Value-Added Products from Catalytic Pyrolysis of Lignocellulosic Biomass and Waste Plastics over Biochar-Based Catalyst: A State-of-the-Art Review
Abstract
:1. Introduction
2. BBCs from LB Pyrolysis
2.1. LB Composition and Biochar Formation Mechanism
2.2. Activation and Modification of Biochar
2.2.1. Activation
Physical Activation
Chemical Activation
2.2.2. Modification
Metal Modification
Nonmetallic Modification
3. Application of BBCs in Catalytic Pyrolysis of LB and WPs
3.1. Biochar as Catalyst for Catalytic Pyrolysis of LB
3.2. Modified Biochar as Catalyst for Catalytic Pyrolysis of LB
3.3. AC as a Catalyst for Catalytic Pyrolysis of LB
3.4. BBCs for Catalytic Pyrolysis WPs
3.5. BBCs for Co-Pyrolysis of LB and WPs
3.6. Catalytic Products from BBC Catalytic Pyrolysis of LBs and WPs
4. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsuo, Y.; Yanagisawa, A.; Yamashita, Y. A global energy outlook to 2035 with strategic considerations for Asia and Middle East energy supply and demand interdependencies. Energy Strategy Rev. 2013, 2, 79–91. [Google Scholar] [CrossRef]
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Patel, H.; Mangukiya, H.; Maiti, P.; Maiti, S. Empty cotton boll crop-residue and plastic waste valorization to bio-oil, potassic fertilizer and activated carbon—A bio-refinery model. J. Clean. Prod. 2021, 290, 125738. [Google Scholar] [CrossRef]
- Xu, D.; Xiong, Y.; Zhang, S.; Su, Y. The synergistic mechanism between coke depositions and gas for H2 production from co-pyrolysis of biomass and plastic wastes via char supported catalyst. Waste Manag. 2021, 121, 23–32. [Google Scholar] [CrossRef]
- Anto, S.; Sudhakar, M.P.; Shan Ahamed, T.; Samuel, M.S.; Mathimani, T.; Brindhadevi, K.; Pugazhendhi, A. Activation strategies for biochar to use as an efficient catalyst in various applications. Fuel 2021, 285, 119505. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.Y.; Lei, H.W.; Zhang, X.S.; Wang, L.; Bu, Q.; Wei, Y. Production of hydrocarbons from biomass-derived biochar assisted microwave catalytic pyrolysis. Sustain. Energy Fuels 2018, 2, 1781–1790. [Google Scholar] [CrossRef]
- Nishu; Liu, R.H.; Rahman, M.M.; Sarker, M.; Chai, M.Y.; Li, C.; Cai, J.M. A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: Focus on structure. Fuel Process. Technol. 2020, 199, 106301. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Wei, L.; Zhao, X.H.; Julson, J. Application, Deactivation, and Regeneration of Heterogeneous Catalysts in Bio-Oil Upgrading. Catalysts 2016, 6, 195. [Google Scholar] [CrossRef]
- Tang, J.; Zhu, W.; Kookana, R.; Katayama, A. Characteristics of biochar and its application in remediation of contaminated soil. J. Biosci. Bioeng. 2013, 116, 653–659. [Google Scholar] [CrossRef]
- Bu, Q.; Lei, H.; Wang, L.; Wei, Y.; Zhu, L.; Zhang, X.; Liu, Y.; Yadavalli, G.; Tang, J. Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons. Bioresour. Technol. 2014, 162, 142–147. [Google Scholar] [CrossRef]
- Duan, D.L.; Lei, H.W.; Wang, Y.P.; Ruan, R.; Liu, Y.H.; Ding, L.J.; Zhang, Y.Y.; Liu, L. Renewable phenol production from lignin with acid pretreatment and ex-situ catalytic pyrolysis. J. Clean. Prod. 2019, 231, 331–340. [Google Scholar] [CrossRef]
- Wang, H.; Chang, G.; Qi, P.; Li, X.; Guo, Q. Preparation of Aromatic Hydrocarbons from Catalytic Pyrolysis of Microalgae/Palm Kernel Shell Using PKS Biochar-Based Catalysts. Energy Fuels 2018, 33, 379–388. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Lei, H.W.; Yang, Z.X.; Qian, K.Z.; Villota, E. Renewable High-Purity Mono-Phenol Production from Catalytic Microwave-Induced Pyrolysis of Cellulose over Biomass-Derived Activated Carbon Catalyst. ACS Sustain. Chem. Eng. 2018, 6, 5349–5357. [Google Scholar] [CrossRef]
- Li, P.; Pan, H.; Wan, K.; Zhou, S.; Zhang, Z.; Hong, D.; Zhang, Y. Jet fuel-range hydrocarbon production from catalytic pyrolysis of low-density polyethylene by metal-loaded activated carbon. Sustain. Energy Fuels 2022, 6, 2289–2305. [Google Scholar] [CrossRef]
- Utetiwabo, W.; Yang, L.; Tufail, M.K.; Zhou, L.; Chen, R.; Lian, Y.; Yang, W. Electrode materials derived from plastic wastes and other industrial wastes for supercapacitors. Chin. Chem. Lett. 2020, 31, 1474–1489. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (Part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Zhuang, X.; Wang, W.; Yu, Q.; Qi, W.; Wang, Q.; Tan, X.; Zhou, G.; Yuan, Z. Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour. Technol. 2016, 199, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Yu, I.K.M.; Liu, Y.; Ruan, X.; Tsang, D.C.W.; Hunt, A.J.; Ok, Y.S.; Song, H.; Zhang, S. Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects. Bioresour. Technol. 2018, 269, 465–475. [Google Scholar] [CrossRef]
- Mei, Q.; Shen, X.; Liu, H.; Han, B. Selectively transform lignin into value-added chemicals. Chin. Chem. Lett. 2019, 30, 15–24. [Google Scholar] [CrossRef]
- Stefanidis, S.D.; Kalogiannis, K.G.; Iliopoulou, E.F.; Michailof, C.M.; Pilavachi, P.A.; Lappas, A.A. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J. Anal. Appl. Pyrol. 2014, 105, 143–150. [Google Scholar] [CrossRef]
- White, J.E.; Catallo, W.J.; Legendre, B.L. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrol. 2011, 91, 1–33. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. [Google Scholar] [CrossRef]
- Wang, S.R.; Dai, G.X.; Yang, H.P.; Luo, Z.Y. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog. Energy Combust. Sci. 2017, 62, 33–86. [Google Scholar] [CrossRef]
- Williams, P.T.; Besler, S. The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew. Energy 1996, 7, 233–250. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef]
- Zhang, X.L.; Yang, W.H.; Dong, C.Q. Levoglucosan formation mechanisms during cellulose pyrolysis. J. Anal. Appl. Pyrol. 2013, 104, 19–27. [Google Scholar] [CrossRef]
- Yang, H.P.; Gong, M.; Hu, J.H.; Liu, B.; Chen, Y.Q.; Xiao, J.J.; Li, S.J.; Dong, Z.G.; Chen, H.P. Cellulose Pyrolysis Mechanism Based on Functional Group Evolutions by Two-Dimensional Perturbation Correlation Infrared Spectroscopy. Energy Fuels 2020, 34, 3412–3421. [Google Scholar] [CrossRef]
- Collard, F.X.; Blin, J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sustain. Energy Rev. 2014, 38, 594–608. [Google Scholar] [CrossRef]
- Yang, H.P.; Dong, Z.G.; Liu, B.; Chen, Y.Q.; Gong, M.; Li, S.J.; Chen, H.P. A new insight of lignin pyrolysis mechanism based on functional group evolutions of solid char. Fuel 2021, 288, 119719. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Cui, Y.; Xue, Z.; Ba, Y. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism. Bioresour. Technol. 2018, 263, 444–449. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Xiong, X.; Yu, I.K.M.; Cao, L.; Tsang, D.C.W.; Zhang, S.; Ok, Y.S. A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresour. Technol. 2017, 246, 254–270. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Yamamoto, N.; Kameshima, Y.; Yasumori, A. Porous properties of activated carbons from waste newspaper prepared by chemical and physical activation. J. Colloid Interface Sci. 2003, 262, 179–193. [Google Scholar] [CrossRef]
- Chang, C.-F.; Chang, C.-Y.; Tsai, W.-T. Effects of burn-off and activation temperature on preparation of activated carbon from corn cob agrowaste by CO2 and steam. J. Colloid Interface Sci. 2000, 232, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Turmuzi, M.; Daud, W.; Tasirin, S.; Takriff, M.; Iyuke, S. Production of activated carbon from candlenut shell by CO2 activation. Carbon 2004, 42, 453–455. [Google Scholar] [CrossRef]
- Rodriguez-Reinoso, F.; Molina-Sabio, M.; González, M. The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon 1995, 33, 15–23. [Google Scholar] [CrossRef]
- Cha, J.S.; Choi, J.C.; Ko, J.H.; Park, Y.K.; Park, S.H.; Jeong, K.E.; Kim, S.S.; Jeon, J.K. The low-temperature SCR of NO over rice straw and sewage sludge derived char. Chem. Eng. J. 2010, 156, 321–327. [Google Scholar] [CrossRef]
- Pallares, J.; Gonzalez-Cencerrado, A.; Arauzo, I. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenergy 2018, 115, 64–73. [Google Scholar] [CrossRef]
- Guo, S.H.; Peng, J.H.; Li, W.; Yang, K.B.; Zhang, L.B.; Zhang, S.M.; Xia, H.Y. Effects of CO2 activation on porous structures of coconut shell-based activated carbons. Appl. Surf. Sci. 2009, 255, 8443–8449. [Google Scholar] [CrossRef]
- Ould-Idriss, A.; Stitou, M.; Cuerda-Correa, E.M.; Fernandez-Gonzalez, C.; Macias-Garcia, A.; Alexandre-Franco, M.F.; Gomez-Serrano, V. Preparation of activated carbons from olive-tree wood revisited. II. Physical activation with air. Fuel Process. Technol. 2011, 92, 266–270. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, J.M.; Chen, Y.; Hao, X.M.; Jin, X.J. Characterization, preparation, and reaction mechanism of hemp stem based activated carbon. Results Phys. 2017, 7, 1628–1633. [Google Scholar] [CrossRef]
- Muniandy, L.; Adam, F.; Mohamed, A.R.; Ng, E.P. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous Mesoporous Mater. 2014, 197, 316–323. [Google Scholar] [CrossRef]
- Kılıç, M.; Apaydın-Varol, E.; Pütün, A.E. Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4. Appl. Surf. Sci. 2012, 261, 247–254. [Google Scholar] [CrossRef]
- Dıaz-Dıez, M.; Gómez-Serrano, V.; González, C.F.; Cuerda-Correa, E.; Macıas-Garcıa, A. Porous texture of activated carbons prepared by phosphoric acid activation of woods. Appl. Surf. Sci. 2004, 238, 309–313. [Google Scholar] [CrossRef]
- Iwazaki, T.; Yang, H.S.; Obinata, R.; Sugimoto, W.; Takasu, Y. Oxygen-reduction activity of silk-derived carbons. J. Power Sources 2010, 195, 5840–5847. [Google Scholar] [CrossRef]
- Okada, K.; Yamamoto, N.; Kameshima, Y.; Yasumori, A. Adsorption properties of activated carbon from waste newspaper prepared by chemical and physical activation. J. Colloid Interface Sci. 2003, 262, 194–199. [Google Scholar] [CrossRef]
- Maciá-Agulló, J.; Moore, B.; Cazorla-Amorós, D.; Linares-Solano, A. Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation. Carbon 2004, 42, 1367–1370. [Google Scholar] [CrossRef]
- Gao, Y.; Yue, Q.; Gao, B.; Li, A. Insight into activated carbon from different kinds of chemical activating agents: A review. Sci. Total Environ. 2020, 746, 141094. [Google Scholar] [CrossRef]
- Zheng, C.; Zhou, X.F.; Cao, H.L.; Wang, G.H.; Liu, Z.P. Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J. Power Sources 2014, 258, 290–296. [Google Scholar] [CrossRef]
- Hafizi-Atabak, H.R.; Ghanbari-Tuedeshki, H.; Shafaroudi, A.; Akbari, M.; Safaei-Ghomi, J.; Shariaty-Niassar, M. Production of activated carbon from cellulose wastes. J. Chem. Pet. Eng. 2013, 47, 13–25. [Google Scholar]
- Hameed, B.H.; El-Khaiary, M. Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2. J. Hazard. Mater. 2008, 157, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Calo, J.; Cazorla-Amorós, D.; Linares-Solano, A.; Roman-Martinez, M.; De Lecea, C.S.-M. The effects of hydrogen on thermal desorption of oxygen surface complexes. Carbon 1997, 35, 543–554. [Google Scholar] [CrossRef]
- Wang, J.C.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725. [Google Scholar] [CrossRef]
- Chen, W.; Gong, M.; Li, K.; Xia, M.; Chen, Z.; Xiao, H.; Fang, Y.; Chen, Y.; Yang, H.; Chen, H. Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH. Appl. Energy 2020, 278, 115730. [Google Scholar] [CrossRef]
- El-Hendawy, A.-N.A. An insight into the KOH activation mechanism through the production of microporous activated carbon for the removal of Pb2+ cations. Appl. Surf. Sci. 2009, 255, 3723–3730. [Google Scholar] [CrossRef]
- Ma, Y. Comparison of Activated Carbons Prepared from Wheat Straw via ZnCl2 and KOH Activation. Waste Biomass Valor 2017, 8, 549–559. [Google Scholar] [CrossRef]
- Mozammel, H.M.; Masahiro, O.; Bhattacharya, S.C. Activated charcoal from coconut shell using ZnCl2 activation. Biomass Bioenergy 2002, 22, 397–400. [Google Scholar] [CrossRef]
- Hu, Z.H.; Srinivasan, M.P.; Ni, Y.M. Novel activation process for preparing highly microporous and mesoporous activated carbons. Carbon 2001, 39, 877–886. [Google Scholar] [CrossRef]
- Li, B.; Hu, J.; Xiong, H.; Xiao, Y. Application and Properties of Microporous Carbons Activated by ZnCl2: Adsorption Behavior and Activation Mechanism. ACS Omega 2020, 5, 9398–9407. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, C.; Wu, H. Sustainable utilization of wetland biomass for activated carbon production: A review on recent advances in modification and activation methods. Sci. Total Environ. 2021, 790, 148214. [Google Scholar] [CrossRef]
- Fockink, D.H.; Sánchez, J.H.; Ramos, L.P. Comprehensive analysis of sugarcane bagasse steam explosion using autocatalysis and dilute acid hydrolysis (H3PO4 and H2SO4) at equivalent combined severity factors. Ind. Crops Prod. 2018, 123, 563–572. [Google Scholar] [CrossRef]
- Moradi, F.; Amiri, H.; Soleimanian-Zad, S.; Ehsani, M.R.; Karimi, K. Improvement of acetone, butanol and ethanol production from rice straw by acid and alkaline pretreatments. Fuel 2013, 112, 8–13. [Google Scholar] [CrossRef]
- Danish, M.; Ahmad, T.; Hashim, R.; Said, N.; Akhtar, M.N.; Mohamad-Saleh, J.; Sulaiman, O. Comparison of surface properties of wood biomass activated carbons and their application against rhodamine B and methylene blue dye. Surf. Interfaces 2018, 11, 1–13. [Google Scholar] [CrossRef]
- Molina-Sabio, M.; Almansa, C.; Rodríguez-Reinoso, F. Phosphoric acid activated carbon discs for methane adsorption. Carbon 2003, 41, 2113–2119. [Google Scholar] [CrossRef]
- Prahas, D.; Kartika, Y.; Indraswati, N.; Ismadji, S. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chem. Eng. J. 2008, 140, 32–42. [Google Scholar] [CrossRef]
- Chen, B.; Meinertzhagen, I.A.; Shaw, S.R. Circadian rhythms in light-evoked responses of the fly’s compound eye, and the effects of neuromodulators 5-HT and the peptide PDF. J. Comp. Physiol. A 1999, 185, 393–404. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J. 2013, 219, 499–511. [Google Scholar] [CrossRef]
- Shang, Y.; Duan, X.; Wang, S.; Yue, Q.; Gao, B.; Xu, X. Carbon-based single atom catalyst: Synthesis, characterization, DFT calculations. Chin. Chem. Lett. 2021, 33, 663–673. [Google Scholar] [CrossRef]
- Liu, Q.-y.; Yang, F.; Liu, Z.-h.; Li, G. Preparation of SnO2–Co3O4/C biochar catalyst as a Lewis acid for corncob hydrolysis into furfural in water medium. J. Ind. Eng. Chem. 2015, 26, 46–54. [Google Scholar] [CrossRef]
- Dai, L.; Zeng, Z.; Tian, X.; Jiang, L.; Yu, Z.; Wu, Q.; Wang, Y.; Liu, Y.; Ruan, R. Microwave-assisted catalytic pyrolysis of torrefied corn cob for phenol-rich bio-oil production over Fe modified bio-char catalyst. J. Anal. Appl. Pyrol. 2019, 143, 104691. [Google Scholar] [CrossRef]
- Cui, B.; Chen, Z.; Wang, F.; Zhang, Z.; Dai, Y.; Guo, D.; Liang, W.; Liu, Y. Facile Synthesis of Magnetic Biochar Derived from Burley Tobacco Stems towards Enhanced Cr(VI) Removal: Performance and Mechanism. Nanomaterials 2022, 12, 678. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Dong, Q.; Zhang, L.; Xiong, Y. High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts. Bioresour. Technol. 2015, 191, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Wang, X.; Yang, X.; Alghamdi, A.A.; Alharthi, F.A.; Cheng, X.; Deng, Y. Sulfonic acid-functionalized core-shell Fe3O4@carbon microspheres as magnetically recyclable solid acid catalysts. Chin. Chem. Lett. 2021, 32, 2079–2085. [Google Scholar] [CrossRef]
- Kastner, J.R.; Miller, J.; Geller, D.P.; Locklin, J.; Keith, L.H.; Johnson, T. Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal. Today 2012, 190, 122–132. [Google Scholar] [CrossRef]
- Mateo, W.; Lei, H.; Villota, E.; Qian, M.; Zhao, Y.; Huo, E.; Zhang, Q.; Lin, X.; Wang, C.; Huang, Z. Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics. Bioresour. Technol. 2020, 297, 122411. [Google Scholar] [CrossRef]
- Kim, Y.; Oh, J.I.; Vithanage, M.; Park, Y.K.; Lee, J.; Kwon, E.E. Modification of biochar properties using CO2. Chem. Eng. J. 2019, 372, 383–389. [Google Scholar] [CrossRef]
- Xiong, Z.; Shihong, Z.; Haiping, Y.; Tao, S.; Yingquan, C.; Hanping, C. Influence of NH3/CO2 modification on the characteristic of biochar and the CO2 capture. Bioenergy Res. 2013, 6, 1147–1153. [Google Scholar] [CrossRef]
- Chen, W.; Fang, Y.; Li, K.X.; Chen, Z.Q.; Xia, M.W.; Gong, M.; Chen, Y.Q.; Yang, H.P.; Tu, X.; Chen, H.P. Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products. Appl. Energy 2020, 260, 114242. [Google Scholar] [CrossRef]
- Sun, K.; Huang, Q.; Chi, Y.; Yan, J. Effect of ZnCl2-activated biochar on catalytic pyrolysis of mixed waste plastics for producing aromatic-enriched oil. Waste Manag. 2018, 81, 128–137. [Google Scholar] [CrossRef]
- Liu, J.M.; He, Y.F.; Ma, X.X.; Liu, G.Q.; Yao, Y.; Liu, H.; Chen, H.; Huang, Y.; Chen, C.; Wang, W. Catalytic Pyrolysis of Tar Model Compound with Various Bio-Char Catalysts to Recycle Char from Biomass Pyrolysis. Bioresources 2016, 11, 3752–3768. [Google Scholar] [CrossRef]
- Li, M.; Zheng, Y.; Chen, Y.X.; Zhu, X.F. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresour. Technol. 2014, 154, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.M.; Xiao, X.; Chen, B.L.; Zhu, L.Z. Quantification of Chemical States, Dissociation Constants and Contents of Oxygen-containing Groups on the Surface of Biochars Produced at Different Temperatures. Environ. Sci. Technol. 2015, 49, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Kabir, G.; Hameed, B.H. Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renew. Sustain. Energy Rev. 2017, 70, 945–967. [Google Scholar] [CrossRef]
- Dong, Q.; Li, H.; Niu, M.; Luo, C.; Zhang, J.; Qi, B.; Li, X.; Zhong, W. Microwave pyrolysis of moso bamboo for syngas production and bio-oil upgrading over bamboo-based biochar catalyst. Bioresour. Technol. 2018, 266, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.J.; Lei, H.W.; Wang, L.; Bu, Q.; Chen, S.L.; Wu, J. Hydrocarbon and hydrogen-rich syngas production by biomass catalytic pyrolysis and bio-oil upgrading over biochar catalysts. RSC Adv. 2014, 4, 10731–10737. [Google Scholar] [CrossRef]
- Jin, W.J.; Singh, K.; Zondlo, J. Co-processing of pyrolysis vapors with bio-chars for ex-situ upgrading. Renew. Energy 2015, 83, 638–645. [Google Scholar] [CrossRef]
- Nejati, B.; Adami, P.; Bozorg, A.; Tavasoli, A.; Mirzahosseini, A.H. Catalytic pyrolysis and bio-products upgrading derived from Chlorella vulgaris over its biochar and activated biochar-supported Fe catalysts. J. Anal. Appl. Pyrol. 2020, 152, 104799. [Google Scholar] [CrossRef]
- Wang, C.; Lei, H.; Zhao, Y.; Qian, M.; Kong, X.; Mateo, W.; Zou, R.; Ruan, R. Integrated harvest of phenolic monomers and hydrogen through catalytic pyrolysis of biomass over nanocellulose derived biochar catalyst. Bioresour. Technol. 2021, 320, 124352. [Google Scholar] [CrossRef]
- Li, W.B.; Wang, D.C.; Zhu, Y.F.; Chen, J.L.; Lu, Y.; Li, S.R.; Zheng, Y.W.; Zheng, Z.F. Efficient ex-situ catalytic upgrading of biomass pyrolysis vapors to produce methylfurans and phenol over bio-based activated carbon. Biomass Bioenergy 2020, 142, 105794. [Google Scholar] [CrossRef]
- Bu, Q.; Lei, H.; Wang, L.; Wei, Y.; Zhu, L.; Liu, Y.; Liang, J.; Tang, J. Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts. Bioresour. Technol. 2013, 142, 546–552. [Google Scholar] [CrossRef]
- An, Y.; Tahmasebi, A.; Zhao, X.; Matamba, T.; Yu, J. Catalytic reforming of palm kernel shell microwave pyrolysis vapors over iron-loaded activated carbon: Enhanced production of phenol and hydrogen. Bioresour. Technol. 2020, 306, 123111. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zheng, Y.; He, R.; Li, W.; Zheng, Z. Selective conversion of lignocellulosic biomass into furan compounds using bimetal-modified bio-based activated carbon: Analytical Py-GC× GC/MS. J. Energy Inst. 2020, 93, 2371–2380. [Google Scholar] [CrossRef]
- Yang, Z.X.; Lei, H.W.; Qian, K.Z.; Zhang, Y.Y.; Villota, E. Renewable bio-phenols from in situ and ex situ catalytic pyrolysis of Douglas fir pellet over biobased activated carbons. Sustain. Energy Fuels 2018, 2, 894–904. [Google Scholar] [CrossRef]
- Su, Y.; Liu, L.; Zhang, S.; Xu, D.; Du, H.; Cheng, Y.; Wang, Z.; Xiong, Y. A green route for pyrolysis poly-generation of typical high ash biomass, rice husk: Effects on simultaneous production of carbonic oxide-rich syngas, phenol-abundant bio-oil, high-adsorption porous carbon and amorphous silicon dioxide. Bioresour. Technol. 2020, 295, 122243. [Google Scholar] [CrossRef]
- Ye, X.N.; Lu, Q.; Wang, X.; Guo, H.Q.; Cui, M.S.; Dong, C.Q.; Yang, Y.P. Catalytic Fast Pyrolysis of Cellulose and Biomass to Selectively Produce Levoglucosenone Using Activated Carbon Catalyst. ACS Sustain. Chem. Eng. 2017, 5, 10815–10825. [Google Scholar] [CrossRef]
- Yang, Z.X.; Lei, H.W.; Zhang, Y.Y.; Qian, K.Z.; Villota, E.; Qian, M.; Yadavalli, G.; Sun, H. Production of renewable alkyl-phenols from catalytic pyrolysis of Douglas fir sawdust over biomass-derived activated carbons. Appl. Energy 2018, 220, 426–436. [Google Scholar] [CrossRef]
- Su, Y.H.; Liu, L.Q.; Xu, D.; Du, H.R.; Xie, Y.H.; Xiong, Y.Q.; Zhang, S.P. Syngas production at low temperature via the combination of hydrothermal pretreatment and activated carbon catalyst along with value-added utilization of tar and bio-char. Energ Convers Manag. 2020, 205, 112382. [Google Scholar] [CrossRef]
- Yang, H.P.; Chen, Z.Q.; Chen, W.; Chen, Y.Q.; Wang, X.H.; Chen, H.P. Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis. Energy 2020, 210, 118646. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Liu, C.; Chen, X. Unveiling the initial pyrolytic mechanisms of cellulose by DFT study. J. Anal. Appl. Pyrol. 2015, 113, 621–629. [Google Scholar] [CrossRef]
- Chen, W.H.; Jheng, J.G.; Yu, A.B. Hydrogen generation from a catalytic water gas shift reaction under microwave irradiation. Int. J. Hydrogen Energy 2008, 33, 4789–4797. [Google Scholar] [CrossRef]
- Muradov, N.; Fidalgo, B.; Gujar, A.C.; Garceau, N.; T-Raissi, A. Production and characterization of Lemna minor bio-char and its catalytic application for biogas reforming. Biomass Bioenergy 2012, 42, 123–131. [Google Scholar] [CrossRef]
- Liu, W.-J.; Jiang, H.; Yu, H.-Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chem. Rev. 2015, 115, 12251–12285. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Lee, H.; Kim, Y.-M.; Park, R.-s.; Park, Y.-K. Recent application of biochar on the catalytic biorefinery and environmental processes. Chin. Chem. Lett. 2019, 30, 2147–2150. [Google Scholar] [CrossRef]
- Zhu, S.; Huang, X.; Ma, F.; Wang, L.; Duan, X.; Wang, S. Catalytic Removal of Aqueous Contaminants on N-Doped Graphitic Biochars: Inherent Roles of Adsorption and Nonradical Mechanisms. Environ. Sci. Technol. 2018, 52, 8649–8658. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ouyang, Y.; Luo, J.; Cao, H.; Li, X.; Ma, J.; Liu, J.; Wang, Y.; Lu, L. Biomass-derived nitrogen self-doped porous activation carbon as an effective bifunctional electrocatalysts. Chin. Chem. Lett. 2021, 32, 92–98. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Y.; Li, L.; Geng, X.; Yang, H.; Zhou, W.; Sun, C.; An, B. Synthesis of an ordered porous carbon with the dual nitrogen-doped interfaces and its ORR catalysis performance. Chin. Chem. Lett. 2021, 32, 140–145. [Google Scholar] [CrossRef]
- Chen, X.; Che, Q.; Li, S.; Liu, Z.; Yang, H.; Chen, Y.; Wang, X.; Shao, J.; Chen, H. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield. Fuel Processing Technol. 2019, 196, 106180. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Y.; Wang, Z.; Li, Y.; Wang, L.; Ding, L.; Gao, X.; Ma, Y.; Guo, Y. Application studies of activated carbon derived from rice husks produced by chemical-thermal process—A review. Adv. Colloid Interface Sci. 2011, 163, 39–52. [Google Scholar] [CrossRef]
- Lu, Y.; Zheng, Y.; He, R.; Li, W.; Zheng, Z. Catalytic upgrading of xylan-based hemicellulose pyrolysis vapors over activated carbon supported Pt-based bimetallic catalysts to increase furans: Analytical Py-GC× GC/MS. J. Anal. Appl. Pyrol. 2020, 148, 104825. [Google Scholar] [CrossRef]
- Zhang, Y.; Lei, H.; Yang, Z.; Duan, D.; Villota, E.; Ruan, R. From glucose-based carbohydrates to phenol-rich bio-oils integrated with syngas production via catalytic pyrolysis over an activated carbon catalyst. Green Chem. 2018, 20, 3346–3358. [Google Scholar] [CrossRef]
- Sharholy, M.; Ahmad, K.; Mahmood, G.; Trivedi, R. Municipal solid waste management in Indian cities–A review. Waste Manag. 2008, 28, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Saikia, N.; de Brito, J. Waste Polyethylene Terephthalate as an Aggregate in Concrete. Mater. Res.-Ibero-Am. J. 2013, 16, 341–350. [Google Scholar] [CrossRef]
- Santos, E.; Rijo, B.; Lemos, F.; Lemos, M.A.N.D.A. A catalytic reactive distillation approach to high density polyethylene pyrolysis—Part 2—Middle olefin production. Catal. Today 2021, 379, 212–221. [Google Scholar] [CrossRef]
- Wang, C.X.; Lei, H.W.; Qian, M.R.O.; Huo, E.G.; Zhao, Y.F.; Zhang, Q.F.; Mateo, W.; Lin, X.N.; Kong, X.; Zou, R.G.; et al. Application of highly stable biochar catalysts for efficient pyrolysis of plastics: A readily accessible potential solution to a global waste crisis. Sustain. Energy Fuels 2020, 4, 4614–4624. [Google Scholar] [CrossRef]
- Ueno, T.; Nakashima, E.; Takeda, K. Quantitative analysis of random scission and chain-end scission in the thermal degradation of polyethylene. Polym. Degrad. Stab. 2010, 95, 1862–1869. [Google Scholar] [CrossRef]
- Fan, L.L.; Zhang, Y.N.; Liu, S.Y.; Zhou, N.; Chen, P.; Liu, Y.H.; Wang, Y.P.; Peng, P.; Cheng, Y.L.; Addy, M.; et al. Ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of low-density polyethylene with MgO. Energy Convers. Manag. 2017, 149, 432–441. [Google Scholar] [CrossRef]
- Levine, S.E.; Broadbelt, L.J. Detailed mechanistic modeling of high-density polyethylene pyrolysis: Low molecular weight product evolution. Polym. Degrad. Stab. 2009, 94, 810–822. [Google Scholar] [CrossRef]
- Diaz-Silvarrey, L.S.; Zhang, K.; Phan, A.N. Monomer recovery through advanced pyrolysis of waste high density polyethylene (HDPE). Green Chem. 2018, 20, 1813–1823. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, C.; Wei, R.; Wang, J. Experimental study of polyethylene pyrolysis and combustion over HZSM-5, HUSY, and MCM-41. J. Hazard. Mater. 2017, 333, 10–22. [Google Scholar] [CrossRef]
- Nzihou, A.; Stanmore, B.; Lyczko, N.; Minh, D.P. The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review. Energy 2019, 170, 326–337. [Google Scholar] [CrossRef]
- Sun, K.; Huang, Q.X.; Ali, M.; Chi, Y.; Yan, J.H. Producing Aromatic-Enriched Oil from Mixed Plastics Using Activated Biochar as Catalyst. Energy Fuels 2018, 32, 5471–5479. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Yoshida, T. Behavior of hydrogen transfer in the hydrogenation of anthracene over activated carbon. Energy Fuels 2001, 15, 708–713. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, D.; Lei, H.; Villota, E.; Ruan, R. Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons. Appl. Energy 2019, 251, 113337. [Google Scholar] [CrossRef]
- Sun, K.; Huang, Q.X.; Meng, X.D.; Chi, Y.; Yan, J.H. Catalytic Pyrolysis of Waste Polyethylene into Aromatics by H3PO4-Activated Carbon. Energy Fuels 2018, 32, 9772–9781. [Google Scholar] [CrossRef]
- Wan, K.; Chen, H.; Zheng, F.J.; Pan, Y.K.; Zhang, Y.Y.; Long, D.H. Tunable Production of Jet-Fuel Range Alkanes and Aromatics by Catalytic Pyrolysis of LDPE over Biomass-Derived Activated Carbons. Ind. Eng. Chem. Res. 2020, 59, 17451–17461. [Google Scholar] [CrossRef]
- Duan, D.; Feng, Z.; Dong, X.; Chen, X.; Zhang, Y.; Wan, K.; Wang, Y.; Wang, Q.; Xiao, G.; Liu, H. Improving bio-oil quality from low-density polyethylene pyrolysis: Effects of varying activation and pyrolysis parameters. Energy 2021, 232, 121090. [Google Scholar] [CrossRef]
- Bhadury, P.; Pang, J. Chiral BrOnsted Acid-Catalyzed Friedel-Crafts Reaction of Indoles. Curr. Org. Chem. 2014, 18, 2108–2124. [Google Scholar] [CrossRef]
- Biscardi, J.A.; Meitzner, G.D.; Iglesia, E. Structure and density of active Zn species in Zn/H-ZSM5 propane aromatization catalysts. J. Catal. 1998, 179, 192–202. [Google Scholar] [CrossRef]
- Ravon, U.; Savonnet, M.; Aguado, S.; Domine, M.E.; Janneau, E.; Farrusseng, D. Engineering of coordination polymers for shape selective alkylation of large aromatics and the role of defects. Microporous Mesoporous Mater. 2010, 129, 319–329. [Google Scholar] [CrossRef]
- Koike, N.; Hosokai, S.; Takagaki, A.; Nishimura, S.; Kikuchi, R.; Ebitani, K.; Suzuki, Y.; Oyama, S.T. Upgrading of pyrolysis bio-oil using nickel phosphide catalysts. J. Catal. 2016, 333, 115–126. [Google Scholar] [CrossRef]
- Onal, E.; Uzun, B.B.; Putun, A.E. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene. Energy Convers. Manag. 2014, 78, 704–710. [Google Scholar] [CrossRef]
- Zhang, X.S.; Lei, H.W.; Chen, S.L.; Wu, J. Catalytic co-pyrolysis of lignocellulosic biomass with polymers: A critical review. Green Chem. 2016, 18, 4145–4169. [Google Scholar] [CrossRef]
- Ahmed, M.H.M.; Batalha, N.; Mahmudul, H.M.D.; Perkins, G.; Konarova, M. A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism. Bioresour. Technol. 2020, 310, 123457. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.H.; Lin, X.N.; Zhang, Q.F.; Ren, X.J.; Yu, W.F.; Cai, H.Z. Catalytic pyrolysis of wood-plastic composite waste over activated carbon catalyst for aromatics production: Effect of preparation process of activated carbon. Energy 2020, 212, 118983. [Google Scholar] [CrossRef]
- Duan, D.L.; Zhang, Y.Y.; Lei, H.W.; Qian, M.; Villota, E.; Wang, C.X.; Wang, Y.P.; Ruan, R.E. A novel production of phase-divided jet-fuel-range hydrocarbons and phenol-enriched chemicals from catalytic co-pyrolysis of lignocellulosic biomass with low-density polyethylene over carbon catalysts. Sustain. Energy Fuels 2020, 4, 3687–3700. [Google Scholar] [CrossRef]
- Lin, X.; Lei, H.; Huo, E.; Qian, M.; Mateo, W.; Zhang, Q.; Zhao, Y.; Wang, C.; Villota, E. Enhancing jet fuel range hydrocarbons production from catalytic co-pyrolysis of Douglas fir and low-density polyethylene over bifunctional activated carbon catalysts. Energy Convers. Manag. 2020, 211, 112757. [Google Scholar] [CrossRef]
- Morgan, H.M.; Liang, J.H.; Chen, K.; Yan, L.S.; Wang, K.; Mao, H.P.; Bu, Q. Bio-oil production via catalytic microwave co-pyrolysis of lignin and low density polyethylene using zinc modified lignin-based char as a catalyst. J. Anal. Appl. Pyrol. 2018, 133, 107–116. [Google Scholar] [CrossRef]
- Cepeliogullar, O.; Putun, A.E. Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis. Energy Convers. Manag. 2013, 75, 263–270. [Google Scholar] [CrossRef]
- Dong, C.Q.; Zhang, Z.F.; Lu, Q.; Yang, Y.P. Characteristics and mechanism study of analytical fast pyrolysis of poplar wood. Energy Convers. Manag. 2012, 57, 49–59. [Google Scholar] [CrossRef]
- Cheng, Y.-T.; Huber, G.W. Production of targeted aromatics by using Diels–Alder classes of reactions with furans and olefins over ZSM-5. Green Chem. 2012, 14, 3114–3125. [Google Scholar] [CrossRef]
- Cheng, Z.J.; Tan, Y.Y.; Wei, L.X.; Xing, L.L.; Yang, J.Z.; Zhang, L.D.; Guan, Y.N.; Yan, B.B.; Chen, G.Y.; Leung, D.Y.C. Experimental and kinetic modeling studies of furan pyrolysis: Fuel decomposition and aromatic ring formation. Fuel 2017, 206, 239–247. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Z.M.; Gholizadeh, M.; Zhang, S.; Lam, C.H.; Xiong, Z.; Wang, Y. Coke Formation during Thermal Treatment of Bio-oil. Energy Fuels 2020, 34, 7863–7914. [Google Scholar] [CrossRef]
- Fan, L.; Chen, P.; Zhou, N.; Liu, S.; Zhang, Y.; Liu, Y.; Wang, Y.; Omar, M.M.; Peng, P.; Addy, M.; et al. In-situ and ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of lignin. Bioresour. Technol. 2018, 247, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-t.; Nan, D.-h.; Zhang, G.; Li, K.; Huang, Y.-q.; Lu, Q.; Gao, L.-j.; Huang, W.-z.; Han, X.-f.; Ma, S.-w. 9,10-dihyroanthrancene assisted catalytic pyrolysis of bagasse over N-doped activated carbon to enhance 4-ethyl phenol production. J. Anal. Appl. Pyrol. 2022, 165, 105572. [Google Scholar] [CrossRef]
- Yang, H.; Lei, S.; Xu, K.; Fang, Y.; Chen, X.; Chen, Y.; Wang, X.; Chen, H. Catalytic pyrolysis of cellulose with sulfonated carbon catalyst to produce levoglucosenone. Fuel Process. Technol. 2022, 234, 107323. [Google Scholar] [CrossRef]
- Gupta, S.; Patel, P.; Mondal, P. Catalytic Pyrolysis Using a Nickel-Functionalized Chemically Activated Biochar Catalyst: Insight into Process Kinetics, Products, and Mechanism. ACS Sustain. Chem. Eng. 2022, 10, 5770–5780. [Google Scholar] [CrossRef]
Raw Materials | Activating Agent | Carbonization Conditions | Activation Conditions | SSA (m2/g) | Pore Volume (cm3/g) | Average Pore Diameter (nm) | Ref. |
---|---|---|---|---|---|---|---|
Rice straw | Steam | 500 °C 1 h | 700 °C 1 h | 363 | 0.164 | 1.81 | [37] |
Barley straw | Steam | 500 °C 1 h | 800 °C 1 h | 534 | 0.299 | 2.24 | [38] |
Barley straw | CO2 | 500 °C 1 h | 800 °C 1 h | 789 | 0.350 | 1.77 | [38] |
Coconut shell | CO2 | 600 °C 2 h | 900 °C 4 h | 1700 | 1.135 | 2.65 | [39] |
Olive-tree wood | Air | 600 °C 2 h | 400 °C 2 h | 481 | 0.272 | - | [40] |
Hemp stem | KOH | 500 °C 1 h | 800 °C 1 h KOH/char = 4.5 | 2312 | 1.210 | 2.15 | [41] |
Rice husk | KOH | 400 °C 4 h | 750 °C 1 h KOH/char = 5 | 2121 | 1.022 | 3.71 | [42] |
Euphorbia rigida | NaOH | - | 700 °C 1 h Impregnation ratio = 1 | 396 | 0.202 | 2.04 | [43] |
Euphorbia rigida | K2CO3 | - | 700 °C 1 h Impregnation ratio = 0.75 | 2613 | 1.661 | 2.54 | [43] |
Euphorbia rigida | ZnCl2 | - | 700 °C 1 h Impregnation ratio = 0.75 | 1115 | 0.640 | 2.29 | [43] |
Euphorbia rigida | H3PO4 | - | 700 °C 1 h Impregnation ratio = 1 | 790 | 0.700 | 3.36 | [43] |
Chestnut | H3PO4 | - | 450 °C 4 h H3PO4/chestnut = 0.85 | 584 | 0.357 | 2.49 | [44] |
Cedar | H3PO4 | - | 450 °C 4 h H3PO4/cedar = 0.85 | 374 | 0.251 | 2.52 | [44] |
Raw Materials | Pretreatment | Carbonization Conditions | Post-Processing | SSA (m2/g) | Pore Volume (cm3/g) | Average Pore Diameter (nm) | Ref. |
---|---|---|---|---|---|---|---|
Rice husk | - | 550 °C | 600 °C 1 h 0.4 M Fe(NO3)3 solution | 110 | 0.050 | - | [70] |
Rice husk | 0.04 M Ni(NO3)2 | Microwave power 800 W 20 min | - | 184 | 0.122 | 2.66 | [72] |
Rice husk | 0.04 M Fe(NO3)3 | Microwave power 800 W 20 min | - | 193 | 0.103 | 2.15 | [72] |
Rice husk | 0.04 M Cu(NO3)2 | Microwave power 800 W 20 min | - | 189 | 0.114 | 2.41 | [72] |
Pine wood | - | 500 °C 40 min | 600 °C 1.5 h 40% ZnCl2 solution/biochar = 1 | 742 | 0.440 | 2.15 | [79] |
Pine wood | - | 500 °C 40 min | 600 °C 1.5 h 40% ZnCl2 microemulsion/biochar = 1 | 661 | 0.640 | 3.62 | [79] |
Pine wood | 0.5 M Ni(NO3)2 solution | 850 °C 1.5 h | - | 212 | - | [80] | |
Pine wood | - | 850 °C 1.5 h | 0.5 M Ni(NO3)2 solution | 25 | 5.810 | - | [80] |
Rice husk | - | 510 °C 4 s | concentrated sulfuric acid 90 °C 0.5 h | 4 | 7.70 | [81] | |
Peanuts hulls | - | 400 °C 1 h | 99% H2SO4 100 °C 12–18 h | 338 | 0.180 | 1.06 | [74] |
Peanuts hulls | - | 400 °C 1 h | 99% non-stabilized solid SO3 6 days | 1 | 0.001 | 0.78 | [74] |
Oak wood | - | 680 °C 0.1 h 800 mL min−1 CO2 | - | 464 | - | 2.00 | [76] |
Bamboo | - | 600 °C 0.5 h 50 vol% NH3 | - | 255 | 0.271 | 4.26 | [78] |
Catalyst Precursor | Activation/Modification Reagent | Pyrolytic Feedstock | Target Product(s) | Reaction Conditions and Results | Ref. |
---|---|---|---|---|---|
Pine sawdust | - | Hardwood | Pyrolysis vapor | Catalytic temperature is 400 °C. The gaseous-phase composition of H2, CO2, and CO is 3.74%, 32.33%, and 23.19%, respectively. | [86] |
Chlorella vulgaris | - | Chlorella vulgaris | Bio-oil | Using Fe2.5/biochar as catalyst, bio-oil yield is 50.10%, energy recovery factor is 64.46. | [87] |
Corn stover | - | Douglas fir | Bio-oi and syngas | With a catalytic temperature of 480 °C for 10 min, the feedstock to catalyst is 1:1, the concentrations of phenols and hydrocarbons are 46 area% and 16 area%, respectively. The contents of H2 and CO in syngas were up to 20.43 vol% and 43.03 vol%. | [85] |
Corn stover | - | Douglas fir | Hydrocarbons | The highest amounts of hydrocarbons (52.77% of bio-oil) were achieved at a reaction temperature of 480 °C for 15 min and catalyst/Douglas fir is 80%. | [6] |
Nanocellulose | - | Douglas fir | Phenolic monomer | At the temperature of 650 °C and biochar to biomass ratio of 3, phenol concentration is 53.77 mg/mL. The concentration of cresols is 44.51 mg/mL, and the volume percentage of hydrogen is as high as 85.32%. | [88] |
Bamboo | NH3 | Bamboo | Phenols | Catalytic temperature is 600 °C, ratio of biomass to catalyst is 2, pyrolysis time is 30 min, using biochar-N30 as catalyst. The content of phenols is 82%, especially 4-vinyl phenol. with 31% content and 6.65 wt.% yield, as well as 16% 4-ethyl phenol with 3.04 wt.% yield. | [78] |
Rice husk | Ni(NO3)2·6H2O | Rice husk | Syngas | For 50 g rice husk blended with 15 g Ni/biochar catalysts, microwave output power was set to 700 W for 20 min. Gas yield is 53.9%, volume concentration of desired syngas is 69.96%. | [72] |
Rice husk | Fe(NO3)3·9H2O | Corncob | Phenol and cresol | Catalytic temperature is 500 °C and reaction time is 20 min, using Fe0.2/biochar as catalyst. The yields and selectivities were 0.2810 mg/g and 60.55% for phenol and 0.0840 mg/g and 32.49% for cresol, respectively. | [70] |
Coconut shell | Steam | Cellulose, xylan, corncob, and lignin | Furans and phenols | Catalytic temperature is 350 °C for 18 s. The relative peak areas of methylfurans of cellulose, xylan, and corncob are 39.35%, 27.79%, and 26.82%, respectively. The relative peak areas of phenol of lignin and corncob are 53.83% and 12.34%, respectively. | [89] |
Wood | Steam | Douglas fir | Phenols | The optimized reaction temperature and ratio of catalyst to biomass were 400 °C and 3:1, respectively. Reaction time of 8 min. The phenol selectivity is 74.61%. | [90] |
Coconut shell | Steam, Fe(NO3)3·9H2O | Palm kernel shell | H2-rich bio-gas and phenol | With a catalytic temperature of 500 °C and 2% Fe/AC as catalyst, the concentration of phenol in the liquid is 75.09 area%, while H2 content is 75.12 vol% in the bio-gas. | [91] |
Coconut shell | Steam, Cu(NO3)2·3H2O, SnCl4·5H2O, Al(NO3)3·9H2O | Xylose, xylan, glucose, cellulose, and pine | Furan compounds | The pyrolysis temperature, catalytic temperature, and reaction time were 500, 300 °C, and 18 s. Using 4Cu–2Al/C as catalyst, the content of furan compounds was 80.6%, and the selectivity of 2-methylfuran, furfural, and furan was 44.0%, 30.0%, and 15.8%, respectively. The 2-methylfuran selectivity of xylose, xylan, glucose, cellulose, and pine was 28.5%, 44.0%, 30.2%, 40.8%, and 56.9%, respectively, and the corresponding furfural selectivity was 52.6%, 30.0%, 35.7%, 23.8%, and 25.1%, respectively. | [92] |
Corn stover | H3PO4 | Douglas fir | Phenols | The yield of bio-oil and the concentration of phenols in ex situ upgrading process are 20.03–32.00 wt.% and 4.14–19.76 mg mL−1, respectively. The yield of bio-oil and the concentration of phenols in in situ upgrading process are 10.25–25.50 wt.% and 4.14–9.90 mg mL−1, respectively. | [93] |
Sawdust | H3PO4 | Rice husk | Syngas, phenol-abundant bio-oil | Pyrolysis and catalytic temperature both at 500 °C for 15 min. Phenol content of 65.56% and CO of 56.09 vol%. | [94] |
Sugarcane bagasse | H3PO4 | Cellulose | Levoglucosenone | Feedstock to catalyst ratio is 1:5, catalytic temperature is 300 °C. The yield and selectivity of levoglucosenone are 14.7 and 76.3%. | [95] |
Sugarcane bagasse | H3PO4 | Pine wood, poplar wood, bagasse | Levoglucosenone | Under the pyrolysis temperature of 300 °C and AC to biomass ratio of 1:3, the levoglucosenone yields of pine wood, poplar wood, and bagasse are 9.1, 8.3, and 6.2 wt. %, respectively. | [95] |
Corn stover | H3PO4 | Douglas fir | Phonels | Phosphoric acid to biomass ratio of 0.8, microwave power of 600 W, and reaction time of 20 min. The yield and selectivity of phenols were 2.46 mg/m and 75%, respectively. | [96] |
Pine wood | H3PO4, NaOH | Rice husk | Syngas and tar | Catalytic temperature is 500 °C for 15 min. Gas yield is 0.290 L/g, the content of CO is 66.68%, and the purity of syngas is 71.17%. The relative content of phenols is 74.67%. | [97] |
Chlorella vulgaris | KOH, Fe(NO3)3·9H2O | Chlorella vulgaris | Bio-oil | Catalytic temperature is 650 °C and using 10% Fe/AC as catalyst, the highest HHV and ER values of 31.26 and 71.58 were recorded, respectively. Bio-oil yield is 46.23%. | [87] |
Bamboo | KOH, K2CO3, KHCO3, CH3COOK | Bamboo | Phenols | Catalytic temperature is 600 °C with reaction time of 30 min. Phenol content: biochar–KOH (67%), biochar–K2CO3 (58%), biochar–KHCO3 (57%) > biochar–CH3COOK (56%). | [98] |
Catalyst Precursor | Activating Agent | Pyrolytic Feedstock | Liquid Yield (%) | Aromatic Selectivity (%) | Mono-Aromatic Selectivity (%) | Ref. |
---|---|---|---|---|---|---|
Corn stover | / | LDPE | 30.0 | 23.7 | 23.7 | [114] |
Douglas fir | / | LDPE | 25.0 | 27.7 | 27.7 | [114] |
Nanocellulose | / | LDPE | 24.0 | 91.4 | 80.8 | [114] |
Wood chips | / | Mixed plastic | 59.5 | 16.9 | 7.4 | [79] |
Coconut shell | Steam | LDPE | 64.7 | 19.0 | - | [123] |
Wood chips | ZnCl2 | Mixed plastic | 43.7 | 42.4 | 2.5 | [79] |
Wood chips | ZnCl2 | Mixed plastic | 51.8 | 47.6 | 13.7 | [79] |
Wood chips | KOH | Mixed plastic | 42.6 | 44.7 | 0.54 | [121] |
Wood chips | H3PO4 | Mixed plastic | 51.0 | 66.0 | 3.8 | [124] |
Wood chips | H3PO4 | PE | 37.5 | 40.0 | 16.2 | [124] |
Corncob | H3PO4 | LDPE | 75.3 | - | 54.0 | [125] |
Corn stover | H3PO4 | LDPE | - | 29.0 | - | [123] |
Chestnut shell | H3PO4 | LDPE | 45.0 | 95.9 | 63.5 | [126] |
Catalyst Precursor | Activating Agent | Biomass | Plastic | Optimal Reaction Conditions and Results | Ref. |
---|---|---|---|---|---|
Coconut shell | H3PO4 | Corn stalk | HDPE | H3PO4 impregnation ratio = 1:1, carbonization temperature = 700 °C. Aromatics yield = 86.11%, mono-aromatic selectivity = 64.01% | [134] |
Coconut shell | Steam | Doulas fir | LDPE | Pyrolysis temperature = 500 °C, catalyst/feedstock = 1, LDPE/Douglas fir = 0.7. Jet fuel selectivity= 98.6 area.%, aromatic selectivity= 67.3 area.%. | [135] |
Corncob | H3PO4, H2SO4 | Doulas fir | LDPE | Sulfonation temperature = 100 °C, sulfonation time = 5 h. Bio-jet fuel content= 97.51%. | [75] |
Corncob | H3PO4, Fe(NO3)2·6H2O | Doulas fir | LDPE | Loading amount = 10%, catalyst/feedstock = 1, pyrolysis temperature = 500 °C. Bio-oil yield = 53.67%, mono-aromatic selectivity = 44%. | [136] |
Pine sawdust | Ni(NO3)2·6H2O | Pine sawdust | LDPE | Loading amount = 10%, residence time = 1.57 min, pyrolysis temperature = 500 °C, catalytic temperature = 600 °C. Hydrogen yield = 392.8 mmol/g | [4] |
Pine sawdust | Ni(NO3)2·6H2O | Rice husk | PE | PE/feedstock = 3. LHV = 14.37MJ/Nm3. | [4] |
Lignin | Zn(NO3)2·6H2O | Lignin | LDPE | Pyrolysis temperature = 450 °C, LDPE/lignin ratio = 12.5%. H2, CO, and CH4 content = 40, 20, 5%. | [137] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Wan, K.; Chen, H.; Zheng, F.; Zhang, Z.; Niu, B.; Zhang, Y.; Long, D. Value-Added Products from Catalytic Pyrolysis of Lignocellulosic Biomass and Waste Plastics over Biochar-Based Catalyst: A State-of-the-Art Review. Catalysts 2022, 12, 1067. https://doi.org/10.3390/catal12091067
Li P, Wan K, Chen H, Zheng F, Zhang Z, Niu B, Zhang Y, Long D. Value-Added Products from Catalytic Pyrolysis of Lignocellulosic Biomass and Waste Plastics over Biochar-Based Catalyst: A State-of-the-Art Review. Catalysts. 2022; 12(9):1067. https://doi.org/10.3390/catal12091067
Chicago/Turabian StyleLi, Peng, Kun Wan, Huan Chen, Fangjuan Zheng, Zhuo Zhang, Bo Niu, Yayun Zhang, and Donghui Long. 2022. "Value-Added Products from Catalytic Pyrolysis of Lignocellulosic Biomass and Waste Plastics over Biochar-Based Catalyst: A State-of-the-Art Review" Catalysts 12, no. 9: 1067. https://doi.org/10.3390/catal12091067
APA StyleLi, P., Wan, K., Chen, H., Zheng, F., Zhang, Z., Niu, B., Zhang, Y., & Long, D. (2022). Value-Added Products from Catalytic Pyrolysis of Lignocellulosic Biomass and Waste Plastics over Biochar-Based Catalyst: A State-of-the-Art Review. Catalysts, 12(9), 1067. https://doi.org/10.3390/catal12091067