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Abstract: Currently, carbon quantum dots (CQDs) have been widely investigated as an enhancing
photocatalytic component of various nanocomposites. In this study, hetero-structures containing
carbon quantum dots (CQDs) associated to zinc oxide were prepared following two one-pot proce-
dures: (i) a hydrothermal approach in which commercial ZnO was used as carrier for CQDs; and
(ii) an approach in which the ZnO/CQDs samples were produced in situ by adding zinc acetate to an
aqueous suspension of CQDs. CQDs were prepared in advance by a low-temperature hydrothermal
(LHT) treatment of useless humins wastes produced by the glucose dehydration in an acidic medium.
These samples were characterized by several techniques such asadsorption-desorption isotherms of
liquid nitrogen at 77K, X-ray diffraction (XRD), infrared diffuse reflectance with Fourier transform
(DRIFT) and UV-vis spectroscopy. The photocatalytic behavior of these materials was investigated
in the degradation of methylene blue (MB). The obtained results revealed electronic interactions
between CQDs and ZnO which have as an effect an enhancement of the charge separation and
diminution of the charge recombination. In accordance, a correlation between the photocatalytic
activity and the intrinsic properties of ZnO/CQDs has been evidenced. The highest photocatalytic
activity corresponded to the heterostructure containing highly dispersed narrow sized CQDs onto
ZnO. Under visible light irradiation and after 180 min of irradiation, MB was degraded by as much
as 97.6%.

Keywords: zinc oxide; carbon quantum dots; nanocomposites; photodegradation; organic dyes;
methylene blue

1. Introduction

Photocatalysis is providing a promising alternative to the highly energetic and pollu-
tant chemical transformations [1,2]. As a photocatalyst, zinc oxide (ZnO) attracted a certain
interest due to its quite efficient behavior in environmental applications such as the cleaning
of wastewaters or the polluted air [3]. Also, its high photosensitivity correlates well to other
important features such as its non-toxicity and low cost [3]. However, its large bandgap
(3.37 eV), massive charge carrier recombination, and photoinduced corrosion–dissolution
under extreme pH conditions, leading to inert Zn(OH)2, are all barriers to its extensive
applicability [4].

Then, the photocatalytic efficiency of ZnO is highly dependent on the surface mor-
phology and particles size [5–8]. Therefore, in order to inhibit the surface-bulk charge
carrier recombination, intensive research has been carried out to improve its performances
by tailoring the surface-bulk structure and altering its photogenerated charge transfer
pathways [4]. This also correlates well with the requirement for new photocatalytic materi-
als able to shift the adsorption from UV towards the visible region [9].

The luminescence of ZnO in both the visible and UV regions is assigned to the intrinsic
defects created during synthesis. Accordingly, its broad visible luminescence is associated
to its morphology and crystalline structure [4]. Further, engineering O and Zn vacancies of
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this oxide may even tune its photoluminescence emission [10]. In this way, its photocatalytic
behavior under visible irradiation may be tuned by coupling with another semiconductor,
with carbon nanoparticles, and by doping with transition metals [11–13] or non-metal
elements (i.e., C or N) [14,15]. However, most of these hybrid ZnO nanocomposites still
suffer from an inefficient use of sunlight (<5%) and an unstable nature.

Recently, due to their unique properties, carbon quantum dots (CQDs) became a
focal point of interest as a new class of carbon nanomaterials [16]. Their synthesis mainly
focuses easy routes of preparation, surface passivation and functionalization [17], small
particle sizes, biocompatibility, photoluminescence (PL) properties, a high-temperature
stability, a chemically inert structure, and a low toxicity. Correlated to these, CQDs already
received interest in many fields, such as photocatalysis [18], sensors [19] and biomedical
applications [20,21].

For the particular case of photocatalysis, CQDs became potential competitors to con-
ventional semiconductor quantum dots (QDs) synthesized from the elements of the groups
III–VI or toxic heavy metals [22]. Moreover, their hybridization with different materials
such as TiO2, ZnO, SiO2, Fe2O3, Ag3PO4, or Cu2O has been reported as a new opportunity
to improve the charge separation and the reduction of the charge recombination, leading
thus to the enhancement of the photocatalytic efficiency [23–27].

Very recently Widiyandari et al. [25]. reviewed the applications of ZnO/CQDs
nanocomposites for the degradation of pollutants focusing the progress in their devel-
opment. However, despite the numerous reports on the CQDs exploiting for different
applications, the synthesis of ZnO/CQDs nanocomposites, with the aim to promote ZnO
photocatalytic activity under visible light irradiation, was investigated only in a few
reports [27–30].

Based on this state of the art, the challenge of the present work was to combine,
in an innovative way, photocatalysis, biomass wastes valorization and environmental
degradation with the aim to rich a high degree of sustainability. To reach this scope, the
synthesis of carbon quantum dots (CQDs) has been carried out from a worthless humins
by-product, generated in the dehydration of the glucose. This was treated through an
environmentally hydrothermal friendly (LTH) process at low-temperature. Subsequently,
for the photocatalytic degradation of the organic dyes, there were synthesized ZnO/CQDs
nanocomposites. The synthesis of these followed two hydrothermal routes: (i) in which a
commercial ZnO was used as carrier for the CQDs; and (ii) an one-pot process in which a
Zn(CH3COO)2·2H2O precursor salt was directly added to an aqueous solution of CQDs.
After gentle drying, these materials were investigated in the photooxidative degradation of
methylene blue (MB), a representative of a class of dye-stuff resistants to biodegradation,
under both UV and Vis lights irradiation.

2. Results and Discussion
2.1. ZnO/CQDs Nanocomposites Characterization

Carbon quantum dots (CQDs) obviously present a core-shell morphology with
nanocrystalline or amorphous cores [31] and shells with attached polar groups
(e.g., hydroxyls, carboxyls and carbonyls) derived from starting materials [32]. However,
when the CQDs are produced via a low-temperature hydrothermal (LTH) approach their
size distribution and chemical composition highly depend on two key factors, namely, the
reaction time and the synthesis temperature.

In this work the CQDs were synthesized from humins wastes produced by acid
dehydration of D-glucose. The LTH approach was applied for the CQDs synthesized at
160–200 ◦C, for 4–12 h, respectively. Emission spectra at λex = 310 nm reveal the effect of the
hydrothermal parameters on the fluorescence characteristics of CQDs. Both the temperature
and time affect the CQDs formation progress and the fluorescence properties. The highest
PL intensities were registered for either CQDs synthesized at higher temperatures and
shorter synthesis times (i.e., CQD200-4) or at lower temperatures and longer synthesis times
(e.g., CQD180-12) (Figure 1a). At 200 ◦C, longer reaction times led to the aggregation of the
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small CQDs exhibiting a lower intensity of fluorescence (not shown in Figure 1a) while, at
180 ◦C, the intensity of the fluorescence depended on the reaction time, thus suggesting a
progress of the LTH process. Therefore, at 180 ◦C and a short reaction time, the fluorescence
is weak. This implies that the reaction is just in the initial stage and the concentration of
the quantum dots formed is low. The fluorescence intensity gradually increases with the
reaction time increases, which suggests an increase in the carbon dot concentration. The
solution with the brightest luminescent is obtained after 12 h (Figure 1b).
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face and at the CQDs edge. The intense and broad band centered at 3300 cm−1 proves the 
high concentration of the hydroxyl groups, irrespective of the LTH parameters. Also, 
their presence justify a very good dispersion and high stability of these solid nanoparti-
cles in water [33]. However, the intensity of the absorption band at 1730 cm−1 (character-
istic to the C=O stretching) diminished with the increase of the hydrothermal tempera-
ture from 180 to 200 °C that may indicate a decreased population of the carboxylic group 
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Figure 1. (a) Emission spectra (λex = 310 nm) of the synthesized CQDs at 200 ◦C and 4 h and at
180 ◦C and 12 h; (b) emission spectra (λex = 310 nm) of the synthesized CQDs at 180 ◦C as a function
of the reaction time.

ATR-FTIR measurements confirmed the influence of the synthesis parameters upon
the nature of the CQDs functionalities. As ATR-IR spectra show (Figure 2), the bands at
1220–1100 cm−1 correspond to the C-O-C stretching, at 1370 cm−1 to the O-H in-plane
deformation vibration, at 1640 cm−1 to the C=C stretching, at 1730 cm −1 to the C=O
stretching and at 3300 cm−1 to the –OH stretching vibration, most probably attached to the
surface and at the CQDs edge. The intense and broad band centered at 3300 cm−1 proves
the high concentration of the hydroxyl groups, irrespective of the LTH parameters. Also,
their presence justify a very good dispersion and high stability of these solid nanoparticles
in water [33]. However, the intensity of the absorption band at 1730 cm−1 (characteristic to
the C=O stretching) diminished with the increase of the hydrothermal temperature from
180 to 200 ◦C that may indicate a decreased population of the carboxylic group in the shell
composition, also in accordance to the literature data [34].
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The structural properties of the CQDs were as well investigated by UV-Vis (Figure 3a)
and XRD patterns (Figure 3b). The inset in Figure 3a shows the images of the CQD200-4
solutions collected in visible and UV light (365 nm). The faint yellow color under visible
light and the distinct blue emission under the UV light at 365 nm correspond to a red-shift.
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Figure 3. (a) The UV-vis absorption spectra for CQD180-4 (blue), CQD180-12 (green) and CQD200-4

(red) samples; (b) the XRD pattern of humins (A), CQD200-4 (B) and CQD180-12 (C).

The UV absorption band at 220 nm is attributed to the π-π* transition of the C=C bonds
with a tail extending into the visible range (Figure 3a). The relatively weak absorptions at
335 and 354 nm may originate from the n–π* transition of the C=C-C=O groups (335 nm)
and from the overtone transition of the oxygen bridged bond (R-O-R′) (354 nm) in the
sp3 hybrid region. The XRD pattern (Figure 3b) of CQDs revealed two diffraction lines
centered at 22 and 42◦, indicating a graphite-like carbon structure in their core [35]. For the
CQD180-12, the lower diffraction line intensity along with a relatively high full width half
maximum suggest the presence of particles with a smaller size [34].

The PL emission spectra of the CQDs excited at λex = 250–450 nm (Figure 4a exemplifies
the PL spectra of CQD200-4) consist of two overlapping spectral bands [36], with a double PL
peaks at 410 and 445 nm, respectively. In accordance to Yuan et al. [37] this is a consequence
of the electron transition between the edge states functional groups and carbon states,
such as conjugate π states (or sp2 area). The different origins of the PL emission are
also confirmed by the decrease of the relative intensity of the band at 410 nm with the
increase of the relative intensity of the band at 445 nm (namely with the increase of the
excitation wavelength).
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For the excitation in the range of 250–340 nm no perceptible excitation-emission
dependence (λem = 410–445 nm) has been observed while a distinct red-shift from λem = 445
to λem = 530 nm was clearly evidenced when λex shifted from 360 to 450 nm (Figure 4a).
This excitation-independent PL behavior is derived from the CQDs homogeneous particle
size [38] while the high polarity of the nanosized and the sp2-carbon networks of CQDs
is usually claimed as being responsible for the excitation-dependent PL behavior [39]. In
accordance, it can be assumed that the excitation-independent PL behavior of the shorter
wavelength part of the emission is due to the predominant homogeneous size of CQDs,
while the excitation-dependent behavior of the longer wavelength part is attributed to the
presence of a low population of CQDs with larger sizes [40]. An additional argument that
comes to support the assumption of the existence of predominate homogeneous CQDs
size is given by the wavelength corresponding to the maximum emission (λmax). This
remained approximately constant for the excitation (λex) in the 240–340 nm range while for
the range of 360–450 nm the position of the maximum emission shifted with the increase of
the excitation wavelength (Figure 4b).

The quantum yield (QY) (λex = 366 nm) of the CQDs varied in the: CQD200-4 (22.6%) >
CQD180-12 (21%) > CQD180-4 (8%), order, namely, with values comparable to most of the
reported QYs in the literature [38]. In accordance with Zhu et al. [41], the higher QY of
CQD200-4 can be attributed to its edge slightly smaller concentration of the non-radiative
recombination carboxyl (–COOH) sites (see also Figure 2). The smaller size of the CQDs
obtained at 180 ◦C and after 12 h could justifies the increased QY value compared to that of
CQDs produced at the same temperature but after only 4 h.

ZnO/CQD nanocomposites were subsequently produced using the above synthesized
CQDs through either the hydrothermal (ZnO(C)/CQD) or the one-pot hydrothermal
(ZnO(OP)/CQD) routes. The corresponding XRD patterns are given in Figure 5.
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Figure 5. (a) The XRD patterns of the ZnO(C)/CQD nanocomposites; (b) the XRD patterns of the
ZnO(OP)/CQD nanocomposites.

The diffraction lines at 2θ = 31.68◦, 34.35◦, 36.09◦, 47.36◦, 56.48◦, 62.70◦, 66.23◦, 67.87◦,
68.99◦, 72.55◦, and 76.77◦ were assigned to (100), (002), (101), (102), (110), (103), (200), (112),
(201), (004) and (202) crystalline planes of ZnO (wurtzite, with hexagonal phase structure
(JCPD36-1451)) [42]. The patterns of ZnO(C)/CQDs were identical with those of the ZnO(C)
carrier (Figure 5a) that demonstrates the crystal structure of ZnO has not been modified by
CQDs. Also, the XRD patterns of the ZnO(C)/CQD (Figure 5a) do not evidenced diffraction
lines characteristic to CQDs indicating a high dispersion of these on the external surface of
ZnO. This may also correspond to a small loading, poor crystallinity and high dispersion
of the CQDs into the ZnO(C)/CQD composites.

XRD patterns of the samples prepared via the one-pot hydrothermal approach (OP)
also showed lines assigned to the ZnO (wurtzite, hexagonal phase structure (JCPD36-1451))
(Figure 5b).
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The crystallites average size was determined from the Debye-Scherrer equation taking
the reflection (101) of hexagonal ZnO wurtzite (1) [43]:

d =
kλ

β cos θ
(1)

where: d is the crystallite size in nm; k = 0.94; λ is the wavelength of the X-ray (1.54178 Å);
θ is the half-diffraction angle and β is the full width at half-maximum (FWHM) in radians
for the 2θ value.

As Table 1 shows, the average crystallite sizes of the ZnO(C)-based samples varied in a
narrow range (33–35 nm), while for those prepared via the one-pot hydrothermal approach
(i.e., ZnO(OP)-based samples), the average crystallite sizes were even smaller (cca 28 nm).
The broadening of the (101) diffraction line also supports the smaller sizes of all of the
prepared samples, irrespective of the applied approach.

Table 1. The crystallite size of the ZnO/CQD nanocomposites.

Sample β, Degree (101) Plane, 2θ θ, Degree Crystallite Size, nm

ZnO(C) 0.2599 36.2158 18.1079 33.61
ZnO(C)/CQD180-12 0.2490 36.2637 18.1318 35.09
ZnO(C)/CQD200-4 0.2469 36.2322 18.1161 35.39
ZnO(OP)/CQD180-12 0.3053 36.1265 18.0632 28.61
ZnO(OP)/CQD200-4 0.3139 36.1327 18.0663 27.83

Similar to ZnO–graphene composites [44], the XRD patterns of ZnO(OP)/CQD show
a shifting of the main diffraction lines (i.e., (100), (002), (101) planes) to a lower degree
(Figure 6 and Table 1, column 3) compared to the pure ZnO(C), indicating both a change in
the ZnO lattice constants and a stronger interaction with CQDs [45,46].
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where: θ100 and θ002 are the diffraction lines angles of the (100) and (002) planes, respectively.
As Table 2 shows, for ZnO(OP)/CQD the lattice parameters (a, b and c) were higher [48].

Obviously, such a modification is due to the presence of CQDs and the enlarged d-spacing
may suggest a relatively high density of the ZnO stabilized CQDs layers.

Table 2. The lattice parameters (a–c) and the inter-planer d-spacing of the ZnO/CQD samples.

Sample 2θ, Degree
Lattice Parameters, Å

c/a d-Spacing,
BRAGGc a = b

ZnO(C) 36.2158 5.2157 3.2561 1.6018 2.4803
ZnO(C)/CQD180-12 36.2637 5.2140 3.2533 1.6027 2.4771
ZnO(C)/CQD200-4 36.2322 5.2140 3.2547 1.6020 2.4795

ZnO(OP)/CQD180-12 36.1265 5.2246 3.2678 1.5988 2.4867
ZnO(OP)/CQD200-4 36.1327 5.2246 3.2713 1.5971 2.4859

JCPDS 36-1451 36.2150 5.2150 3.2560 1.6016 -

For both ZnO and ZnO/CQD the adsorption-desorption isotherms of nitrogen
(Figure 7) correspond to a type IV in the IUPAC classification. These indicate the presence
of a small percentage of micropores filled with nitrogen at extremely low relative pressures
and of a multilayer evidenced at high relative pressures. Finally, a capillary condensation
prevails as the pressure gets higher. The H3-type hysteresis provides an indication of
slit-shaped pores generated through the particles’ aggregation.
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The BET surface areas, pore volumes (Vp), average pore diameter (Dp) and particles
size (dBET) are given in Table 3.

Table 3. BET analysis surface area and porosity of ZnO/CQD samples.

Sample BET (m2/g) Vp (cm3/g) Average Dp (nm) dBET (nm)

ZnO(C) 12 0.033 26.5 89.1
ZnO(C)/CQD200-4 15 0.136 52.0 71.3
ZnO(C)/CQD180-12 18 0.062 25.8 59.4
ZnO(OP)/CQD200-4 7 0.038 25.7 152.8
ZnO(OP)/CQD180-12 11 0.045 37.2 97.2

The average diameter of the particles (dBET) was calculated from SBET using the formula:

dBET (nm) =
6000

SBET(m2/g) × ρ(g/cm3)
(4)
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where: ρ is the ZnO density (5.61 g/cm3).
As Table 3 shows, except sample ZnO(C)/CQD200-4 sample with an average Dp (nm)

of 52 nm, all other samples possess average pores in the mesoporous size range, which
coincides with the type IV adsorption isotherm. BET surface areas were in the range of
7–18 m2/g while the pore volumes between 0.038 and 0.136 cm3/g. The diminution of
the surface and pore volume for ZnO(OP)-samples may be assigned to the intercalation
of the CQDs between the ZnO layers but also as a consequence of the agglomeration
of the nanoparticles. Indeed, for the samples prepared via the one-pot hydrothermal
approach (denoted with (OP)) the increased particle size (dBET) corresponds to a higher
agglomeration of the smaller crystallite ZnO. These results are also supported by the
XRD measurements.

The electronic interaction between ZnO and CQDs was further confirmed by the
DRIFT spectra. The strong bands at 642 and 872 cm−1 are attributed to the Zn-O stretching
vibrations [49] while the bands at around 1635 and 3464 cm−1 are attributed to the O-H
stretching vibrations of chemisorbed water molecules [50,51] (Figure 8). However, the band
at 1635 cm−1 may also be assigned to the C=C stretching vibration of the numerous sp2

species that enriched the aromatic structure of the CQDs [52]. The band at 1569 cm−1 is
assigned to the C=C stretching of polycyclic aromatic structures, while that at 1418 cm−1 to
C-O vibrations of the oxygen containing groups [46].
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The absorption band at 1260 cm−1 is ascribed to the C-O-C stretching of the furan ring
deformation while the new band at 1338–1345 cm−1 for ZnO/CQDs to a new Zn-COO−

group formed as a result of the CQDs interaction with the ZnO carrier (Figure 9).
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Photo-absorption is one of the key factors affecting the photocatalytic performance of
the photocatalysts. As shown in Figure 10, ZnO has almost no absorption above 370 nm
that is in accordance to its band gap. However, the ZnO/CQDs composite showed an
absorption in the visible light region, ranging from 450 to 650 nm, likely derived from the
interaction between the CQDs and ZnO. As consequence, the increased intensity of this
absorption band may serve as an indication of the contribution of CQDs to the enhanced
visible light absorption of the composite [53].
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Figure 10. UV-Vis diffuse reflectance spectra of ZnO(C)/CQDs samples.

2.2. Methylene Blue (MB) Photodegradation

The pH solution influences the ionization of the MB and the catalyst surface [54,55],
neutral and basic environments leading to better efficiency than acidic environments. The
pHPZC of ZnO which lies between 8 and 9. Therefore, as the pH of the solution increases
pHPZC of ZnO becomes zero or less positive hence, the percentage of MB adsorption
increases with increase in pH, leading to an enhanced degradation. The low degradation
efficiency in acidic pH is related to the presence H+ ions which compete with cationic
pollutant molecules (i.e., MB) for the adsorption onto the adsorbent surface [56].

Therefore, the photocatalytic degradation of the methylene blue has been carried
out in both the absence (i.e., pH = 6 for the used MB solution) and the presence of the
Na2CO3/NaHCO3 buffer (pH = 9.2), and under UV and Vis light irradiation. Under the UV
irradiation zinc oxide may suffer photocorrosion reactions. However, very recently it has
been showed that due to the fast charge separation, the presence of CQDs can protect the
ZnO semiconductor from photocorrosion and, therefore, enhance its structural stability [53].

MB is a chromogenic agent whose N-S heterocycle group attached to benzene includes
lone pair electron in which thiol group is the main chromophoric group [57,58]. The UV-Vis
bands at 612 and 666 nm are characteristic for the large conjugated system of the N-S
heterocycle group while that at 292 nm characterizes the phenothiazine structure [58]. The
collected UV-Vis spectra during the MB photo-degradation in the presence of ZnO(C) and
under UV irradiation, in the absence or the presence of the Na2CO3/NaHCO3 buffer are
shown in Figure 11.
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Figure 12. The degradation of MB (665 nm band) in time in the presence of (a) ZnO(C)/CQD and 
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Figure 11. UV–Vis spectra collected during the MB degradation versus reaction time on the ZnO(C)
catalyst, under UV irradiation and (a) in the absence of the Na2CO3/NaHCO3 buffer and (b) in the
presence of the Na2CO3/NaHCO3 buffer.

During the photocatalytic reaction the intensity of the bands located in the visible
region suffered an important decrease (Figure 11a,b) that is also an indication of a de-
struction of the heterocycle conjugated structure, both at pH = 6 and pH = 9.2. This
effect was synchronized with a decoloration process, supporting the recorded blue shifts
(i.e., hypsochromic effects) associated to N-demethylation of the dimethylamino group of
MB [57,58]. The diminution of the phenothiazine structure occurred through opening of
the ring via the attack of hydroxyl radicals.

However, as Figure 11 shows the MB degradation takes place with a conversion of
98.2%, at pH = 6 and after 180 min of irradiation with UV (Figure 11a), while in the presence
of the Na2CO3/NaHCO3 buffer (Figure 11b) the degradation occurred in a lower extend
(i.e., 85% conversion after 180 min). This behavior can be due to the Na2CO3/NaHCO3
buffer which acts as a OH• scavenger, in a similar way as reported for processes taking
place in the presence of the Na2CO3 base [59]. Therefore, MB degradation tests in the
presence of the ZnO(C)/CQDs and ZnO(OP)/CQDs semiconductors were subsequently
carried out in the absence of the buffer Na2CO3/NaHCO3. The obtained results under UV
irradiation are shown in Figure 12.
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Figure 12. The degradation of MB (665 nm band) in time in the presence of (a) ZnO(C)/CQD and
(b) ZnO(OP)/CQD under UV irradiation.

The promoting effects of the CQDs system may differ according to the utilized
irradiation [53]. Under the UV exposure, CQDs act as a reservoir trapping photogenerated
electrons from ZnO and promoting the separation of the photogenerated electron-hole pairs.
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However, the rate of MB decomposition is different as a function of the ZnO/CQDs features
(Figure 12). A faster decomposition takes place in the presence of the CQD180-12-based
nanocomposites irrespective of the ZnO carrier nature. The conversion of MB reached 98.8%
in the presence of ZnO(C)/CQD180-12 in only 30 min (Figure 12a), while, in the presence
of the ZnO(OP)/CQD180-12, it decreased to 89.1% even after a longer time (i.e., 180 min)
(Figure 12b). The higher photoactivity of the CQD180-12—based samples can be associated
to the presence of a higher loading the -COOH acidic groups onto the CQDs surface, mak-
ing it easier the chemisorption of the basic MB groups. Moreover, the steric hindrance of
the CQD180-12 is smaller owing a small size promotion of an effective photon and hydroxyl
radicals transfer [38].

As XRD patterns showed (Figure 5b) the ZnO(OP) posses larger particle sizes gen-
erated by a higher agglomeration of the smaller ZnO crystallites during the synthesis.
ZnO(OP)/CQDs are also characterized by a reduced surface area and pore volume, most
probably due to the intercalation and agglomeration of the CQDs between the ZnO lay-
ers. Thus, a lower conversion in the MB degradation might be attributed to a decreased
active surface.

A mechanism for the UV photocatalytic degradation of dyes, also fitting the results
of this work, was not long ago proposed by Zou and co-workers [46]. In accordance with
this, the UV irradiation of the ZnO/CQD heterostructure at energies higher or equal to
the band-gap of ZnO excites the electrons (e−) from the valence band into the conduction
band. These move freely to the surface of CQDs layer through a photo-induced charge
transfer process, while the holes (h+) leave in the valence band of ZnO (step 1). Then, holes
(h+) migrate to the surface and react with H2O or OH- to produce OH• radicals (step 3).
The photo-generated electrons can further react with the dissolved oxygen on the surface
of CQDs generating O2

•− radicals (step 2) which after protonation generate hydroperoxy
HO2

• radicals (step 4), producing hydroxyl radical OH• and hydrogen peroxide (step 5).
Hydrogen peroxide is a supplementary source for the hydroxyl radical OH• production
(step 6). These species represent strong oxidizing agents able to degrade MB and, finally, to
mineralize them towards CO2 and H2O (step 7).

1. CQD@ZnO + hv → e− (CQD) + h+ (ZnO)
2. e− + O2 → O2

•−

3. h+ + OH− → OH•

4. O2
•− + H2O → HO2

• + OH−

5. HO2
• + H2O → H2O2 + OH•

6. H2O2 → 2OH•

7. OH• + dye→ CO2 + H2O

Under visible light irradiation the MB degradation takes place at a lower level by
comparison with the UV irradiation, irrespective of the ZnO/CQDs nature (Figure 13).
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According to Heng et al. [53], under irradiation with visible light, the CQDs act
as a photosensitizer enlarging the absorption range of metal oxide into the visible light
region through electronic coupling between π states of CQDs and conduction band of
the metal oxide. This corresponds to a transfer of excited electrons from CQDs to the
conduction band of the ZnO. The best results in MB degradation were obtained in the
presence of ZnO(C)/CQD180-12 sample and are well correlated with the UV-vis absorption
measurements results (Figure 10). In the presence of this sample, the MB conversion
reached a level of 97.6%, after 180 min, while, in the presence of the pristine ZnO(C) the
MB conversion was four times lower (i.e., 25%). The same level of MB conversion (26%)
was registered in the presence of the ZnO(OP) sample, while onto ZnO(OP)/CQD180-12
the decomposition of the MB reached a higher level (32%) but much lower compared to
the one obtained in the presence of the ZnO(C)/CQD180-12. Once again, the photocatalytic
efficiency seems to be governed by the same factors: the CQDs and ZnO features. In the
case of the ZnO(OP)/CQD samples, the self-aggregation of CQDs on the ZnO surface
reduces fewer sites for activation and absorption of visible light by carbon [60].

3. Methods and Materials
3.1. Synthesis of ZnO/CQDs Nanocomposites

Carbon quantum dots (CQDs) were synthesized following a low temperature hy-
drothermal (LTH) methodology in which the humins, generated from the decomposition
of glucose, were used as raw material. Briefly, 30 mg of humins were dispersed in 30 mL of
water. To this suspension, 0.15 mL of glacial CH3COOH were added. Then, the solution
was placed in a Teflon-lined stainless-steel autoclave and heated at 160–200 ◦C for 4–12 h.
After the hydrothermal treatment, the aqueous mixture was transferred into a 250 mL
separating funnel and 40 mL n-butanol was added. The formed layers were vigorously
mixed thoroughly for some time, the aqueous layer, containing CQDs, was separated and
further analyzed.

Obtained CQDs were subsequently used for the preparation of the ZnO/CQDs
nanocomposites by using two methods as described below.

Hydrothermal approach: In a typical procedure, 0.4 g ZnO was slowly added under
stirring to a solution of 20 mL of H2O, 6 mL C2H5OH, and 2 mL solution of CQDs and
the mixture was kept at room temperature for 4 h. The resulting suspension was then
placed in a Teflon-lined stainless-steel autoclave and kept at a constant temperature of
140 ◦C for 4 h. After hydrothermal treatment, the ZnO/CQDs product was collected by
centrifugation, washed with deionized water several times to remove the impurities and
finally dried in air for 12 h at 80 ◦C. The obtained samples were denoted ZnO(C)/CQD200-4
and ZnO(C)/CQD180-12, were (C) indicates a commercial ZnO.

One-pot hydrothermal approach: The ZnO/CQDs hybrid nanostructures were syn-
thesized by a hydrothermal method at a low temperature [26]. Typically, 0.274 g (125 mM)
of Zn(CH3COO)2·2H2O were dissolved in the previously prepared CQDs solution at room
temperature. The pH of the solution was adjusted to 10 through dropwise addition of
8 M NaOH aqueous solution and stirring vigorously for 15 min at room temperature. Then,
the solution was transferred into a Teflon- beaker and heated at 80 ◦C for 3 h. The fi-
nal product was collected by centrifugation, washed with deionized water several times
to remove the impurities and finally dried in air for 12 h at 80 ◦C. The obtained sam-
ples were denoted ZnO(OP)/CQD200-4 and ZnO(OP)/CQD180-12 where (OP) indicates the
“one-pot” approach.

3.2. Characterization Techniques

ZnO/CQDs materials were characterized by techniques as: adsorption-desorption
isotherms of liquid nitrogen at 77K, X-ray diffraction (XRD), IR diffuse reflectance with
Fourier transform (DRIFT) and UV-vis spectroscopy.
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Textural characteristics (surface area, pore volume and pore diameter) were deter-
mined from the adsorption-desorption isotherms of nitrogen at 77 K using a Micromeritics
ASAP 2020 Surface Area and Porosity Analyzer.

Powder X-ray Diffraction patterns were collected at room temperature using a Shimadzu
XRD-7000 apparatus with the Cu Kα monochromatic radiation of 1.5406 Å, 40 kV, 40 mA at
a scanning rate of 1.0 2θ min−1, in the 2θ range of 10–90◦.

DRIFT spectra were recorded with a Thermo spectrometer 4700 (400 scans with a
resolution of 4 cm−1) in the range of 600–4000 cm−1.

UV-vis spectra were recorded with a SPECORD 250-222P108 in a range of 304–1100 nm
with a scan rate of 50 nm per second.

3.3. Methylene Blue Photooxidative Degradation

MB photooxidative degradation tests were performed in a LZC-4b photoreactor
(Luzchem Research Inc., Gloucester, ON, Canada) provided with LED lamps (112 W,
445–465 nm) or in a home-made system provided with UV lamps (VilberLorumat, 240 W,
365 nm). Both photoreactors are provided as well as an exhaust/ventilation system. Ex-
periments were conducted in a quartz cylinder. The distance between the lamp and the
reaction cylinder was fixed at 20 cm. In each experiment 30 mg of catalyst (3.0 g/L) was
added to 10 mL of a MB aqueous solution (30 mg/L; 9.4 × 10−5 mol/L) at its natural pH
of 6.0. Some experiments were also carried out at a constant pH of 9.2 maintained by a
Na2CO3/NaHCO3 buffer. The suspension of the photocatalyst and the homogeneity of
the reacting mixture were ensured by magnetic stirring. Before switching on the lamp, the
suspension was kept in darkness for 30 min and under stirring to reach the thermodynamic
equilibrium. During the runs, samples of reacting suspension (500 µL) were withdrawn
at 10, 20, 30, 45, 60, 90, 120, 150, and 180 min, filtered through a 0.45 µm hydrophilic
membrane (HA, Millipore) and mixed with 2.5 mL of H2O before being analyzed. The
spectrum was registered on a SPECORD 250-222P108 in a range from 190 nm to 1100 nm
with a scan rate of 10 nm per second, a delta lambda of 1 nm and a split of 4 nm. Cuvettes
of quartz were used with a path length of 1 cm.

3.4. Reaction Products Analysis

The concentration of MB after illumination was determined by a UV-Vis spectrometer
(SPECORD 250-222P108). The intensity of the main absorption peak (666 nm) of the MB dye
was referred to as a measure of the residual MB dye concentration. Control experiments
with pristine ZnO were also performed.

For the calibration curve stock solution of 500 mL with a concentration of 30 mg/L
was prepared (15 mg MB dissolved in distilled water in a volumetric flask). The stock
solution was used to prepare other five different MB concentrations as: 5, 10, 15, 20, and
25 mg/L. For each concentration, the UV-vis spectra was registered (Figure 14a) and the
corresponding absorbance value for the 665 nm band was used to build the calibration
curve (Figure 14b). The calibration curve presents a linear relation and the relationship
coefficient was 0.9990 (Figure 14b).

The MB conversion was defined as follows:

Conversion (%) =
C0 − C

C0
× 100 (5)

where: C0 is the initial concentration of MB and C is the concentration of the MB at a certain
reaction time, respectively.
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4. Conclusions

In summary, ZnO/CQDs were synthesized by two methods, namely a hydrothermal
approach, in which CQDs were deposited onto the surface of commercial ZnO, and a one-
pot hydrothermal approach, in which CQDs were added during the synthesis of the ZnO
from a zinc acetate precursor. For the first time, the CQDs used for the production of these
nanocomposites were obtained from worthless humins by-product by an environmentally
friendly low-temperature hydrothermal (LTH) process. ZnO display a wurtzite (hexagonal
phase) structure and adding it to CQDs generates hierarchical heterophases formed by
ZnO and CQDs. The characterization techniques indicate a series of differences between
these materials in terms of surface area, particle size, dispersion, and location of the CQDs.
For ZnO(C)/CQD the CQDs are preponderantly docked on the external surface of the
ZnO, with a high dispersion, while for ZnO(OP)/CQDs the agglomerated CQDs are
preponderantly stacked between the ZnO layers, generating a sandwich-like structure.

Under UV irradiation the CQDs act as electron reservoirs that resist the recombination
of electron-hole pairs. However, an increased photocatalytic activity of ZnO/CQDs can
be induced by the presence of small sized CQDs (i.e., CQD180-12). The larger size of CQDs
(i.e., CQD200-4) caused decreased photocatalytic performance of ZnO.

As these results shows, the presence of CQDs on the surface of ZnO can also promote
a large spectrum of absorption, from UV into visible one, and the excellent photocatalytic
activity of the ZnO(C)/CQD180-12 nanocomposite under Vis light irradiation could be
attributed to visible light sensitization of ZnO.

Among the investigated catalysts ZnO(C)/CQD180-12 was able to degrade MB at a
conversion of 99.3% under UV irradiation for 30 min and over 97.6% under Vis light
irradiation for 180 min.

Author Contributions: Conceptualization, S.M.C.; methodology, E.E.T. and G.S.; validation, B.C.;
formal analysis, E.E.T., G.S. and B.C.; investigation, E.E.T., G.S. and B.C.; writing—original draft
preparation, S.M.C.; writing review and editing, S.M.C. and V.I.P.; visualization, S.M.C. and V.I.P.;
supervision, S.M.C.; funding acquisition, B.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This study was funded by the Government of Romania, Ministry of Research and Innova-
tion, project PNIII-P4-ID-PCE2020-2207 nr. 235/2021.

Conflicts of Interest: The authors declare no conflict of interest.



Catalysts 2022, 12, 952 15 of 17

References
1. Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem.

Rev. 1995, 95, 69–96.
2. Yang, X.; Wang, D. Photocatalysis: From Fundamental Principles to Materials and Applications. ACS Appl. Energy Mater. 2018, 1,

6657–6693.
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