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Abstract: Dielectric barrier discharge (DBD) plasma in advanced oxidation technology can degrade
organic pollutants in water under mild conditions. It has the advantages of universality, simple
reaction conditions, and no secondary pollution. However, the light, electrons, and low-reactive
substances generated during the discharge process cannot be fully utilized, which limits the further
application of DBD plasma. Therefore, the DBD system coupled with catalysis can not only solve
the above problem, but also transforms the low-active substances into high-active substances and
improves the degradation rate of organic pollutants. Based on this fact, this review focuses on
the characteristics and principles of DBD plasma coupled with photocatalysis, adsorption, Fenton
oxidation, persulfate oxidation and composite technology to treat organic wastewater. This review
puts forward some problems of DBD synergetic catalysis technology, and looks forward to the future
development direction of this technology to treat organic pollutants in water.
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1. Introduction

In recent years, with the rapid development of industrialization and urbanization in
countries around the world, the discharge of various forms wastewater has also increased.
Many chemical plants and hospitals have discharged a large amount of wastewater con-
taining various refractory organic pollutants, such as organic pesticides [1], phenols [2],
antibiotics [3] and dyes [4,5]. These refractory organic pollutants have the characteristics of
high toxicity and easy accumulation in organisms. Their long-term residue in the water
environment can seriously affect the stability of ecosystems and endanger human health [6].
Therefore, it is urgent to solve the water pollution problem.

In recent years, a large number of scholars have made many contributions to organic
wastewater treatment. There are three traditional water pollution treatment methods: the
physical method, chemical method and biological method [7]. Physical methods mainly
include membrane separation [8], air floatation [9] and adsorption [10,11], etc. They
are often used as the primary treatment of wastewater to remove part of the suspended
substances in wastewater. It has the advantages of easy availability of raw materials and low
price, but it also has disadvantages such as application limitations and low COD removal
rate [12]. The chemical method refers to adding chemical flocculants or chemical oxidants to
wastewater to remove pollutants in wastewater. This method degrades pollutants in a short
time, but it also produces sludge and degradation by-products, causing secondary pollution
to the water environment [13]. The biological method mainly includes aerobic biological
treatment and anaerobic biological treatment, which has low cost and can be flexibly
applied to various water qualities, but it also has the problem of a too-long treatment
cycle [14]. The wastewater from chemical plants and hospitals contains a large number of
organic pollutants which are difficult to be degraded and cannot be effectively treated by
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traditional sewage treatment methods. More green and efficient technologies are needed to
degrade organic pollutants in wastewater.

Advanced oxidation processes (AOPs) have high degradation rate of organic pollutant,
stable catalytic efficiency, and no secondary pollution [15], so they have attracted more
and more attention in water pollution treatment. AOPs mainly relies on the generation of
strong oxidizing group ·OH to efficiently degrade organic pollutants in water. It mainly
includes the Fenton oxidation method [16], ozone oxidation method [17], photocatalytic
method [18], electrochemical method [19], ultrasonic oxidation method [20], persulfate oxi-
dation [21], etc. As one of the AOPs, dielectric barrier discharge (DBD) plasma technology
is a composite advanced oxidation technology integrating ozone oxidation, photocatalysis
and ultrasonic oxidation [22], which has a fast reaction speed, high degradation efficiency,
and no secondary pollution. In the process of discharge, DBD dissociates gas and water
molecules to produce a large number of active free radicals, and also radiates ultraviolet
light, shock waves and other physical effects, which can remove a variety of refractory
organic pollutants. However, the ultraviolet light, electrons and various active substances
produced in the discharge process cannot be fully utilized, resulting in the low energy
utilization rate of a DBD system. Therefore, it is considered to combine DBD plasma with
other catalytic technologies, which can not only improve the utilization rate of electron
and light energy, and accelerate and promote the generation of active substances, but also
further improve the degradation rate of pollutants.

In recent years, research on DBD plasma technology has been widely used in water
pollution treatment and water remediation. However, there have been few reviews on
DBD plasma co-catalytic technology. In addition, the mechanism and degradation process
of DBD plasma-catalyzed degradation of organic pollutants are still unclear. According
to the classification shown in Figure 1, this paper reviews the degradation of organic
pollutants in water by DBD plasma combined with other typical catalysis technologies
(photocatalysis, adsorption catalysis, Fenton catalysis, and persulfate catalysis). In this
paper, DBD plasma technology is introduced first, and then several methods of collaborative
catalytic degradation of organic pollutants by DBD plasma technology are summarized
and their advantages and disadvantages are expounded. In addition, the mechanism of
various DBD plasma co-catalytic technologies and the influence of various factors on the
degradation rate of organic matter are described. The energy efficiency and degradation
pathways of typical DBD plasma co-catalytic techniques are further compared. Finally, the
paper forms a summary and puts forward the prospect for the future.
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2. DBD Water Treatment Technology

Plasma was first proposed by Tonks and Langmuir in 1929 and endowed with the
meaning of “ionized gas”. It is mainly composed of active substances such as electrons,
ions and free radicals. It is divided into thermal plasma and non-thermal plasma (NTP) [23].
NTP is usually produced by gas discharge, which can be divided into the following
types according to different discharge forms: DBD [24], corona discharge [25], sliding arc
discharge [26], glow discharge [27] and pulse discharge [28], etc. NTP also has a variety of
functions such as high-energy electrons, ozone oxidation and ultraviolet radiation, and has
a significant degradation effect on the treatment of organic pollutants in water [29]. DBD,
as a kind of NTP, is often used in the treatment of organic wastewater.

DBD is a non-equilibrium gas discharge with an insulating medium inserted into
the discharge space [30,31]. The insulating medium usually consists of quartz, glass and
ceramics. Different DBD reactors have different experimental results. Figure 2 shows the
water treatment reactors using jet-type DBD [32], coaxial-type [33], falling-film-type [34]
and plate-type [35] by different researchers. The existence of insulating medium can avoid
the formation of arc lights and sparks, so that the discharge is more uniform and stable. In
the process of discharge, active groups such as H2O2, O3 and ·OH will be generated, and
physical effects such as high-energy electrons, ultraviolet radiation, local high temperature
and shock waves will also occur [36].
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A DBD system can act on organic pollutants in water through active groups and
physical effects, and has the characteristics of a simple reactor structure and high treatment
efficiency. Therefore, the DBD system has become a research highlight of wastewater
treatment in recent years. Hu [37], Kil [38] and Sahu [39] used a DBD system to degrade
pefloxacin (PEF), sulfathiazole and phenol, respectively, and their degradation rates were
as high as 96.1%, 100.0% and 98.0%. In addition, the number of documents retrieved from
2010 to 2022 on the Web of Science (WOS) and China National Knowledge Infrastructure
(CNKI) with the theme of “Dielectric Barrier Discharge” and “Wastewater Treatment” is
shown in Figure 3. As can be seen from Figure 3, the DBD system, as a new technology,
has attracted extensive attention from researchers in recent years, especially in the past
five years. The methods of wastewater treatment by various DBD systems have developed
rapidly, and the scientific research achievements have been quite abundant. The DBD
system is expected to be an important alternative to traditional chemical process.
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However, there are also some problems when using a separate DBD system to treat
wastewater, such as high energy consumption, poor energy utilization and low mineraliza-
tion. Therefore, the DBD system needs to cooperate with other catalytic methods to degrade
organic wastewater [40]. Figure 4 shows the proportion of literature sources related to
different DBD co-catalytic methods in CNKI and WOS. These typical DBD synergistic
catalysis methods are mainly expounded below.
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3. DBD Coupled with Catalysis
3.1. DBD Coupled with Photocatalysis

Photocatalysis belongs to advanced oxidation technology. Common photocatalysts
include TiO2, ZnO, CdS and other semiconductor materials [41]. Among them, TiO2 is
widely used due to its good catalytic effect, no secondary pollution, non-toxicity and low
cost [42]. The action mechanism of TiO2 is as follows: when it is irradiated by light with
energy exceeding its band gap width, electrons will be excited from the valence band to the
conduction band, thus forming a highly reductive electron (e−) in the conduction band,
and at the same time producing a highly oxidizing hole (h+) in the valence band [43]. The
h+ can react with H2O and OH− to produce ·OH with stronger oxidation; e− can react with
O2 to generate ·O2

−, and further generate H2O2. The main reaction equation is shown in
Equations (1)–(6) [44,45]:

TiO2 + hv→ TiO2 + e− + h+ (1)

h+ + H2O→ ·OH + H+ (2)

h+ + OH− → ·OH (3)

e− + O2→ ·O2
− (4)

·O2
− + H+→ HO2· (5)

2HO2· → H2O2 + O2 (6)

Aiming at the problem that most of the UV light generated during DBD plasma
discharge does not participate in the degradation process of pollutants [46], DBD plasma
can be coupled to a photocatalyst to improve the utilization rate of UV light. Moreover,
the e− and h+ formed by the photocatalyst act on H2O and O2, respectively, to form strong
oxidizing free radicals ·OH and ·O2

−, which further accelerate the process of oxidation
and decomposition of organic pollutants. The degradation mechanism of a DBD system
combined with a typical photocatalyst TiO2 is shown in Figure 5 [47]:
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Figure 5. Mechanism of DBD coupled with TiO2 for the degradation of organic pollutants.

Table 1 summarizes the research of some domestic and foreign scholars using a DBD
system in collaboration with a photocatalyst to degrade organic pollutants in water [48–54].
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It can be found that the final removal rate of target pollutants can reach almost 80.0–90.0%
when TiO2 is widely used as the photocatalyst. In addition, the shock wave generated by
the DBD system during the discharge process can clean the surface of the photocatalyst
and increase the active sites on the surface of the photocatalyst, thus enhancing the cat-
alytic degradation efficiency. However, the dosage of the photocatalyst should not be too
much. Excess photocatalyst would increase the turbidity of solution, reduce the ability
of photocatalyst to absorb ultraviolet light, and eventually reduce the degradation rate of
the pollutants.

Table 1. Energy efficiency and synergetic factor.

Researchers Target Pollutant Photocatalyst Experimental Conditions Degradation Rate Ref.

Tijani et al. 2-NP load type of TiO2

Discharge voltage: 8.0 kV; Air flow rate:
3.0 L/min; 2-NP concentration: 10.0 PPM;

Time: 60.0 min
77.5% [48]

Li et al. 2,4-dichlorophenol TiO2

Discharge voltage: 75.0 V;
2,4-dichlorophenol concentration:

50.0 mg/L; pH: 5.3; TiO2 supplemental
amount: 10%; Time: 120.0 min

89.6% [49]

Li et al. Clothianidin rGO/TiO2

Applied power: 200 W; Clothianidin
concentration: 0.1 g/L; pH: 3.5; Electrical
conductivity: 150.0 S/cm; Time: 120.0 min

98.9% [50]

Tao et al. Methyl orange
(MO) ZnCuFeCr

Input voltage:30.9 kV; MO concentration:
20.0 mg/L; ZnCuFeCr dosage: 1.0 g/L;

Time: 42.0 min
96.8% [51]

Zheng et al. MO Ce/Mo Input voltage: 3.6 kV; MO concentration:
50.0 mg/L; Time: 18.0 min 80.0% [52]

Tao et al. MO Modified
NiAlCe-LDH

Input voltage: 70.0 V; MO concentration:
80.0 mg/L; Modified NiAlCe-LDH dosage:

1.0 g/L; Time: 36.0 min
100.0% [53]

Liu et al. Acid orange
7(AO7) g-C3N4/TiO2

Input power: 20.0 W; AO7 concentration:
5.0 mg/L; Air flow rate: 52.0 L/h; pH: 10.0;
Catalyst dosage: 0.5 g/L; Time: 10.0 min

100.0% [54]

Different photocatalysts have different catalytic mechanisms and degradation effects
on pollutants in different pH solutions. Under the optimum acid–base conditions, the
degradation rate of DBD synergetic photocatalysis is the highest. Li et al. [49] also made
the same finding in their study on the degradation of clothianidin by DBD plasma in
collaboration with rGO-TiO2: the reactions of H2O2 at different acidity and alkalinity were
different. H2O2 was more likely to be converted into ·OH under acidic conditions, and more
likely to be converted into HO2· with less oxidizing than ·OH under alkaline conditions.
Therefore, acidic conditions are more conducive to pollutant degradation.

3.2. DBD Coupled with Adsorption Catalysis

The adsorption method refers to the method of adding adsorbent with a dense porous
structure into wastewater to separate and enrich pollutants through physical or chemical
action [55]. The adsorption method has the advantages of simple operation and low
investment cost. The dense porous structure and huge specific surface area of the adsorbent
enable it to have strong adsorption capacity [11]. In addition, the active groups on the
adsorbent surface can also form chemical bonds with the adsorbate to selectively adsorb
organic pollutants in water [56]. At present, the commonly used adsorbents include ion
exchange resin [57], activated carbon (AC) [58] and zeolite molecular sieves [59]. AC is an
adsorbent with extremely rich pores. Its surface has oxygenated functional groups that can
adsorb organic pollutants in water. It mainly relies on electrostatic force and ion exchange
to adsorb pollutants [60].

However, adsorption saturation exists in the adsorbent, and the effect of treating
organic matter in water will be greatly reduced after adsorption saturation [61]. When
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a single DBD system is used to treat low-concentration organic wastewater, the strong
oxidizing groups generated by DBD are difficult to react directly with organic substances in
water, resulting in a poor treatment effect. Therefore, the DBD system can be combined with
the adsorption method. Firstly, the adsorbent adsorbed organic pollutants in wastewater
on its surface, and the high-energy electrons, reactive free radicals, and various physical
effects of the DBD system rapidly degraded the adsorbed organic pollutants. Secondly,
DBD degraded the pollutants adsorbed between the pores of the adsorbent and released the
adsorption sites on the adsorbent, so that the adsorbent recovered the adsorption function
and the adsorbent was regenerated [62]. Figure 6 shows the mechanism diagram of the
DBD coupling with the typical adsorption catalyst (AC).
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Table 2 summarizes the studies of some scholars on the degradation of organic pollu-
tants in water by using a DBD system in coordination with adsorption catalyst [63–68]. It
can be found that AC is the main adsorbent. In order to improve the adsorption capacity of
AC, the AC was improved, such as activated carbon fiber (ACFs), granular activated carbon
(GAC) and loaded activated carbon. When the DBD system cooperates with the AC for
adsorption and catalysis, the AC plays two roles. One is adsorption, which adsorbs organic
pollutants onto its surface, and the DBD system reprocesses. The second is catalysis; the
DBD system generates O3 during discharge, and the AC can react with O3 to form ·OH.
The reaction process is as follows (as Equations (7)–(13)) [63,66]:

O3 + H-AC-H→ AC-O + H2O2 (7)

O3 + AC-OH→ ·O2-AC +·OH (8)

O3-AC→ O2 + ·O-AC (9)

O3 + ·O-AC→ ·O2 + O + AC (10)

AC + M→ AC···M (11)

AC· · ·M + ·OH→ AC + Intermediate products (12)

Intermediate products + ·OH→ CO2 + H2O (13)
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Table 2. Summary of DBD technologies with adsorption for the organic wastewater removal.

Researchers Target Pollutant Adsorbent Experimental Conditions Degradation Rate Ref.

Gushchin et al. 2,4-dichlorophenol
(2,4-DCP) diatomite Discharge power: 1.8 W; Time: 2.5 s ~92.0% [63]

Sang et al. N, N-dimethylformamide
(DMF) Mn-AC

Discharge power: 16.2 W;
DMF concentration: 100.0 mg/L;

pH: 11.4; Mn-AC dosage: 1.0 g/L; Time: 40.0 min
82.2% [64]

Gong et al. Levofloxacin
(LFX) Ag3PO4/ACFs Discharge voltage: 10.0 kV;

LFX concentration: 20.0 mg/L; Time: 18.0 min 93.0% [65]

Lu et al. Pentachlorophenol (PCP) GAC
Discharge voltage: 23.0 kV;

Concentration of PCP: 2000.0 mg/L;
Air flow: 2.0 L/min; Time: 2.0 h

65.0% [66]

Qu et al. PCP GAC
Discharge voltage: 20.4 kV; Frequency: 200.0 Hz;
PCP concentration: 2000.0 mg/L; Oxygen flow:

2.0 L/min; Time: 60.0 min
67.0% [67]

Tang et al. Phenol GAC Discharge voltage: 21.0 kV; Air flow: 0.45 m3/h;
Time: 60.0 min

58.0% [68]

The DBD system can regenerate the AC to a certain extent, but the average pore diam-
eter of the AC after DBD treatment is larger than that of the original AC, and the adsorption
capacity of the reactivated carbon is not as good as that of the original state [67,68]. The
active groups on the surface of the adsorbent oxidized, which resulted in the expansion of
the original pores or the generation of new pores. The physical and chemical effects of the
DBD system made the pores collapse. In addition, part of the organic pollutants that were
not degraded were adsorbed between pores, which caused pore blockage.

3.3. DBD Coupled with Fenton Oxidation Catalysis

The principle of the Fenton oxidation process is that Fe2+ and H2O2 react to produce
highly oxidizing ·OH (as Equation (14)), which is suitable for the treatment of organic
wastewater that is difficult to be biodegraded [69,70].

Fe2+ + H2O2 → Fe3+ + OH− + ·OH (14)

Fe2+ + ·OH→ Fe3+ + OH− (15)

Fe3+ + H2O2 → Fe2+ + HO2· + H+ (16)

Fe3+ + UV + H2O→ Fe2+ + ·OH+ H+ (17)

The Fenton oxidation process has strong oxidation capacity and a fast reaction, and can
effectively treat organic wastewater. However, there are still some problems when Fenton
oxidation is used alone. First of all, the utilization rate of H2O2 is not high [71], so a large
amount of H2O2 is needed to maintain the continuation of the reaction, which leads to a
large increase in the cost of wastewater treatment. Secondly, a certain concentration of Fe2+

is conducive to the degradation of pollutants, while excessive Fe2+ will react with ·OH (as
Equation (15)), thus reducing the concentration of ·OH in water and the degradation rate
of target pollutants. Although Fe3+ can be converted to Fe2+ under certain conditions, the
addition of Fe2+ and DBD system is usually selected to form a co-catalytic condition. The
reason is that a large amount of H2O2 is consumed during the conversion of Fe3+ to Fe2+,
which greatly reduces the content of H2O2 produced by the DBD system and thus reduces
the content of ·OH generated by the reaction with Fe2+. The specific reaction equation
is shown in Equation (16) [70]. In order to improve the treatment of organic pollutants
in water by the Fenton oxidation process, the photo-Fenton method [72], electro-Fenton
method [73], ultrasound-Fenton method [74], etc., were proposed.

The DBD system will produce H2O2 in the process of wastewater treatment, so the
DBD system can be used to cooperate with the Fenton oxidation method to degrade organic
pollutants, improve the utilization rate of H2O2 in the DBD system, and reduce the cost of
adding H2O2. In addition, the DBD system will generate ultraviolet light in the reaction
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process, and the Fenton oxidation method can combine with ultraviolet light [75] to generate
more ·OH. Fe3+ can be reduced under the action of ultraviolet light to regenerate Fe2+ and
improve the recycling efficiency of Fe2+(as Equation (17)) [76].

Table 3 summarizes the research of domestic and foreign scholars using DBD system
and Fenton oxidation process to degrade organic pollutants [77–84]. The mechanism of
DBD system in collaboration with Fenton oxidation catalysis is shown in Figure 7.

Table 3. Summary of DBD technologies with Fenton oxidation for organic wastewater removal.

Researchers Target
Pollutant Experimental Conditions Fe2 + Add

Quantity
Degradation

Rate
Main Active
Substance Ref.

Tao et al. MO
External applied voltage: 18.0 kV;

MO concentration: 50.0 mg/L;
pH: 3.0; Time: 40.0 min

120 mg/L 85.0% ·OH; H2O2 [77]

Reddy et al. Methylene
blue (MB)

Discharge voltage: 16.0 kV;
MB concentration: 100.0 mg/L;

Time: 25.0 min
60 mg/L 98.0% ·OH; HO2· [78]

Aziz et al. 2,4-D;
2,4-DCP

Input power: 150.0 W;
2,4-D and 2,4-DCP concentration:

100.0 mg/L; Time: 10.0 min
10 mg/L 2,4-D: 99.0%;

2,4-DCP: 95.0% ·OH [79]

Feng et al. Dailon
Input power: 120.0 W;

Dailon concentration: 23.0 mg/L;
PH: 6.2; Time: 60.0 s

30 mg/L 98.0% ·OH [80]

Tao et al. MO

Discharge voltage: 7.5 kV;
Discharge power: 117.5 W;

MO concentration: 100.0 mg/L;
H2O2:0.6ml; Time: 13.5 min

1.0 mg/L 99.9% ·OH; h+; ·O2
− [81]

Lu et al. Orange G
(OG)

Input voltage: 70.0 V;
OG concentration: 100.0 mg/L;

The optimum pH: 2.98;
Time: 10.0 min

0.1 mmol/L 93.6% ·OH [82]

Xu et al. Norfloxacin
(NOR)

Discharge power: 60.0 W;
NOR concentration: 10.0 mg/L;

Time: 15.0 min
10 mg/L 98.0% ·OH [83]

Tao et al. MO MO concentration: 200.0 mg/L;
Time: 6.0 min - 99.2% ·OH; h+; ·O2

− [84]
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Feng et al. [80] added Fe2+ to degrade Dailon in a DBD system, and found that when
Fe2+ was added within 10.0–30.0 mg/L, the degradation rate of Dailon increased with
the increase in Fe2+ concentration, while the degradation rate decreased when Fe2+ was
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added at a high concentration. In addition, the 30.0 mg/L Fe2+ degradation rate was 30.0%
higher than 120.0 mg/L Fe2+. Lu et al. [82] studied the degradation of orange G by DBD
system in collaboration with Fe2+. After 10.0 min of treatment under the same experimental
conditions, the Fe2+ concentration was 0.05 mM, 0.1 mM, 0.3 mM, 0.5 mM and 0.7 mM,
respectively. The corresponding degradation rates were 83.3%, 93.6%, 94.1%, 96.7% and
94.1%, respectively, while the degradation rates were only 56.7% without Fe2+. These
phenomena are similar to the process in Equation (15).

3.4. DBD Coupled with Persulfate Oxidation Catalysis

Persulfate (PS) oxidation is an advanced oxidation technology, which mainly relies on
the strong oxidizing substance sulfate radical (SO4

−·) to degrade organic pollutants in wa-
ter [85]. PS is divided into peroxymonosulfate (PMS) and peroxydisulfate (PDS) [86]. The
oxidation capacity of persulfate ion (S2O8

2−) is not significant at room temperature, but the
oxidation–reduction potential of SO4

−· (E0 = 2.6–3.1V) produced after activation is equiva-
lent to ·OH (E0 = 2.8V), which can degrade most organic pollutants in water [87,88]. The
activation modes of PS mainly include light [89], electricity [90], heat [91], transition metal
activation [92], etc. Their main reaction equations are shown in Equations (18)–(21) [93]:

S2O8
2− + hv→ 2SO4

−· (18)

S2O8
2− +e− → SO4

2− + SO4
−· (19)

S2O8
2− + heat→ 2SO4

−· (20)

S2O8
2− + Men+ → O4

−· + SO4
2− + Men+1 (21)

The DBD system can produce high-energy electrons, heat and ultraviolet radiation
during discharge, so it can be used to activate PS. At the same time, some reactive groups
such as ·O2

− produced by the DBD system can also play the same role. The reactive free
radicals SO4

−· and ·OH generated in the process of co-catalysis oxidize the pollutants at
the same time to further improve the degradation rate and energy efficiency. The specific
activation principle is shown in Equations (22)–(29) [94]. SO4

−· can be transformed into
·OH under certain conditions, and its equations are as Equations (30) and (31) [94–96].

S2O8
2− + plasma→ 2SO4

−· (22)

HSO5
− + plasma→ SO4

−·+·OH (23)

HOOSO3
− + e− → SO4

2− +·OH (24)

HOOSO3
− + e− → SO4

−· + ·OH (25)

-O3SO-OSO3
− + e−→SO4

−· + SO4
2− (26)

HOOSO3
− +·O2

− → SO4
2− + ·OH− + O2 (27)

HOOSO3
− + ·O2

− → SO4
−· + OH− + O2 (28)

-O3SO-OSO3
− + ·O2

− → SO4
−· + SO4

2− + O2 (29)

All pH conditions: SO4
−· + H2O→ SO4

2− + ·OH + H+ (30)

Alkaline pH condition: SO4
−· + OH− → SO4

2− + ·OH (31)

The mechanism diagram of DBD system cooperating with PS oxidation catalysis is
shown in Figure 8. Table 4 shows the research of different scholars on the treatment of
organic pollutants in water with DBD system and PS [97–104]. PS has no catalytic activity
in the degradation of organic pollutants without activation. Wu et al. [99] used DBD
system plasma activation potassium persulfate to degrade tetracycline (TC), and found that
after 18.0 min treatment, the degradation rate of TC in the collaborative catalytic system
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increased by 45.5% compared with the single DBD system. This indicates that there is a
good synergistic catalytic interaction between the DBD system and PS.
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Table 4. Summary of DBD technologies with persulfate oxidation for the organic wastewater removal.

Researchers Target
Pollutant

Persulfate
Type

Experimental
Conditions Optimal pH Degradation

Rate
Main Active
Substance Ref.

Shang et al. AO7 Potassium
persulfate

Discharge voltage: 17.0 kV;
Discharge power: 3.6 W;

AO7 concentration: 5.0 mg/L;
PS and AO7 add mole ratio: 100/1;

Time: 50.0 min

pH = 2.6 95.0% H2O2;
HO2·;·OH [97]

Chen et al. Acid Orange II
(AO II)

Sodium
persulfate

Discharge voltage: 16.0 kV;
AO II concentration: 20.0 mg/L;

Discharge time: 28.0 min;
PS and AO II add mole

ratio: 200/1

pH = 5.4 87.2% SO4
−·;·OH [98]

Wu et al. TC
Potassium

peroxodisul-
phate

Discharge voltage: 18.0 kV;
TC concentration: 80.0 mg/L;

PDS dosage: 120.0 mg
pH = 8.3 96.8% SO4

−·;·OH [99]

Wang et al. Sulfamethoxazole
(SMZ)

Sodium
persulfate

Discharge voltage: 180.0 V;
SMX concentration: 50.0 mg/L;
PS and SMX mass ratio: 40/1;

Time: 30.0 min

pH = 10.3 93.4% ·O2
−;

SO4
−·;·OH [100]

Wu et al. Benzotriazole
(BTA)

Sodium
persulfate

Discharge voltage: 15.0 kV;
BTA concentration: 10.0 mg/L;

Mass ratio of PMS and BTA: 30/1;
Time: 20.0 min

pH = 3.2 97.0% O3;·OH [101]

Tang et al. TC Potassium
persulfate

Discharge voltage: 7.0 kV;
TC concentration: 40.0 mg/L;
PS and TC mole ratio: 20/1;

Time: 15.0 min

pH = 10.0 88.2% SO4
−·;·OH [102]

Liu et al. Cu-EDTA Sodium
persulfate

Discharge voltage: 7.0 kV;
Cu-EDTA concentration:

0.5 mmol/L;
PS concentration: 2.0 mmol/L;

Time: 20.0 min

pH = 5.0 100.0% SO4
−·;·OH [103]

Wang et al. Perfluorooctane
acid (PFOA)

Potassium
persulfate

Discharge voltage: 18.0 kV;
PFOA concentration: 5.0 mg/L;
PMS concentration: 445.0 mg/L;

Time: 120.0 min

- 81.0% SO4
−·;·OH [104]
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As can be seen from Table 4, under different pH conditions, the active free radicals
playing a leading role were different, and the degradation rates of various pollutants
were also different. Shang et al. [97] used a DBD system in coordination with potassium
persulfate to degrade TC, and the degradation rate at pH 2.6 was nearly 30.0% higher than
that at pH 10.8. The reason was that acidic conditions are more conducive to the existence
of SO4

−·, while alkaline conditions instead promote the transformation of SO4
−· to ·OH.

In the DBD system co-catalyzed by PS, ·OH is the main active substance under acidic
conditions, while SO4

−· and ·OH usually play the main catalytic role under alkaline
conditions. It may be attributed to the fact that some substances and phenomena produced
by DBD system discharge under acidic conditions may inhibit the activity of SO4

−·. With
the increase in pH, SO4

−· in the solution gradually changes into ·OH, and with the removal
of SO4

−· activity inhibition, SO4
−· and ·OH become the main active groups for catalytic

degradation of organic pollutants when the alkalinity is not too strong. However, the
mechanism of synergistic catalysis of DBD system and PS oxidation under different acid–
base conditions is more complex, which requires more in-depth research.

3.5. DBD Coupled with Composite Catalysis

At present, besides the DBD system cooperating with a single catalyst, there are DBD
systems which cooperate with composite catalysis, such as a DBD system cooperating with
photocatalysis and adsorption, a DBD system cooperating with photocatalysis and Fenton
oxidation, a DBD system cooperating with Fenton oxidation and PS oxidation, etc. Table 5
shows the research of some scholars using DBD system collaborative composite technology
to treat organic pollutants in water [105–112]. It can be seen that the efficiency of the DBD
system synergistic composite catalyst is higher than that of only cooperating with a single
catalyst in the degradation of organic pollutants in water.

Table 5. Summary of DBD technologies with composite technology for organic wastewater removal.

Researchers Target
Pollutant

Compound
Catalyst Experimental Conditions Degradation Rate of

Composite Catalyst
Degradation Rate of

Single DBD Ref.

Wang et al. TC Mn/γ-Al2O3
Discharge power: 1.3 W;

Time: 5.0 min 99.3% 69.7% [105]

Ma et al. Phenol TiO2/CeO2

Discharge voltage: 45.0 V;
Discharge power: 21.9W;

Phenol concentration: 10.0 mg/L;
Time: 10.0 min

97.1% 43.1% [106]

Tang et al. Phenol TiO2/GAC

Discharge voltage: 30.0 kV;
Phenol concentration: 500.0 mg/L;

Oxygen flow rate: 1.0 L/min;
Time: 180.0 min

88.0% - [107]

Wang et al. Triclocarban
(TCC) TiO2/ACFs

Discharge power: 38.0 W;
TCC concentration:10.0 mg/L;

Time: 30.0 min

0.33 mg·L−1·
min−1

0.23 mg·L−1·
min−1 [108]

Wang et al. Methylbenzene TiO2/BaTiO3
Discharge power: 20.0 W;

Time: 24.0 min 88.3% 59.1% [109]

Wang et al. MO TiO2/Fe3O4

Input voltage: 13.0 kV;
TiO2/Fe3O4 concentration:
100.0 mg/L; Time: 30.0 min

88.0% - [110]

Shang et al. P-nitrophenol
(PNP) PS/Fe2+ Discharge power: 17.0 kW;

PH: 4.8–6.3; Time: 50.0 min 81.1% 34.8% [111]

Deng et al. Diclofenac
(DCF)

Nano
Fe0/CeO2

Discharge voltage: 12.0 kV;
DCF concentration:
10.0 mg/L; PH: 7.0;

Time: 10.0 min

96.4% 45.8% [112]

As can be seen from Table 5, the DBD system often worked with photocatalysis and
adsorption technology to deal with organic pollutants in water. The purpose was to solve
the problem that powdered photocatalysts (such as TiO2) were difficult to separate and
recover due to agglomeration in water. In the process of DBD treatment, the combination
of TiO2 and activated carbon was not only conducive to the recycling after the end of
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the experiment, but also the activated carbon could enrich the organic pollutants in the
water in its pore interior or surface. At the same time, it also provided convenience for
TiO2 to treat organic pollutants and increased the degradation rate of pollutants. The DBD
system could directly act on the active part of TiO2 and activated carbon binding system
to accelerate the generation of more active groups (such as ·OH and H2O2). In addition,
the strong electric field generated by the DBD system and O3 and H2O2 in solution can
inhibit the electron–hole pair recombination on TiO2, so as to improve the quantum yield
of the photocatalyst. Tang et al. [107] used DBD plasma combined with TiO2-GAC for the
catalytic degradation of phenol; the degradation rate of the synergic composite catalyst
increased by 20.0% compared with that of the synergic single catalyst.

The advantage of DBD plasma combined with photocatalysis and Fenton oxidation to
treat organic pollutants in water is that it can make full use of UV light and H2O2 generated
by DBD plasma. Wang et al. [110] studied the degradation of MO and found that using a
DBD system in coordination with TiO2-Fe3O4 had a better effect than using a single DBD
system in coordination with TiO2 and a single DBD system in coordination with Fe3O4,
and the degradation rate of MO could reach 88.0% within 30min. Fe3+ could be used as an
electron acceptor to capture electrons generated by TiO2 surface excitation and reduced
to produce Fe2+. At the same time, the recombination of electron and hole pairs in TiO2
photocatalyst was inhibited, and Fe2+ added as the electron donor made ·OH compete
with the target pollutant and consumed the content of the active group ·OH in the solution.
The degradation mechanism of the degradation of DCF by the DBD system-Fe0-CeO2
system [112] is shown in Figure 9.
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Figure 9. Mechanism of the degradation of DCF by DBD system-Fe0-CeO2 system [112].

DBD system synergistic PS and Fenton oxidation aims to use Fe2+ to enhance PS
activation [113]. The combined action improves the number of active groups in the solution,
which can not only improve the degradation rate, but also reduce the content of Fe2+, thus
reducing the generation of iron sludge. Shang et al. [111] added PS-Fe2+ in the co-catalytic
system of the DBD system and improved the degradation rate by 17.5% compared with
only adding PS. Although Fenton oxidation is suitable for acidic conditions, and Fe2+ will
produce precipitation under alkaline conditions, this experiment is more conducive to the
degradation of nitrophenol under alkaline conditions. Due to the presence of O3 and SO4

−·,
its reaction rate constant is larger than that of precipitation, weakening the influence of the
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acid and base on Fenton oxidation and obtaining more ·OH. The specific reactions are as
Equations (32)–(35) follows [111]:

Fe2+ + H2O2 → Fe3+ + ·OH + OH− (32)

Fe2+ + S2O8
2− → Fe3+ + SO4

−· + SO4
2− (33)

OH− + O3 → O−· + ·OH (34)

SO4
−· + OH− →SO4

2− + ·OH (35)

4. The Factors of DBD Coupled with Catalysis for Degradation of Wastewater

Figure 10a [64] shows the effect of manganese (Mn)-AC dosage on the degradation
rate of pollutant (DMF). It can be seen that Mn-AC promoted the degradation of DMF in the
DBD system, and with the increase in the dosage, the degradation of DMF first increased
and then decreased. When a small amount of catalyst was added (0.5 g/L), there were
insufficient catalytic active sites in the reaction system, resulting in a low DMF removal
rate (71.2%). When the dosage of Mn-AC was 1.0 g/L and 1.5 g/L, the DMF removal
rate increased to 82.2% and 79.4%, respectively. The results showed that more Mn-AC
was involved in the reaction, thus providing more surface-active sites. Therefore, more
H2O2 and O3 are decomposed to form ·OH, which promotes the oxidative removal of
DMF. However, too much catalyst will affect the probability of active substances’ collision,
resulting in a waste of resources.
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Figure 10b [102] shows the influence of PS addition amount and peak voltage on TC
decomposition in a DBD system. The increase in peak voltage and PS can enhance TC
degradation in water. Without adding PS, the removal rate of TC was only 26.1% when
DBD was treated for 15.0 min at the peak voltage of 5.0 kV, while the removal rate of TC
was increased to 82.6% and 84.6% at 7.0 kV and 9.0 kV, respectively. After adding PS, the
degradation rate of TC was 49.0% at the peak voltage of 5.0 kV, and increased to 87.5%
and 89.0% at 7.0 kV and 9.0 kV, respectively. After the addition of PS, some physical and
chemical actions (such as high-energy electrons, strong electric field, ultraviolet light, active
substances, etc.) in the discharge plasma can promote the production of ·SO4

− by PS, and
then generate more and more ·SO4

− and ·OH radicals. The higher the discharge voltage,
the more energy is input into the reactor, and the above physicochemical interactions
related to DBD plasma will be further enhanced. Water will excite more PS and form more
active free radicals, thus improving the degradation rate and energy efficiency.

The effect of initial pH on TC removal is shown in Figure 10c [102]. At pH = 5.3, 7.1 and
10.0, the TC removal rates reached 87.5%, 86.1% and 88.2% after 15 min of DBD treatment,
respectively. However, the degradation rate of TC in neutral and alkaline conditions was
faster than that in acidic medium. Under acidic conditions, the dominant active species
is O3. As the pH increases, O3 will rapidly decompose to ·OH. However, when the pH
range is greater than 8.5, OH− and H2O will be oxidized by the SO4

−· radical to form ·OH.
Therefore, with the increase in pH value, the activation of PS and the oxidation capacity of
the synergistic system can be improved simultaneously, thus promoting the degradation
rate of TC. In addition, the degradation rate of TC was almost the same under neutral and
alkaline conditions, indicating that the synergistic system could effectively remove TC in a
wide pH range.

Figure 10d [47] shows the effect of initial concentration on the degradation rate of
pollutant (caffeine). Figure 10d shows that the degradation rate of caffeine is directly
related to the initial concentration. When the initial concentration of pollutants decreased
from 100.0 mg/L to 25.0 mg/L, the degradation rate of caffeine in the DBD reactor alone
increased from 39.0% to 61.0%, and the degradation rate of caffeine in the DBD-goethite
system increased from 91.0% to 99.0%. An initial increase in caffeine concentration means
that more caffeine molecules and its intermediates were present in the solution, while the
number of reactive active species produced in the reaction system was constant, which led
to the intensive competition of active species and a decrease in degradation rate.

5. The Process of DBD Coupled with Catalysis to Degrade Organic Pollutants

The target objects of the above studies are almost cyclic organics, and the DBD system
can effectively degrade these cyclic organics. The degradation intermediates of several
typical pollutants were detected by HPLC-MS [48,80,102], and their possible degradation
paths are shown in Figure 11.

As can be seen from Figure 11, the hydroxylation reaction, carboxylation reaction and
ring opening reaction are generally experienced in the reaction process. The active group
mainly attacks C-C, C-H, C=O, C-O and O-H bonds on the organic matter and causes them
to break and split into organics with smaller molecular weight. In addition, due to the
existence of the carboxylation reaction, there will be organic acids in the intermediate by-
products, such as oxalic acid, acetic acid, formic acid, etc. During the degradation process,
pollutants are first transformed into small molecular organic matter, among which some
small molecular organic matter can be decomposed into inorganic molecules and ions such
as CO2, H2O, NH4

+, NO3
−, SO4

2−, Cl−, etc. However, there are still some intermediate
by-products that are difficult to be degraded, resulting in the low degree of mineralization
of pollutants. In the degradation of dye pollutants, the active substances produced by the
DBD system first destroy the chromophore groups, such as azo bonds, and then attack the
ring structure, and gradually degrade to small molecular organic matter.
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6. Energy Efficiency of DBD Coupled with Catalysis to Degrade Organic Pollutants

The energy efficiency of organic matter degradation refers to the quality of degradable
organic matter per unit of energy consumption. The energy efficiency of a DBD synergistic
catalytic system is higher than that of a single DBD system. Substances generated by a
DBD system that cannot directly act on organic pollutants or have a poor effect on organic
pollutants cannot be fully utilized. Therefore, catalysts are added in the collaborative
catalytic system to make full use of these substances and convert them into free radicals
that can efficiently degrade pollutants, such as ·OH, in order to enhance the degradation
effect of organic pollutants in water and improve the energy efficiency.

Table 6 shows the energy efficiency of the collaborative treatment of organic pollutants
in water by the DBD system adopted by some scholars [64,101–104,107,108,111,112]. Wu
et al. [101] studied a DBD system in coordination with PS to degrade benzotriazole. When
the input voltage increased from 11.0 kV to 13.0 kV, the energy efficiency was the highest
when the input voltage was 12.0 kV, which could reach 1.5–1.8 g/kWh, and its energy
efficiency was higher than that of a single DBD system. Wang et al. [109] carried out
an experiment of a DBD system in coordination with a TiO2-BaTiO3 catalytic system to
degrade toluene. With the increase in input power, its energy also output first reached the
maximum value and then decreased.
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Table 6. Energy efficiency of DBD technologies for organic wastewater removal in different systems.

Researchers Target
Pollutant Catalyst Initial

Concentration
Degradation

Rate
Energy Efficiency of
Single DBD System

Energy Efficiency
of Co-Catalysis Ref.

Sang et al. DMF Mn-AC 1000.0 mg/L 82.2% - 74,844.0 mg/kWh [64]

Wu et al. BTA Sodium
persulfate 10.0 mg/L 97.0% 910.0 mg/kWh 1670.0 mg/kWh [101]

Tang et al. TC Potassium
persulfate 40.0 mg/L 49.0% 23.7 mg/kJ 160,200.0 mg/kWh [102]

Wang et al. PFOA Potassium
persulfate/O3

5.0 mg/L 94.8% 72.5 mg/kWh 120.0 mg/kWh [103]

Wang et al. TC Mn/γ/Al2O3 - 99.3% - 91,700.0 mg/kWh [104]

Tang et al. Phenol TiO2/GAC 500.0 mg/L 88.0% - GAC:5760.0 mg/kWh;
TiO2-GAC:6840.0 mg/kWh [107]

Wang et al. TCC TiO2/ACFs 10.0 mg/L 84.9% 30.0 mg/kWh 45.0 mg/kWh [108]

Shang et al. PNP PS/Fe2+ 5.0 mg/L 81.1% -
Fe2+:200.0 mg/kWh;
PS:180.0 mg/kWh;

PS-Fe2+:230.0 mg/kWh
[111]

Deng et al. DCF Nano
Fe0/CeO2

10.0 mg/L 96.4% 2460.0 mg/kWh Fe0:5350.0 mg/kWh;
Fe0 -CeO2:9940.0 mg/kWh

[112]

The energy efficiency of a DBD system is mainly affected by input power and voltage.
With the increase in input power and voltage in a certain range, its energy efficiency will
also increase. This is because the increase in input power and input voltage will lead to
the increase in active substances in the DBD system’s cooperative catalytic system and the
strengthening of the effect of physical phenomena [23]. For example, the increase in ultra-
violet radiation intensity will enhance the energy efficiency of DBD system’s cooperative
photocatalytic system and the enhancement of the thermal effect will make PS more easily
activated. However, when the input power and input voltage continue to increase beyond
a certain range, local spark discharge will occur, making the DBD system discharge uneven.
In addition, excessive energy input will convert part of electric energy into heat, resulting in
an increase in the temperature of the system and the decomposition of ozone in the solution,
thus reducing the degradation efficiency and reducing the energy efficiency [101,109].

7. Summary and Prospect

DBD is widely used to deal with the degradation of organic pollutants, and the
addition of a catalyst can improve the output of active substances, thereby improving the
plasma energy utilization and organic-matter removal efficiency. However, as time goes on,
the following problems still need to be studied in depth.

(1) The mechanism of DBD plasma activating the catalyst is relatively complex. How to
use advanced means to understand the catalytic mechanism and catalytic reaction
process is the first problem to be clarified in the future.

(2) The effect of catalyst addition on the degradation process of organic compounds was
rarely reported in the past literature, which needs further exploration.

(3) DBD plasma can affect the catalyst to a certain extent. Therefore, it is imperative to
study how to reduce or avoid the damage caused by DBD plasma to the catalyst.

(4) The separation and recovery of catalysts are generally difficult. It not only consumes
a large amount of catalyst to increase the treatment cost, but also causes secondary
pollution to the environment. The subsequent goal is to study how to recover and
reuse the catalyst in DBD plasma.

(5) At present, there are few toxicity analyses related to the degradation of organic pollutants
by DBD plasma coupled with catalysts. It is uncertain whether more toxic substances
were produced during the degradation process. Therefore, some methods should be
used to characterize the toxicity changes in the process of pollutant degradation.

(6) The research on the degradation of organic pollutants by DBD plasma coupled with
catalysts are still in the laboratory stage. How to expand the reactor scale and realize
the industrial application of DBD plasma synergetic catalysis are urgent problems to
be solved.



Catalysts 2023, 13, 10 18 of 22

Author Contributions: H.G.: writing—original draft preparation; data curation. Y.S. writing—
original draft preparation; investigation; X.Y. Conceptualization, methodology; investigation. Y.W.
(Yawen Wang): investigation. Z.L.: methodology; investigation. Y.W. (Yifeng Wu): supervision,
project administration; J.R.: Writing—review and editing, investigation and visualization. All authors
have read and agreed to the published version of the manuscript.

Funding: We greatly appreciate financial support from National Natural Science Foundation of
China (No. 22006069), Natural Science Foundation of Jiangsu Province in China, (No. BK20200801),
Natural Science Foundation of the Jiangsu Higher Education Institution of China (No. 20KJB610015),
Postdoctoral Science Foundation of Jiangsu Province in China (No. 2021K592C), and Postgraduate
Research & Practice Innovation Program of Jiangsu Province (No. SJCX22_0322; SJCX21_0343).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. El-Nahhal, I.; El-Nahhal, Y. Pesticide residues in drinking water, their potential risk to human health and removal options.

J. Environ. Manag. 2021, 299, 113611. [CrossRef] [PubMed]
2. Panigrahy, N.; Priyadarshini, A.; Sahoo, M.M.; Verma, A.K.; Daverey, A.; Sahoo, N.K. A comprehensive review on eco-toxicity

and biodegradation of phenolics: Recent progress and future outlook. Environ. Technol. Innov. 2022, 27, 102423. [CrossRef]
3. Qiao, M.; Ying, G.G.; Singer, A.C.; Zhu, Y.G. Review of antibiotic resistance in China and its environment. Environ. Int. 2018, 110, 160–172.

[CrossRef] [PubMed]
4. Rania, A.T.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.X.; Fu, Y.Y.; Sun, J.Z. A critical review on

the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation
approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160.

5. Khan, M.A.; Wabaidur, S.M.; Siddiqui, M.R.; Alqadami, A.A.; Khan, A.H. Silico-manganese fumes waste encapsulated cryogenic
alginate beads for aqueous environment de-colorization. J. Clean. Prod. 2020, 244, 118867. [CrossRef]

6. Kumar, J.A.; Krithiga, T.; Sathish, S.; Renita, A.A.; Prabu, D.; Lokesh, S.; Geetha, R.; Namasivayam, S.K.R.; Sillanpaa, M. Persistent
organic pollutants in water resources: Fate, occurrence, characterization and risk analysis. Sci. Total Environ. 2022, 831, 154808.
[CrossRef]

7. Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem.
Eng. 2018, 6, 4676–4697. [CrossRef]

8. Alexandre, G.; Moura, B.A. Membrane Separation Process in Wastewater and Water Purification. Membranes 2022, 12, 259.
9. Wang, Y.; Jin, X.; Yang, S.; Wang, G.; Xu, L.; Jin, P.; Shi, X.; Shi, Y. Interactions between flocs and bubbles in the separation zone of

dissolved air flotation system. Sci. Total Environ. 2022, 761, 143222. [CrossRef]
10. Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A state-of-the-art review on wastewater treatment techniques: The

effectiveness of adsorption method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. [CrossRef]
11. Azam, M.; Wabaidur, S.M.; Khan, M.R.; Al-Resayes, S.I.; Islam, M.S. Heavy metal ions removal from aqueous solutions by treated

ajwa date pits: Kinetic, isotherm, and thermodynamic approach. Polymers 2022, 14, 914. [CrossRef] [PubMed]
12. Saravanan, A.; Kumar, P.S.; Jeevanantham, S.; Karishma, S.; Tajsabreen, B.; Yaashikaa, P.R.; Reshma, B. Effective water/wastewater

treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere
2021, 280, 130595. [CrossRef]
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