang, Y.K. Trimeric Ruthenium Cluster-Derived Ru Nanoparticles Dispersed in MIL-101(Cr) for Catalytic Transfer Hydrogenation. Catalysts 2022, 12, 1010. https://doi.org/10.3390/catal12091010
Oh K-R, Sivan SE, Yoo C, Hong D-Y, Hwang YK. Trimeric Ruthenium Cluster-Derived Ru Nanoparticles Dispersed in MIL-101(Cr) for Catalytic Transfer Hydrogenation. Catalysts. 2022; 12(9):1010. https://doi.org/10.3390/catal12091010
Chicago/Turabian StyleOh, Kyung-Ryul, Sanil E. Sivan, Changho Yoo, Do-Young Hong, and Young Kyu Hwang. 2022. "Trimeric Ruthenium Cluster-Derived Ru Nanoparticles Dispersed in MIL-101(Cr) for Catalytic Transfer Hydrogenation" Catalysts 12, no. 9: 1010. https://doi.org/10.3390/catal12091010
APA StyleOh, K. -R., Sivan, S. E., Yoo, C., Hong, D. -Y., & Hwang, Y. K. (2022). Trimeric Ruthenium Cluster-Derived Ru Nanoparticles Dispersed in MIL-101(Cr) for Catalytic Transfer Hydrogenation. Catalysts, 12(9), 1010. https://doi.org/10.3390/catal12091010