Graphene-Based Derivatives Heterostructured Catalytic Systems for Sustainable Hydrogen Energy via Overall Water Splitting
Abstract
:1. Introduction
2. Scope of the Review
3. Photocatalytic H2 Production
4. Graphene as a Photocatalyst
5. Graphene Oxide as a Photocatalyst
6. Reduce Graphene Oxide as a Photocatalyst
7. Electrochemical H2 Production
8. Graphene as Electrocatalyst
9. Graphene Oxide as Electrocatalyst
10. Reduced Graphene Oxide as Electrocatalyst
11. Photo-Electrocatalytic H2 Production
12. Graphene/GO/rGO as Photo-Electrocatalysts
13. Conclusions
14. Perspectives and Outlook
15. Advancements in Photocatalytic Hydrogen Evolution
16. Advancements in Electrocatalytic Hydrogen Evolution
17. Advancements in Photo-Electrocatalytic Hydrogen Evolution
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rezazadeh, A.A.; Avami, A.; Mashayekhi, M.; Kianbakhsh, A. Assessing the contribution of different sources in atmospheric dispersion of PM2.5 and related health impact in a region of Qazvin, Iran. Air Qual. Atmos. Health 2022, 15, 1379–1394. [Google Scholar] [CrossRef]
- Pietrosemoli, L.; Monroy, C.R. The Venezuelan energy crisis: Renewable energies in the transition towards sustainability. Renew. Sustain. Energy Rev. 2019, 105, 415–426. [Google Scholar] [CrossRef]
- Ali, S.A.; Ahmad, T. Chemical strategies in molybdenum based chalcogenides nanostructures for photocatalysis. Int. J. Hydrog. Energy 2022, 47, 29255–29283. [Google Scholar] [CrossRef]
- Ibrahim, R.L. Beyond COP26: Can income level moderate fossil fuels, carbon emissions, and human capital for healthy life expectancy in Africa? Environ. Sci. Pollut. Res. 2022, 29, 87568–87582. [Google Scholar] [CrossRef]
- Hassan, A.; Ilyas, S.Z.; Jalil, A.; Ullah, Z. Monetization of the environmental damage caused by fossil fuels. Environ. Sci. Pollut. Res. 2021, 28, 21204–21211. [Google Scholar] [CrossRef]
- IEA, Oil Demand Forecast, 2010–2026, Prepandemic and in Oil 2021, IEA, Paris. Available online: https://www.iea.org/data-and-statistics/charts/oil-demand-forecast-2010-2026-pre-pandemic-and-in-oil-2021. (accessed on 30 September 2020).
- IEA, Global Energy Review 2021, IEA, Paris. Available online: https://www.iea.org/reports/global-energy-review-2021 (accessed on 30 April 2021).
- Ulucak, R. How do environmental technologies affect green growth? Evidence from BRICS economies. Sci. Total Environ. 2020, 712, 136504. [Google Scholar]
- Smirnova, E.; Kot, S.; Kolpak, E.; Shestak, V. Governmental support and renewable energy production: A cross-country review. Energy 2021, 230, 120903. [Google Scholar] [CrossRef]
- Muneer, T.; Asif, M. Energy supply, its demand and security issues for developed and emerging economies. Renew. Sustain. Energy Rev. 2007, 11, 1388–1413. [Google Scholar]
- Roy, B.; Schaffartzik, A. Talk renewables, walk coal: The paradox of India’s energy transition. Ecol. Econ. 2021, 180, 106871. [Google Scholar] [CrossRef]
- Zheng, H.; Song, M.; Shen, Z. The evolution of renewable energy and its impact on carbon reduction in China. Energy 2021, 237, 121639. [Google Scholar] [CrossRef]
- IEA, Change in Energy Demand and Renewables Output in Electricity, Heat and Transport, 2019 to 2020, IEA, Paris. Available online: https://www.iea.org/data-and-statistics/charts/change-in-energy-demand-and-renewables-output-in-electricity-heat-and-transport-2019-to-2020 (accessed on 30 November 2020).
- Mehtab, A.; Ahmed, J.; Alshehri, S.M.; Mao, Y.; Ahmad, T. Rare earth doped metal oxide nanoparticles for photocatalysis: A perspective. Nanotechnology 2022, 33, 142001. [Google Scholar] [CrossRef]
- Yu, Z.Y.; Duan, Y.; Feng, X.Y.; Yu, X.; Gao, M.R.; Yu, S.H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100. [Google Scholar] [CrossRef]
- Mehtab, A.; Alshehri, S.M.; Ahmad, T. Photocatalytic and photoelectrocatalytic water splitting by porous g-C3N4 nanosheets for hydrogen generation. Acs Appl. Nano Mater. 2022, 5, 12656–12665. [Google Scholar] [CrossRef]
- Turner, J.A. Sustainable Hydrogen Production. Science 2004, 305, 972–974. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef]
- Xia, Z. Hydrogen evolution: Guiding principles. Nat. Energy 2016, 1, 1–2. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Abad, A.V.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef] [Green Version]
- Winter, C.J. Hydrogen energy Abundant, efficient, clean: A debate over the energy-system-of-change. Int. J. Hydrog. Energy 2009, 34, S1–S52. [Google Scholar] [CrossRef]
- Larminie, J.; Dicks, A.; McDonald, M.S. Fuel Cell Systems Explained; J. Wiley: Chichester, UK, 2003; Volume 2, pp. 207–225. [Google Scholar]
- Momirlan, M.; Veziroglu, T.N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int. J. Hydrog. Energy 2005, 30, 795–802. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen from solar energy, a clean energy carrier from a sustainable source of Energy. Int. J. Energy Res. 2020, 44, 4110–4131. [Google Scholar] [CrossRef]
- Veziroglu, T.N. Conversion to hydrogen economy. Energy Procedia 2012, 29, 654–656. [Google Scholar] [CrossRef]
- Iordache, I.; Gheorghe, A.V.; Iordache, M. Towards a hydrogen economy in Romania: Statistics, technical and scientific general aspects. Int. J. Hydrog. Energy 2013, 38, 12231–12240. [Google Scholar] [CrossRef]
- Prabhukhot, P.R.; Wagh, M.M.; Gangal, A.C. A review on solid state hydrogen storage material. Adv. Energy Power 2016, 4, 11–22. [Google Scholar]
- Sahaym, U.; Norton, M.G. Advances in the application of nanotechnology in enabling a ‘Hydrogen economy’. J. Mater. Sci. 2008, 43, 5395–5429. [Google Scholar] [CrossRef] [Green Version]
- Bossel, U.; Eliasson, B. Energy and the Hydrogen Economy. 2003. Available online: https://afdc.energy.gov/files/pdfs/hyd_economy_bossel_eliasson.pdf (accessed on 30 November 2020).
- Edwards, P.P.; Kuznetsov, V.L.; David, W.I. Hydrogen Energy. Philos. Trans. R. Soc. A. 2007, 365, 1043–1056. [Google Scholar]
- Niaz, S.; Manzoor, T.; Pandith, A.H. Hydrogen storage: Materials, methods and perspectives. Renew. Sustain. Energy Rev. 2015, 50, 457–469. [Google Scholar] [CrossRef]
- Rosen, M.A.; Koohi-Fayegh, S. The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems. Energy Ecol. Environ. 2016, 1, 10–29. [Google Scholar] [CrossRef] [Green Version]
- Bockris, J.O.M. The hydrogen economy: Its history. Int. J. Hydrog. Energy 2013, 38, 2579–2588. [Google Scholar] [CrossRef]
- Scheer, R.; Nielson, T.; Glickson, D. Hydrogen Storage “Think Tank”; Department of Energy, Office of Hydrogen, Fuel Cells and Infrastructure Technologies: Washington, DC, USA, 2003. [Google Scholar]
- IEA, The Future of Hydrogen, IEA, Paris. Available online: https://www.iea.org/reports/the-future-of-hydrogen (accessed on 30 June 2019).
- IEA, Energy Technology Perspectives 2020, IEA, Paris. Available online: https://www.iea.org/reports/energy-technology-perspectives-2020 (accessed on 30 September 2020).
- Schlesinger, H.I.; Brown, H.C.; Finholt, A.E.; Gilbreath, J.R.; Hoekstra, H.R.; Hyde, E.K. Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen 1. J. Am. Chem. Soc. 1953, 75, 215–219. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. A review on hydrogen generation from the hydrolysis of sodium borohydride. Int. J. Hydrog. Energy 2021, 46, 726–765. [Google Scholar] [CrossRef]
- Naimi, Y.; Antar, A. Hydrogen generation by water electrolysis. In Advances in Hydrogen Generation Technologies; Intech: London, UK, 2018; Volume 1. [Google Scholar]
- Mehtab, A.; Banerjee, S.; Mao, Y.; Ahmad, T. Type-II CuFe2O4/Graphitic-Carbon Nitride heterojunctions for high efficiency photocatalytic and electrocatalytic hydrogen generation. Acs Appl. Mater. Interfaces 2022, 14, 44317–44329. [Google Scholar] [CrossRef] [PubMed]
- Voziuk, O.; Tanchoux, N.; Millet, J.M.M.; Albonetti, S.; Renzo, F.D.; Cavani, F. Spinel mixed oxides for chemical-loop reforming: From solid state to potential application. Stud. Surf. Sci. Catal. 2019, 178, 281–302. [Google Scholar]
- Maeda, K.; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1, 2655–2661. [Google Scholar] [CrossRef]
- Farooq, U.; Ahmed, J.; Alshehri, S.M.; Mao, Y.; Ahmad, T. Self-Assembled interwoven nanohierarchitectures of NaNbO3and NaNb1–xTaxO3 (0.05 ≤ x≤ 0. 20): Synthesis, structural characterization, photocatalytic applications, and dielectric properties. Acs Omega 2022, 7, 16952–16967. [Google Scholar] [CrossRef]
- Ahmad, H.; Kamarudin, S.K.; Minggu, L.J.; Kassim, M. Hydrogen from photo-catalytic water splitting process: A review. Renew. Sustain. Energy Rev. 2015, 43, 599–610. [Google Scholar] [CrossRef]
- Ahmad, T.; Farooq, U.; Phul, R. Fabrication and photocatalytic applications of perovskite Materials with special emphasis on alkali-metal-based niobates and tantalates. Ind. Eng. Chem. Res. 2018, 57, 18–41. [Google Scholar] [CrossRef]
- Jang, J.; Kim, H.; Lee, J.S. Heterojunction semiconductors: A strategy to develop efficient photocatalytic materials for visible light water splitting. Catal. Today. 2012, 185, 270–277. [Google Scholar] [CrossRef]
- Khan, H.; Lone, I.H.; Lofland, S.E.; Ramanujachary, K.V.; Ahmad, T. Exploiting Multiferroicity of TbFeO3 Nanoparticles for Hydrogen Generation through Photo/Electro/Photoelectro-catalytic Water Splitting. Int. J. Hydrog. Energy 2022. [Google Scholar] [CrossRef]
- Lalitha, K.; Reddy, J.K.; Sharma, M.V.P.; Kumari, V.D.; Subrahmanyam, M. Continuous hydrogen production activity over finely dispersed Ag2O/TiO2 catalysts from methanol: Water mixtures under solar irradiation: A structure–activity correlation. Int. J. Hydrog. Energy 2010, 35, 3991–4001. [Google Scholar] [CrossRef]
- Huang, B.; Chang, F.; Wey, M. Photocatalytic properties of redox-treated Pt/TiO2 photocatalysts for H2 production from an aqueous methanol solution. Int. J. Hydrog. Energy 2010, 35, 7699–7705. [Google Scholar] [CrossRef]
- Nguyen, V.N.H.; Amal, R.; Beydoun, D. Effect of formate and methanol on photoreduction/removal of toxic cadmium ions using TiO2 semiconductor as photocatalyst. Chem. Eng. Sci. 2003, 58, 4429–4439. [Google Scholar] [CrossRef]
- Farooq, U.; Phul, R.; Alshehri, S.M.; Ahmed, J.; Ahmad, T. Electrocatalytic and enhanced photocatalytic applications of sodium niobate nanoparticles developed by citrate precursor route. Sci. Rep. 2019, 9, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Alshehri, S.M.; Ahmed, J.; Ahamad, T.; Alhokbany, N.; Arunachalam, P.; Al-Mayouf, A.M.; Ahmad, T. Synthesis, characterization, multifunctional electrochemical (OGR/ORR/SCs) and photodegradable activities of ZnWO4 nanobricks. J. Solgel Sci. Technol. 2018, 87, 137–146. [Google Scholar] [CrossRef]
- Ahmed, J.; Ahamad, T.; Alhokbany, N.; Almaswari, B.M.; Ahmad, T.; Hussain, A.; Al-Farraj, E.S.S.; Alshehri, S.M. Molten salts derived copper tungstate nanoparticles as bifunctional electro-catalysts for electrolysis of water and supercapacitor applications. Chemelectrochem 2018, 5, 3938–3945. [Google Scholar] [CrossRef]
- Wang, S.; Lu, A.; Zhong, C. Hydrogen production from water electrolysis: Role of catalysts. Nano Converg. 2021, 8, 1–23. [Google Scholar] [CrossRef]
- Ding, C.; Shi, J.; Wang, Z.; Li, C. Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces. Acs Catal. 2017, 7, 675–688. [Google Scholar] [CrossRef]
- Naaz, F.; Sharma, A.; Shahazad, M.; Ahmad, T. Hydrothermally Derived Hierarchical CuO Nanoflowers as an Efficient Photocatalyst and Electrocatalyst for Hydrogen Evolution. ChemistrySelect 2022, 7, e202201800. [Google Scholar] [CrossRef]
- Alekseeva, O.K.; Pushkareva, I.V.; Pushkarev, A.S.; Fateev, V.N. Graphene and Graphene-Like Materials for Hydrogen Energy. Nanotechnol. Russ. 2020, 15, 273–300. [Google Scholar] [CrossRef]
- Xiang, Q.; Yu, J. Graphene-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 2013, 4, 753–759. [Google Scholar] [CrossRef]
- Tareen, A.K.; Khan, K.; Iqbal, M.; Zhang, Y.; Long, J.; Nazeer, F.; Mahmood, A.; Mahmood, N.; Shi, Z.; Ma, C.; et al. Recent advances in novel graphene: New horizons in renewable energy storage technologies. J. Mater. Chem. C 2022, 10, 11472–11531. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. Acs Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Torres, T. Graphene chemistry. Chem. Soc. Rev. 2017, 46, 4385–4386. [Google Scholar] [CrossRef] [PubMed]
- Dasari, B.L.; Nouri, J.M.; Brabazon, D.; Naher, S. Graphene and derivatives–Synthesis techniques, properties and their energy applications. Energy 2017, 140, 766–778. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.A.; Ahmad, T. Nano Science & Technology; I.K. International Pvt. Ltd.: New Delhi, India, 2021. [Google Scholar]
- Zhang, L.H.; Shi, Y.; Wang, Y.; Shiju, N.R. Nanocarbon catalysts: Recent understanding regarding the active sites. Adv. Sci. 2020, 7, 1902126. [Google Scholar] [CrossRef]
- Jain, S.K.; Farooq, U.; Jamal, F.; Kalam, A.; Ahmad, T. Hydrothermal assisted synthesis and structural characterization of Zn doped SnO2 nanoparticles for catalytic reduction of 4-nitrophenol. Mater. Today Proc. 2021, 36, 717–723. [Google Scholar] [CrossRef]
- Naaz, F.; Shamsi, A.; Jain, S.K.; Kalam, A.; Ahmad, T. Tin Oxide Nanocatalyst Assisted Transformation of p-Nitrophenol to p-Aminophenol. Mater. Today Proc. 2021, 36, 708–716. [Google Scholar] [CrossRef]
- Song, Y.; Zou, W.; Lu, Q.; Lin, L.; Liu, Z. Graphene transfer: Paving the road for applications of chemical vapor deposition graphene. Small 2021, 17, 2007600. [Google Scholar] [CrossRef]
- Ahmad, T.; Ganguli, A.K. Structural and dielectric characterization of nanocrystalline (Ba,Pb)ZrO3 developed by reverse micellar synthesis. J. Am. Ceram. Soc. 2006, 89, 3140–3146. [Google Scholar] [CrossRef]
- Ahmad, T.; Ganguli, A.K. Reverse micellar route to nanocrystalline titanates (SrTiO3, Sr2TiO4, and PbTiO3): Structural aspects and dielectric properties. J. Am. Ceram. Soc. 2006, 89, 1326–1332. [Google Scholar] [CrossRef]
- Ahmad, T.; Lone, I.H.; Ubaidullah, M. Structural characterization and multiferroic properties of hexagonal nanosized YMnO3 developed by a low temperature precursor route. Rsc Adv. 2015, 5, 58065–58071. [Google Scholar] [CrossRef]
- Ubaidullah, M.; Lone, I.H.; Al-Hartomy, O.A.; Kumar, D.; Ahmad, T. Metal Organic Precursor Route for Pb-Substituted BaZrO3 Nanoceramics: Structural Characterization and Properties. Adv. Sci. Lett. 2014, 20, 1354–1359. [Google Scholar] [CrossRef]
- Diab, K.R.; El-Maghrabi, H.H.; Nada, A.A.; Youssef, A.M.; Hamdy, A.; Roualdes, S.; El-Wahab, S.A. Facile fabrication of NiTiO3/graphene nanocomposites for photocatalytic hydrogen generation. J. Photochem. Photobiol. A Chem. 2018, 365, 86–93. [Google Scholar] [CrossRef]
- Du, C.; Ao, Q.; Cao, N.; Yang, L.; Luo, W.; Chang, G. Facile synthesis of monodisperse ruthenium nanoparticles supported on graphene for hydrogen generation from hydrolysis of ammonia borane. Int. J. Hydrog. Energy 2015, 40, 6180–6187. [Google Scholar] [CrossRef]
- Aksoy, B.T.; Çoşut, B. Graphene/graphene oxide–based nanomaterials for hydrogen production and storage applications. In Nanomaterials for Hydrogen Storage Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 97–116. [Google Scholar]
- Liu, G.; Jin, W.; Xu, N. Two-dimensional-material membranes: A new family of high-performance separation membranes. Angew. Chem. Int. Ed. Engl. 2016, 55, 13384–13397. [Google Scholar] [CrossRef]
- Lin, L.C.; Grossman, J.C. Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations. Nat. Commun. 2015, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Feng, H.; Li, J. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 2012, 112, 6027–6053. [Google Scholar] [CrossRef]
- Wang, M.; Ju, P.; Li, J.; Zhao, Y.; Han, X.; Hao, Z. Facile synthesis of MoS2/g-C3N4/GO ternary heterojunction with enhanced photocatalytic activity for water splitting. Acs Sustain. Chem. Eng. 2017, 5, 7878–7886. [Google Scholar] [CrossRef]
- Khan, Z.; Chetia, T.R.; Vardhaman, A.K.; Barpuzari, D.; Sastri, C.V.; Qureshi, M. Visible light assisted photocatalytic hydrogen generation and organic dye degradation by CdS–metal oxide hybrids in presence of graphene oxide. Rsc Adv. 2012, 2, 12122–12128. [Google Scholar] [CrossRef]
- Yap, P.L.; Kabiri, S.; Auyoong, Y.L.; Tran, D.N.; Losic, D. Tuning the multifunctional surface chemistry of reduced graphene oxide via combined elemental doping and chemical modifications. Acs Omega 2019, 4, 19787–19798. [Google Scholar] [CrossRef]
- Shahdeo, D.; Roberts, A.; Abbineni, N.; Gandhi, S. Graphene based sensors. Compr. Anal. Chem. 2020, 91, 175–199. [Google Scholar]
- Zhang, C.; Lv, W.; Zhang, W.; Zheng, X.; Wu, M.B.; Wei, W.; Tao, Y.; Li, Z.; Yang, Q.H. Reduction of graphene oxide by hydrogen sulfide: A promising strategy for pollutant control and as an electrode for Li-S batteries. Adv. Energy Mater. 2014, 4, 1301565. [Google Scholar] [CrossRef]
- Park, S.; An, J.; Potts, J.R.; Velamakanni, A.; Murali, S.; Ruoff, R.S. Hydrazine-reduction of graphite- and graphene oxide. Carbon 2011, 49, 3019–3023. [Google Scholar] [CrossRef]
- Si, Y.; Samulski, E.T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Wang, G.; Yang, J.; Park, J.; Wang, B.; Liu, H.; Yao, J. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 2008, 112, 8192–8195. [Google Scholar] [CrossRef]
- Shin, H.J.; Kim, K.K.; Benayad, A.; Yoon, S.M.; Park, H.K.; Jung, I.S.; Jin, M.H.; Jeong, H.K.; Kim, J.M.; Choi, J.Y.; et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987–1992. [Google Scholar] [CrossRef]
- Park, S.; Park, G.D.; Ko, D.; Kang, Y.C.; Piao, Y. Aerosol synthesis of molybdenum diselenide–reduced graphene oxide composite with empty nanovoids and enhanced hydrogen evolution reaction performances. Chem. Eng. J. 2017, 315, 355–363. [Google Scholar] [CrossRef]
- Ha, E.; Liu, W.; Wang, L.; Man, H.; Hu, L.; Tsang, S.C.E.; Chan, C.T.; Kwok, W.; Lee, L.Y.S.; Wong, K. Cu2ZnSnS4/MoS2-reduced graphene oxide heterostructure: Nanoscale interfacial contact and enhanced photocatalytic hydrogen generation. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.K.; Pandit, N.A.; Fazil, M.; Ali, S.A.; Ahmed, J.; Alshehri, S.M.; Mao, Y.; Ahmad, T. Chemical fabrication, structural characterization and photocatalytic water splitting application of Sr-doped SnO2 nanoparticles. Nanotechnology 2022, 33, 355706. [Google Scholar] [CrossRef]
- Xiang, Q.J.; Yu, J.G.; Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 2012, 41, 782–796. [Google Scholar] [CrossRef]
- Jain, S.K.; Fazil, M.; Pandit, N.A.; Ali, S.A.; Naaz, F.; Khan, H.; Mehtab, A.; Ahmed, J.; Ahmad, T. Modified, Solvothermally Derived Cr-doped SnO2 nanostructures for enhanced photocatalytic and electrochemical water-splitting applications. Acs Omega 2022, 7, 14138–14147. [Google Scholar] [CrossRef]
- Farooq, U.; Naz, F.; Phul, R.; Pandit, N.A.; Jain, S.K.; Ahmad, T. Development of heterostructured ferroelectric SrZrO3/CdS photocatalysts with enhanced surface area and photocatalytic activity. J. Nanosci. Nanotechnol. 2020, 20, 3770–3779. [Google Scholar] [CrossRef]
- Liu, S.W.; Yu, J.G.; Cheng, B.; Jaroniec, M. Fluorinated semiconductor photocatalysts: Tunable synthesis and unique properties. Adv. Colloid Interface Sci. 2012, 173, 35–53. [Google Scholar] [CrossRef]
- Jain, S.K.; Fazil, M.; Naaz, F.; Pandit, N.A.; Ahmed, J.; Alshehri, S.M.; Mao, Y.; Ahmad, T. Silver-doped SnO2 nanostructures for photocatalytic water splitting and catalytic nitrophenol reduction. New J. Chem. 2022, 46, 2846–2857. [Google Scholar] [CrossRef]
- Liu, S.W.; Yu, J.G.; Jaroniec, M. Anatase TiO2 with dominant high-energy {001} facets: Synthesis, properties, and applications. Chem. Mater. 2011, 23, 4085–4093. [Google Scholar] [CrossRef]
- Ahmad, T.; Phul, R.; Alam, P.; Lone, I.H.; Shahazad, M.; Ahmed, J.; Ahamad, T.; Alshehri, S.M. Dielectric, optical and enhanced photocatalytic properties of CuCrO2 nanoparticles. Rsc Adv. 2017, 7, 27549–27557. [Google Scholar] [CrossRef] [Green Version]
- An, X.Q.; Yu, J.C. Graphene-based photocatalytic composites. Rsc Adv. 2011, 1, 1426–1434. [Google Scholar] [CrossRef]
- Lin, X.; Du, S.; Li, C.; Li, G.; Li, Y.; Chen, F.; Fang, P. Consciously constructing the robust NiS/g-C3N4 hybrids for enhanced photocatalytic hydrogen evolution. Catal. Lett. 2020, 150, 1898–1908. [Google Scholar] [CrossRef]
- Chen, P.; Liu, F.; Ding, H.; Chen, S.; Chen, L.; Li, Y.J.; Au, C.T.; Yin, S.F. Porous double-shell CdS@C3N4 octahedron derived by in situ supramolecular self-assembly for enhanced photocatalytic activity. Appl. Catal. B Environ. 2019, 252, 33–40. [Google Scholar] [CrossRef]
- Tang, N.; Li, Y.; Chen, F.; Han, Z. In situ fabrication of a direct Z-scheme photocatalyst by immobilizing CdS quantum dots in the channels of graphene-hybridized and supported mesoporous titanium nanocrystals for high photocatalytic performance under visible light. Rsc Adv. 2018, 8, 42233–42245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Zhang, Y.H.; Xu, Y.J. Recent progress on graphene-based photocatalysts: Current status and future perspectives. Nanoscale 2012, 4, 5792–5813. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Wang, P.; Dong, S.J. Progress in Graphene-based photoactive nanocomposites as a promising class of photocatalyst. Nanoscale 2012, 4, 5814–5825. [Google Scholar] [CrossRef] [PubMed]
- Kamat, P.V. Graphene-based nanoassemblies for energy conversion. J. Phys. Chem. Lett. 2011, 2, 242–251. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Xie, J. Graphene in photocatalysis: A review. Small 2016, 12, 6640–6696. [Google Scholar] [CrossRef]
- Suresh, R.; Mangalaraja, R.V.; Mansilla, H.D.; Santander, P.; Yáñez, J. Reduced graphene oxide-based photocatalysis. In Green Photocatalysts; Springer: Berlin, Germany, 2020; pp. 145–166. [Google Scholar]
- Tiwari, S.; Kumar, S.; Ganguli, A.K. Role of MoS2/rGO co-catalyst to enhance the activity and stability of Cu2O as photocatalyst towards photoelectrochemical water splitting. J. Photochem. Photobiol. A: Chem. 2022, 424, 113622. [Google Scholar] [CrossRef]
- Lin, J.; Pan, H.; Chen, Z.; Wang, L.; Li, Y.; Zhu, S. Graphene-based nanomaterials for solar-driven overall water splitting. Chem. Eur. J. 2022, 28, e202200722. [Google Scholar]
- Farooq, U.; Chaudhary, P.; Ingole, P.P.; Kalam, A.; Ahmad, T. Development of cuboidal KNbO3@ α-Fe2O3 hybrid nanostructures for improved photocatalytic and photoelectrocatalytic applications. Acs Omega 2020, 5, 20491–20505. [Google Scholar] [CrossRef]
- Yu, R.; Yang, Y.; Zhou, Z.; Li, X.; Gao, J.; Wang, N.; Li, J.; Liu, Y. Facile synthesis of ternary heterojunction Bi2O3/reduced graphene oxide/TiO2 composite with boosted visible-light photocatalytic activity. Sep. Purif. Technol. 2022, 299, 121712. [Google Scholar] [CrossRef]
- Xiang, Q.J.; Yu, J.G.; Jaroniec, M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4composites. J. Phys. Chem. C 2011, 115, 7355–7363. [Google Scholar] [CrossRef]
- Leary, R.; Westwood, A. Carbonaceous Nanomaterials for the Enhancement of TiO2 Photocatalysis. Carbon 2011, 49, 741–772. [Google Scholar] [CrossRef]
- Kamat, P.V. Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett. 2010, 1, 520–527. [Google Scholar] [CrossRef]
- Khalid, N.R.; Ahmed, E.; Ahmad, M.; Niaz, N.A.; Ramzan, M.; Shakil, M.; Iqbal, T.; Majid, A. Microwave-assisted synthesis of Ag–TiO2/graphene composite for hydrogen production under visible light irradiation. Ceram. Int. 2016, 42, 18257–18263. [Google Scholar] [CrossRef]
- Xia, Y.; Cheng, B.; Fan, J.; Yu, J.; Liu, G. Unraveling photoexcited charge transfer pathway and process of CdS/graphene nanoribbon composites toward visible-light photocatalytic hydrogen evolution. Small 2019, 15, 1902459. [Google Scholar] [CrossRef]
- Yu, X.; Du, R.; Li, B.; Zhang, Y.; Liu, H.; Qu, J.; An, X. Biomolecule-assisted self-assembly of CdS/MoS2/graphene hollow spheres as high-efficiency photocatalysts for hydrogen evolution without noble metals. Appl. Catal. B Environ. 2016, 182, 504–512. [Google Scholar] [CrossRef]
- Yue, Z.; Liu, A.; Zhang, C.; Huang, J.; Zhu, M.; Du, Y.; Yang, P. Noble-metal-free hetero-structural CdS/Nb2O5/N-doped-graphene ternary photocatalytic system as visible-light-driven photocatalyst for hydrogen evolution. Appl. Catal. B Environ. 2017, 201, 202–210. [Google Scholar] [CrossRef]
- Khalid, N.R.; Liaqat, M.; Tahir, M.B.; Nabi, G.; Iqbal, T.; Niaz, N.A. The role of graphene and europium on TiO2 performance for photocatalytic hydrogen evolution. Ceram. Int. 2018, 44, 546–549. [Google Scholar] [CrossRef]
- Chang, C.J.; Chu, K.W.; Hsu, M.H.; Chen, C.Y. Ni-doped ZnS decorated graphene composites with enhanced photocatalytic hydrogen-production performance. Int. J. Hydrog. Energy 2015, 40, 14498–14506. [Google Scholar] [CrossRef]
- Xiang, Q.; Cheng, F.; Lang, D. Hierarchical layered WS2/graphene-modified CdS nanorods for efficient photocatalytic hydrogen evolution. Chemsuschem 2016, 9, 996–1002. [Google Scholar] [CrossRef]
- Chang, C.J.; Lin, Y.G.; Weng, H.T.; Wei, Y.H. Photocatalytic hydrogen production from glycerol solution at room temperature by ZnO-ZnS/graphene photocatalysts. Appl. Surf. Sci. 2018, 451, 198–206. [Google Scholar] [CrossRef]
- Raghavan, A.; Sarkar, S.; Nagappagari, L.R.; Bojja, S.; Muthukonda, V.S.; Ghosh, S. Decoration of graphene quantum dots on TiO2 nanostructures: Photosensitizer and cocatalyst role for enhanced hydrogen generation. Ind. Eng. Chem. Res. 2020, 59, 13060–13068. [Google Scholar] [CrossRef]
- Yeh, T.F.; Syu, J.M.; Cheng, C.; Chang, T.H.; Teng, H. Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Funct. Mater. 2010, 20, 2255–2262. [Google Scholar] [CrossRef]
- Gao, P.; Liu, J.; Lee, S.; Zhang, T.; Sun, D.D. High quality graphene oxide–CdS–Pt nanocomposites for efficient photocatalytic hydrogen evolution. J. Mater. Chem. 2012, 22, 2292–2298. [Google Scholar] [CrossRef]
- Rahman, M.Z.; Zhang, J.; Tang, Y.; Davey, K.; Qiao, S.Z. Graphene oxide coupled carbon nitride homo-heterojunction photocatalyst for enhanced hydrogen production. Mater. Chem. Front. 2017, 1, 562–571. [Google Scholar] [CrossRef]
- Gliniak, J.; Lin, J.H.; Chen, Y.T.; Li, C.R.; Jokar, E.; Chang, C.H.; Peng, C.S.; Lin, J.N.; Lien, W.H.; Tsai, H.M.; et al. Sulfur-doped graphene oxide quantum dots as photocatalysts for hydrogen generation in the aqueous phase. ChemSusChem 2017, 10, 3260–3267. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Qin, L.; Kang, S.Z.; Li, X. A mixed phase lanthanum vanadate in situ induced by graphene oxide/graphite carbon nitride for efficient photocatalytic hydrogen generation. Int. J. Hydrog. Energy 2021, 46, 27495–27505. [Google Scholar] [CrossRef]
- Tie, L.; Liu, Y.; Shen, S.; Yu, C.; Mao, C.; Sun, J.; Sun, J. In-situ construction of graphene oxide in microsphere ZnS photocatalyst for high-performance photochemical hydrogen generation. Int. J. Hydrog. Energy 2020, 45, 16606–16613. [Google Scholar] [CrossRef]
- Pei, F.; Liu, Y.; Xu, S.; Lü, J.; Wang, C.; Cao, S. Nanocomposite of graphene oxide with nitrogen-doped TiO2 exhibiting enhanced photocatalytic efficiency for hydrogen evolution. Int. J. Hydrog. Energy 2013, 38, 2670–2677. [Google Scholar] [CrossRef]
- Gao, X.; Wang, J.; Xue, Q.; Ma, Y.Y.; Gao, Y. AgBr/polyoxometalate/graphene oxide ternary composites for visible light-driven photocatalytic hydrogen production. Acs Appl. Nano Mater. 2021, 4, 2126–2135. [Google Scholar] [CrossRef]
- Wang, G.; Wang, F.; Liu, S.; Li, M.; Xie, M.; Yang, Z.; Xiang, Y.; Lv, S.; Han, W. Construction of heterojuncted photocatalyst with TiO2 quantum dots and graphene oxide nanosheets for highly efficient photocatalysis. Scr. Mater. 2021, 199, 113862. [Google Scholar] [CrossRef]
- Peng, T.; Li, K.; Zeng, P.; Zhang, Q.; Zhang, X. Enhanced photocatalytic hydrogen production over graphene oxide–cadmium sulfide nanocomposite under visible light irradiation. J. Phys. Chem. C 2012, 116, 22720–22726. [Google Scholar] [CrossRef]
- Gultom, N.S.; Abdullah, H.; Kuo, D.H. Effects of graphene oxide and sacrificial reagent for highly efficient hydrogen production with the costless Zn(O,S) photocatalyst. Int. J. Hydrog. Energy 2019, 44, 29516–29528. [Google Scholar] [CrossRef]
- Wang, P.; Zhan, S.; Xia, Y.; Ma, S.; Zhou, Q.; Li, Y. The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocomposite for high-performance photocatalytic water splitting. Appl. Catal. B Environ. 2017, 207, 335–346. [Google Scholar] [CrossRef]
- Wang, X.; Yao, X. Photocatalytic hydrogen generation of ZnO rod–CdS/reduced graphene oxide heterostructure prepared by Pt-induced oxidation and light irradiation-assisted methods. Carbon 2014, 77, 667–674. [Google Scholar] [CrossRef]
- Tran, P.D.; Batabyal, S.K.; Pramana, S.S.; Barber, J.; Wong, L.H.; Loo, S.C.J. A cuprous oxide–reduced graphene oxide (Cu2O–rGO) composite photocatalyst for hydrogen generation: Employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O. Nanoscale 2012, 4, 3875–3878. [Google Scholar] [CrossRef]
- Shaheer, A.M.; Vinesh, V.; Lakhera, S.K.; Neppolian, B. Reduced graphene oxide as a solid-state mediator in TiO2/In0.5WO3 S-scheme photocatalyst for hydrogen production. Sol. Energy 2021, 213, 260–270. [Google Scholar] [CrossRef]
- Yadav, A.A.; Hunge, Y.M.; Kang, S.W. Spongy ball-like copper oxide nanostructure modified by reduced graphene oxide for enhanced photocatalytic hydrogen production. Mater. Res. Bull. 2021, 133, 111026. [Google Scholar] [CrossRef]
- He, G.L.; Zhong, Y.H.; Chen, M.J.; Li, X.; Fang, Y.P.; Xu, Y.H. One-pot hydrothermal synthesis of SrTiO3-reduced graphene oxide composites with enhanced photocatalytic activity for Hydrogen production. J. Mol. Catal. A Chem. 2016, 423, 70–76. [Google Scholar] [CrossRef]
- Xue, W.; Hu, X.; Liu, E.; Fan, J. Novel reduced graphene oxide-supported Cd0.5Zn0.5S/g-C3N4 Z-scheme heterojunction photocatalyst for enhanced hydrogen evolution. Appl. Surf. Sci. 2018, 447, 783–794. [Google Scholar] [CrossRef]
- Ye, L.; Fu, J.; Xu, Z.; Yuan, R.; Li, Z. Facile one-pot solvothermal method to synthesize sheet-on-sheet reduced graphene oxide (RGO)/ZnIn2S4 nanocompositeswith superior photocatalytic performance. Acs Appl. Mater. Interfaces 2014, 6, 3483–3490. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, H.Y.; Lakhera, S.K.; Bellamkonda, S.; Rao, G.R.; Shankar, M.V.; Bahnemann, D.W.; Neppolian, B. Construction of ternary hybrid layered reduced graphene oxide supported g-C3N4-TiO2 nanocomposite and its photocatalytic hydrogen production activity. Int. J. Hydrog. Energy 2018, 43, 3892–3904. [Google Scholar] [CrossRef]
- Zeng, P.; Zhang, Q.; Peng, T.; Zhang, X. One-pot synthesis of reduced graphene oxide–cadmium sulfide nanocomposite and its photocatalytic hydrogen production. Phys. Chem. Chem. Phys. 2011, 13, 21496–21502. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Design of Electrocatalysts for Oxygen- and Hydrogen-Involving Energy Conversion Reactions. Chem. Soc. Rev. 2015, 44, 2060–2086. [Google Scholar] [CrossRef] [PubMed]
- You, B.; Sun, Y. Chalcogenide and Phosphide Solid-State Catalysts for H2 Generation. ChemPlusChem 2016, 81, 1045–1055. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Guo, C.; Zheng, Y.; Qiao, S.Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 2017, 50, 915–923. [Google Scholar] [CrossRef]
- Pandit, B.; Rondiya, S.R.; Shaikh, S.F.; Ubaidullah, M.; Amaral, R.; Dzade, N.Y.; Goda, E.S.; Rana, A.H.S.; Gill, H.S.; Ahmad, T. Regulated electrochemical performance of manganese oxide cathode for potassium-ion batteries: A combined experimental and first-principles density functional theory (DFT) investigation. J. Colloid Interface Sci. 2022, 633, 886–896. [Google Scholar] [CrossRef]
- Bae, S.Y.; Jeon, I.Y.; Mahmood, J.; Baek, J.B. Molybdenum-based carbon hybrid materials to enhance the hydrogen evolution reaction. Chem. Eur. J. 2018, 24, 18158–18179. [Google Scholar] [CrossRef]
- Liu, X.; Jiao, Y.; Zheng, Y.; Davey, K.; Qiao, S.Z. A computational study on Pt and Ru dimers supported on graphene for the hydrogen evolution reaction: New insight into the alkaline mechanism. J. Mater. Chem. A 2019, 7, 3648–3654. [Google Scholar] [CrossRef]
- Zhou, W.; Jia, J.; Lu, J.; Yang, L.; Hou, D.; Li, G.; Chen, S. Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 2016, 28, 29–43. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, G.; Liu, Y.; Liu, H.; Qu, J.; Li, J. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J. Am. Chem. Soc. 2016, 138, 14686–14693. [Google Scholar] [CrossRef]
- Xu, X.; Liang, H.; Ming, F.; Qi, Z.; Xie, Y.; Wang, Z. Prussian blue analogues derived penroseite (Ni,Co)Se2 nanocages anchored on 3D graphene aerogel for efficient water splitting. Acs Catal. 2017, 7, 6394–6399. [Google Scholar] [CrossRef] [Green Version]
- Fei, H.; Dong, J.; Arellano-Jiménez, M.J.; Ye, G.; Kim, N.D.; Samuel, E.L.; Peng, Z.; Zhu, Z.; Qin, F.; Bao, J.; et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Subramanya, B.; Ullal, Y.; Shenoy, S.U.; Bhat, D.K.; Hegde, A.C. Novel Co–Ni–graphene composite electrodes for hydrogen production. Rsc Adv. 2015, 5, 47398–47407. [Google Scholar] [CrossRef]
- Badrayyana, S.; Bhat, D.K.; Shenoy, S.; Ullal, Y.; Hegde, A.C. Novel Fe–Ni-Graphene composite electrode for hydrogen production. Int. J. Hydrog. Energy 2015, 40, 10453–10462. [Google Scholar] [CrossRef]
- Huo, L.; Liu, B.; Zhang, G.; Zhang, J. Universal strategy to fabricate a two-dimensional layered mesoporous Mo2C electrocatalyst hybridized on graphene sheets with high activity and dura-bility for hydrogen generation. Acs Appl. Mater. Interfaces 2016, 8, 18107–18118. [Google Scholar] [CrossRef]
- Han, A.; Jin, S.; Chen, H.; Ji, H.; Sun, Z.; Du, P. A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: High performance for electrocatalytic hydrogen production from pH 0–14. J. Mater. Chem. A 2015, 3, 1941–1946. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Su, T.; Wang, X.; Sun, C.; Su, Z. Graphene-coated hybrid electrocatalysts derived from bimetallic metal–organic frameworks for efficient hydrogen generation. J. Mater. Chem. A. 2017, 5, 5000–5006. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, Y.; Ao, Z.; Wang, G. Micelle-template synthesis of nitrogen-doped mesoporous graphene as an efficient metal-free electrocatalyst for hydrogen production. Sci. Rep. 2014, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, S.; Hosseini, S.R.; Nabipour, S.; Asen, P. Palladium nanoparticles supported on graphene as an efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrog. Energy 2015, 40, 16184–16191. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, K.; Hou, D.; Liu, X.; Li, G.; Sang, Y.; Liu, H.; Li, L.; Chen, S. Three-dimensional hierarchical frameworks based on MoS2 nanosheets self-assembled on graphene oxide for efficient electrocatalytic hydrogen evolution. Acs Appl. Mater. Interfaces 2014, 6, 21534–21540. [Google Scholar] [CrossRef] [PubMed]
- Digraskar, R.V.; Sapner, V.S.; Mali, S.M.; Narwade, S.S.; Ghule, A.V.; Sathe, B.R. CZTS deco-rated on graphene oxide as an efficient electrocatalyst for high-performance hydrogen evolution reaction. Acs Omega 2019, 4, 7650–7657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narwade, S.S.; Mali, S.M.; Sapner, V.S.; Sathe, B.R. Graphene oxide decorated with Rh nanospheres for electrocatalytic water splitting. Acs Appl. Nano Mater. 2020, 3, 12288–12296. [Google Scholar] [CrossRef]
- Hu, W.H.; Shang, X.; Han, G.Q.; Dong, B.; Liu, Y.R.; Li, X.; Chai, Y.M.; Liu, Y.Q.; Liu, C.G. MoSx supported graphene oxides with different degree of oxidation as efficient electrocatalysts for hydrogen evolution. Carbon 2016, 100, 236–242. [Google Scholar] [CrossRef]
- Sarawutanukul, S.; Phattharasupakun, N.; Sawangphruk, M. 3D CVD graphene oxide-coated Ni foam as carbo-and electro-catalyst towards hydrogen evolution reaction in acidic solution: In situ electrochemical gas chromatography. Carbon 2019, 151, 109–119. [Google Scholar] [CrossRef]
- Fu, H.; Chen, Y.; Ren, Z.; Xiao, Y.; Liu, Y.; Zhang, X.; Tian, G. Highly dispersed of Ni0.85Se nanoparticles on nitrogen-doped graphene oxide as efficient and durable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta. 2018, 262, 107–114. [Google Scholar] [CrossRef]
- Lotfi, N.; Shahrabi, T.; Yaghoubinezhad, Y.; Darband, G.B. Direct electrodeposition of platinum nanoparticles@ graphene oxide@ nickel-copper@ nickel foam electrode as a durable and cost-effective catalyst with remarkable performance for electrochemical hydrogen evolution reaction. Appl. Surf. Sci. 2020, 505, 144571. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Sudha, R.; Premnath, K.; Arunachalam, P.; Madhavan, J.; Al-Mayouf, A.M. Growth of iron diselenide nanorods on graphene oxide nanosheets as advanced electrocatalyst for hydrogen evolution reaction. Int. J. Hydrog. Energy 2017, 42, 13020–13030. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, S.; Li, Y.; Jacob, R.J.; Kuang, Y.; Liu, B.; Wang, Y.; Pastel, G.; Salamanca-Riba, L.G.; Zachariah, M.R.; et al. FeS2 nanoparticles embedded in reduced graphene oxide toward robust, high-performance electrocatalysts. Adv. Energy Mater. 2017, 7, 1700482. [Google Scholar] [CrossRef]
- Imran, M.; Yousaf, A.B.; Zaidi, S.J.; Fernandez, C. Tungsten-molybdenum oxide nanowires/reduced graphene oxide nanocomposite with enhanced and durable performance for electrocatalytic hydrogen evolution reaction. Int. J. Hydrog. Energy 2017, 42, 8130–8138. [Google Scholar] [CrossRef]
- Ma, L.; Shen, X.; Zhou, H.; Zhu, G.; Ji, Z.; Chen, K. CoP nanoparticles deposited on reduced graphene oxide sheets as an active electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A. 2015, 3, 5337–5343. [Google Scholar] [CrossRef]
- Chen, R.; Song, Y.; Wang, Z.; Gao, Y.; Sheng, Y.; Shu, Z.; Zhang, J.; Li, X.A. Porous nickel disulfide/reduced graphene oxide nanohybrids with improved electrocatalytic performance for hydrogen evolution. Catal. Commun. 2016, 85, 26–29. [Google Scholar] [CrossRef]
- Liu, H.; He, P.; Wang, S.; Gao, J.; Zhou, L.; Li, C.; Zhang, Y.; Yang, D.; He, M.; Jia, L.; et al. Facile one-step fabrication of bimetallic Co–Ni–P hollow nanospheres anchored on reduced graphene oxide as highly efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrog. Energy 2019, 44, 24140–24150. [Google Scholar] [CrossRef]
- Darabdhara, G.; Amin, M.A.; Mersal, G.A.; Ahmed, E.M.; Das, M.R.; Zakaria, M.B.; Malgras, V.; Alshehri, S.M.; Yamauchi, Y.; Szunerits, S.; et al. Reduced graphene oxide nanosheets decorated with Au, Pd and Au–Pd bimetallic nanoparticles as highly efficient catalysts for electrochemical hydrogen generation. J. Mater. Chem. A. 2015, 3, 20254–20266. [Google Scholar] [CrossRef]
- Ojha, K.; Sharma, M.; Kolev, H.; Ganguli, A.K. Reduced graphene oxide and MoP composite as highly efficient and durable electrocatalyst for hydrogen evolution in both acidic and alkaline media. Catal. Sci. Technol. 2017, 7, 668–676. [Google Scholar] [CrossRef]
- Guruprasad, K.; Maiyalagan, T.; Shanmugam, S. Phosphorus doped MoS2 nanosheet promoted with nitrogen, sulfur dual doped reduced graphene oxide as an effective electrocatalyst for Hydrogen evolution reaction. Acs Appl. Energy Mater. 2019, 2, 6184–6194. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, H.; Li, J.; Wang, Y.; Guo, W.; Cao, C.; Chen, Z. Defect enhanced CoP/Reduced graphene oxide electrocatalytic hydrogen production with pt-like activity. Appl. Catal. B Environ. 2020, 265, 118576. [Google Scholar] [CrossRef]
- Yao, T.; An, X.; Han, H.; Chen, J.Q.; Li, C. Photoelectrocatalytic materials for solar water splitting. Adv. Energy Mater. 2018, 8, 1800210. [Google Scholar] [CrossRef]
- Etacheri, V.; Valentin, C.D.; Schneider, J.; Bahnemann, D.; Pillai, S.C. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J. Photochem. Photobiol. C 2015, 25, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Haussener, S.; Xiang, C.; Spurgeon, J.M.; Ardo, S.; Lewis, N.S.; Weber, A.Z. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy Environ. Sci. 2012, 5, 9922–9935. [Google Scholar] [CrossRef] [Green Version]
- Park, H.G.; Holt, J.K. Recent advances in nanoelectrode architecture for photochemical hydrogen production. Energy Environ. Sci. 2010, 3, 1028–1036. [Google Scholar] [CrossRef]
- Qorbani, M.; Naseri, N.; Moradlou, O.; Azimirad, R.; Moshfegh, A.Z. How CdS nanoparticles can influence TiO2 nanotube arrays in solar energy applications? Appl. Catal. B Environ. 2015, 162, 210–216. [Google Scholar] [CrossRef]
- Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473. [Google Scholar] [CrossRef] [PubMed]
- Li, R. Latest progress in hydrogen production from solar water splitting via photocatalysis, photoelectrochemical, and photovoltaic-photoelectrochemical solutions. Chin. J. Catal. 2017, 38, 5–12. [Google Scholar] [CrossRef]
- Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. [Google Scholar] [CrossRef]
- Passalacqua, R.; Perathoner, S.; Centi, G. Semiconductor, molecular and hybrid systems for photoelectrochemical solar fuel production. J. Energy Chem. 2017, 26, 219–240. [Google Scholar] [CrossRef]
- Gholipour, M.R.; Dinh, C.T.; Be’land, F.; Do, T.O. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 2015, 7, 8187–8208. [Google Scholar] [CrossRef]
- Moniz, S.J.A.; Shevlin, S.A.; Martin, D.J.; Guo, Z.X.; Tang, J. Visible-light driven heterojunction photocatalysts for water splitting a critical review. Energy Environ. Sci. 2015, 8, 731–759. [Google Scholar] [CrossRef]
- Maeda, K. Photocatalytic water splitting using semiconductor particles: History and recent developments. J. Photochem. Photobiol. C 2011, 12, 237–268. [Google Scholar] [CrossRef]
- Lianos, P. Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen. Appl. Catal. B: Environ. 2017, 210, 235–254. [Google Scholar] [CrossRef]
- Cho, Y.J.; Kim, H.I.; Lee, S.; Choi, W. Dual-functional photocatalysis using a ternary hybrid of TiO2 modified with graphene oxide along with Pt and fluoride for H2-producing water treatment. J. Catal. 2015, 330, 387–395. [Google Scholar] [CrossRef]
- Lee, D.K.; Han, K.S.; Shin, W.H.; Lee, J.W.; Choi, J.H.; Choi, K.M.; Lee, Y.; Kim, H.I.; Choi, W.; Kang, J.K. Graphitic domain layered titania nanotube arrays for separation and shuttling of solar-driven electrons. J. Mater. Chem. A 2013, 1, 203–207. [Google Scholar] [CrossRef]
- Moon, G.H.; Kim, H.I.; Shin, Y.; Choi, W. Chemical-free growth of metal nanoparticles on graphene oxide sheets under visible light irradiation. Rsc Adv. 2012, 2, 2205–2207. [Google Scholar] [CrossRef]
- Soltani, T.; Tayyebi, A.; Lee, B.K. Efficient promotion of charge separation with reduced graphene oxide (rGO) in BiVO4/rGO photoanode for greatly enhanced photoelectrochemical water splitting. Sol. Energy Mater. Sol. Cells. 2018, 185, 325–332. [Google Scholar] [CrossRef]
- Ghorbani, M.; Abdizadeh, H.; Taheri, M.; Golobostanfard, M.R. Enhanced photoelectrochemical water splitting in hierarchical porous ZnO/Reduced graphene oxide nanocomposite synthesized by sol-gel method. Int. J. Hydrog. Energy 2018, 43, 7754–7763. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Zhang, H.; Liu, Y.; Li, J. Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy Environ. Sci. 2013, 6, 1362–1387. [Google Scholar] [CrossRef]
- Opoku, F.; Govender, K.K.; van Sittert, C.G.C.E.; Govender, P.P. Tuning the electronic structures, work functions, optical properties and stability of bifunctional hybrid graphene oxide/V–doped NaNbO3type–II heterostructures: A promising photocatalyst for H2 production. Carbon 2018, 136, 187–195. [Google Scholar] [CrossRef]
- Nayak, S.; Parida, K. Recent progress in LDH@graphene and analogous heterostructures for highly active and stable photocatalytic and photoelectrochemical water splitting. Chem. Asian J. 2021, 16, 2211–2248. [Google Scholar] [CrossRef]
- Samsudin, M.F.R.; Ullah, H.; Tahir, A.A.; Li, X.; Ng, Y.H.; Sufian, S. Superior photoelectrocatalytic performance of ternary structural BiVO4/GQD/g-C3N4 heterojunction. J. Colloid Interface Sci. 2021, 586, 785–796. [Google Scholar] [CrossRef]
- Cheng, Q.; Xu, J.; Wang, T.; Fan, L.; Ma, R.; Yu, X.; Zhu, J.; Xu, Z.; Lu, B. Double quantum dots decorated 3D graphene flowers for highly efficient photoelectrocatalytic hydrogen production. Appl. Surf. Sci. 2017, 422, 528–535. [Google Scholar] [CrossRef]
- Carraro, F.; Calvillo, L.; Cattelan, M.; Favaro, M.; Righetto, M.; Nappini, S.; Pis, I.; Celorrio, V.; Fermín, D.J.; Martucci, A.; et al. Fast one-pot synthesis of MoS2/crumpled graphene p–n nanonjunctions for enhanced photoelectrochemical hydrogen production. Acs Appl. Mater. Interfaces 2015, 7, 25685–25692. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.; Albero, J.; García, H. Multilayer N-doped Graphene Films as Photoelectrodes for H2 Evolution. ChemPhotoChem 2017, 1, 388–392. [Google Scholar] [CrossRef]
- Yuan, X.; Xu, Y.; Meng, H.; Han, Y.; Wu, J.; Xu, J.; Zhang, X. Fabrication of ternary polyaniline-graphene oxide-TiO2 hybrid films with enhanced activity for photoelectrocatalytic hydro-gen production. Sep. Purif. Technol. 2018, 193, 358–367. [Google Scholar] [CrossRef]
- Shaban, M.; Rabia, M.; El-Sayed, A.M.A.; Ahmed, A.; Sayed, S. Photocatalytic properties of PbS/graphene oxide/polyaniline electrode for hydrogen generation. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Subramanian, V. Encapsulating Bi2Ti2O7 (BTO) with reduced graphene oxide (RGO): An effective strategy to enhance photocatalytic and photoelectrocatalytic activity of BTO. Acs Appl. Mater. Interfaces 2014, 6, 18597–18608. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Pan, D.; Chen, X.; Li, R.; Jiang, T.; Wang, W.; Li, G.; Leung, D.Y. g-C3N4 photoanode for photoelectrocatalytic synergistic pollutant degradation and hydrogen evolution. Appl. Surf. Sci. 2019, 467, 658–665. [Google Scholar] [CrossRef]
- Akyüz, D.; Ayaz, R.M.Z.; Yılmaz, S.; Uğuz, O.; Sarıoğlu, C.; Karaca, F.; Özkaya, A.R.; Koca, A. Metal chalcogenide based photocatalysts decorated with heteroatom doped reduced graphene oxide for photocatalytic and photoelectrochemical hydrogen production. Int. J. Hydrog. Energy 2019, 44, 18836–18847. [Google Scholar] [CrossRef]
- Samsudin, M.F.R.; Sufian, S. Hybrid 2D/3D g-C3N4/BiVO4 photocatalyst decorated with RGO for boosted photoelectrocatalytic hydrogen production from natural lake water and photocatalytic degradation of antibiotics. J. Mol. Liq. 2020, 314, 113530. [Google Scholar] [CrossRef]
- Dargahi, Z.; Asgharzadeh, H.; Ghaleh, H.M. Synthesis of Mo-doped TiO2/reduced graphene oxide nanocomposite for photoelectrocatalytic applications. Ceram. Int. 2018, 44, 13015–13023. [Google Scholar] [CrossRef]
- Rambabu, Y.; Dhua, S.; Jaiswal, M.; Roy, S.C. High photoelectrochemical performance of reduced graphene oxide wrapped, CdS functionalized, TiO2 multi-leg nanotubes. Nanotechnology 2020, 31, 275701. [Google Scholar] [CrossRef]
- Rambabu, Y.; Jaiswal, M.; Roy, S.C. Enhanced photo-electrochemical performance of reduced graphene-oxide wrapped TiO2 multi-leg nanotubes. J. Electrochem. Soc. 2016, 163, H652. [Google Scholar] [CrossRef]
- Long, Z.; Tong, X.; Liu, C.; Channa, A.I.; Wang, R.; Li, X.; Lin, F.; Vomiero, A.; Wang, Z.M. Near-infrared, eco-friendly ZnAgInSe quantum dots-sensitized graphene oxide-TiO2 hybrid photoanode for high performance photoelectrochemical hydrogen generation. Chem. Eng. J. 2021, 426, 131298. [Google Scholar] [CrossRef]
Methods | Advantages | Disadvantages |
---|---|---|
Photochemical | Uses most abundant sources (solar energy and water), economically and environmentally benign. | Limited properties of photocatalysts, requires doping or cocatalysts for enhanced photocatalytic conversion efficiency. |
Electrochemical | Eco-friendly, sustainable energy | Expensive as the most effective electrocatalysts are Pt, Ru, etc. |
Photoelectrochemical | Comprises electrical and photon energy, more efficient than photochemical and electrochemical pathways | More expensive than photochemical and electrochemical pathways |
Material | Preparation Methods | Cost-Effective Method | Properties | ||
---|---|---|---|---|---|
Graphene | Top-down method | Bottom-up | Top-down | Bottom-up | Good electronic properties; High mechanical strength; High surface area; Tunable optical properties. |
Mechanical Exfoliation, Electrochemical, Chemical Exfoliation, Chemical Fabrication | Pyrolysis, Epitaxial Growth, Laser ablation CVD, Plasma Synthesis | Electrochemical | Laser ablation | ||
Graphene Oxide | Brodie Method, Staudenmaier Method, Hummers Method, Modified Hummers Method, Improved Hummers Method | Improved Hummers method | High colloidal constancy; Good dispersion in water; Contains rich oxygenated functional groups. | ||
Reduced Graphene Oxide | Chemical exfoliation, Reduction methods (Thermal, Chemical, Electrochemical, Hydrothermal, Photochemical) | Chemical reduction | Greater electron transport properties; Restoration of sp2 domains. |
Photocatalyst | Synthetic Route | Light Source/Photo Conversion Efficiency | Sacrificial Agent | Band Gap (eV) | H2 Evolution Performance | Ref. |
---|---|---|---|---|---|---|
Ag-TiO2/graphene | Microwave-assisted hydrothermal | 300 W Xenon Lamp | Methanol/Water | ~2.8 | 225 µmol h−1 g−1 | [116] |
CdS/graphene nanoribbons | Solvothermal | 300 W Xenon Lamp | Lactic acid | 2.17 | 1.891 mmol h−1g−1 | [117] |
CdS/MoS2/graphene | Biomolecule assisted | 300 W Xenon Lamp | Lactic acid/Water | - | 1913 µmol h−1 g−1 | [118] |
CdS/Nb2O5/N-doped graphene | Hydrothermal | 150 W Xenon Lamp | Na2S/Na2SO3 | 2.0 | 800 µmol g−1 | [119] |
Eu-TiO2/graphene | Sol-gel/ Hydrothermal | Metal Halogen Lamp | Na2S/Na2SO3 | - | 100 mmol h−1 g−1 | [120] |
Ni-doped ZnS-graphene | Solvothermal | 300 W Mercury Lamp | Na2S/Na2SO3 | - | 8683 µmol h−1 g−1 | [121] |
WS2/Graphene-CdS | Solvothermal | 500 W Xenon Arc Lamp | Na2S/Na2SO3 | 2.4 | 1842 µmol h−1 g−1 | [122] |
ZnO-ZnS/graphene | Calcination/ Deposition | 300 W Mercury Lamp | Glycerol | 3.35 | 1070 µmol h−1 g−1 | [123] |
Graphene QDs/TiO2 | Hydrothermal | Natural Solar Light/9.84% | Glycerol | 2.72 | 29548 μmol h−1 g−1 | [124] |
GO-CdS-Pt | Reduction | 400 W Mercury Lamp | Methanol | - | 123 mL h−1g−1 | [126] |
GCN/ACN/GO | Soft grafting | Xenon Arc Lamp | Triethanolamine | 2.55–2.60 | 251 µmol h−1 | [127] |
S-GO QDs | Hydrothermal | 500 W Xenon Lamp | Ethanol | 2.34 | 30,519 µmol h−1 g−1 | [128] |
GO-C3N4-LaVO4 | Hydrothermal | 300 W Xenon Lamp | Na2SO4 | - | 717.6 µmol h−1g−1 | [129] |
Pt/GO-ZnS | Hydrothermal/ Deposition | 300 W Xenon Lamp | Lactic acid | 3.34 | 1082 µmol h−1 g−1 | [130] |
N-doped TiO2/graphene oxide | Hydrothermal | 500 W Mercury Lamp | Methanol/Water | 2.69 | 716 µmol h−1 g−1 | [131] |
TiO2/graphene oxide | Sol-gel/Calcination | 550 W Xenon Lamp | Methanol/Water | 2.43 | 0.321 mmol g−1h−1 | [133] |
GO-CdS | Precipitation | 300 W Xenon Lamp | Na2S/Na2SO3 | - | 314 µmol h−1 | [134] |
Zn(O,S)/GO | Co-precipitation | UV Lamp | Ethanol/Water | - | 2840 µg h−1 | [135] |
Pt/TiO2/rGO | Photo-reduction | Solar Simulator | Triethanolamine | 2.76 | 1075.68 µmol h−1 g−1 | [136] |
ZnO/rod-CdS/rGO | Light irradiation | 300 W Xenon Lamp | Na2S/Na2SO3 | - | 0.59 mmol h−1 | [137] |
Cu2O-rGO | Co-precipitation | 150 W Xenon Lamp/18% | Methanol/Water | - | 264.5 µmol gcat−1 h−1 | [138] |
TiO2/In0.5WO3/rGO | Wet impregnation/ Hydrothermal | Xenon Arc Lamp | Glycerol | 3.02 | 304.98 ± 11.4 µmol h−1 g−1 | [139] |
CuO/rGO | Hydrothermal | 300 W Xenon Lamp | Methanol | - | 19.2 mmol h−1 g−1 | [140] |
SrTiO3-rGO | Hydrothermal | 300 W Xenon Lamp | Methanol | 3.03 | 363.79 µmol h−1 g−1 | [141] |
rGO/Cd0.5Zn0.5S/g-C3N4 | Hydrothermal | Xe Lamp | Na2SO4 | - | 39.24 mmol h−1g−1 | [142] |
rGO/ZnIn2S4 | Solvothermal | 300 W Xenon Lamp | Lactic acid | 2.4 | 40 µmol h−1 | [143] |
g-C3N4-TiO2/rGO | Wet impregnation | 250 W Xenon Lamp | Glycerol/Water | 2.56 | 23143 µmol h−1g−1 | [144] |
rGO/CdS | Solvothermal | 300 W Xenon Lamp | Na2S/Na2SO3 | 2.03 | 420 µmol h−1 | [145] |
Electrocatalyst | Electrolyte | Overpotential/Onset Potential | Tafel Slope (mV dec−1) | Stability | Ref. |
---|---|---|---|---|---|
Co-Nitrogen doped Graphene | 0.5 M H2SO4 | 30 mV | 82 | 10 h, 1000 CV | [155] |
Co-Ni-Graphene | 6 M KOH | −1.15 V | −84.5 | 25 min, 50 CV | [156] |
Fe-Ni-Graphene | 6 M KOH | −1.18 V | −88.1 | 25 min, 50 CV | [157] |
Mo2C/Graphene | 0.5 M H2SO4 | 8 mV | 58 | 20 h, 3000 CV | [158] |
Ni2P-Graphene@NF | 1 M KOH | 7 mV | 30 | 15 h, 500 CV | [159] |
NiMo2C@C | 1 M KOH | 65 mV | 84 | 10 h, 2000 CV | [160] |
N-doped Mesoporous Graphene | 0.5 M H2SO4 | 340 mV | 109 | 5000 CV | [161] |
Pd/Graphene | 0.5 M H2SO4 | ~100 mV | 46 | 1000 CV | [162] |
MoS2/GO | 0.5 M H2SO4 | −107 mV | 86.3 | 2000 CV | [163] |
Cu2ZnSnS4/GO | 0.5 M H2SO4 | 53.1 mV | 70 | 1000 CV | [164] |
Rh-GO | 0.5 M H2SO4 | 2 mV | 10 | 7000 s | [165] |
MoSx/GO | 0.5 M H2SO4 | 195 mV | 47.7 | 500 CV, 10,000 s | [166] |
GO@Ni | 1 M H2SO4 | 83.2 mV | 55.7 | 30 h | [167] |
Ni0.85Se/N-GO | 0.5 M H2SO4 | 104 mV | 50.7 | 20 h | [168] |
Pt/GO/Ni-Cu/NF | 1 M KOH | 31 mV | 51 | 6000 s, 1000 CV | [169] |
FeS2/GO | 0.5 M H2SO4 | 250 mV | 64 | - | [170] |
FeS2/rGO | 0.5 M H2SO4 | 139 mV | 66 | 500 min, 1000 CV | [171] |
W-Mo-O/rGO | 0.1 M HclO4 | 50 mV | 46 | 2000 CV | [172] |
CoP-rGO | 0.5 M H2SO4 | - | 104.8 | 500 CV | [173] |
NiS2/rGO | 0.5 M H2SO4 | 200 mV | 52 | 3000 CV | [174] |
Co-Ni-P/rGO | 1 M KOH | 207 mV | 65 | 30 h | [175] |
Au-Pd/rGO | 0.5 M H2SO4 | −0.8 mV | 29 | 24 h, 5000 CV | [176] |
MoP/rGO | 0.5 M H2SO4 | 82 mV | 42 | 20 h | [177] |
P-MoS2/N,S-rGO | 0.5 M H2SO4 | 94 mV | 47 | - | [178] |
CoP/rGO | 1 M KOH | 36.6 mV | 43.1 | 20 h, 5000 CV | [179] |
Photo-Electrocatalyst | Electrolyte | Light Source/ Photoconversion Efficiency | Band Gap | Photocurrent Density | Ref. |
---|---|---|---|---|---|
BiVO4/GQD/g-C3N4 | 0.5 Na2SO4 | 500 W Halogen Lamp/0.57% | 2.47 eV | 19.2 mA cm−2 | [201] |
Au/TiO2/3DGFs | 1 M KOH | Xenon Lamp | - | 90 mA cm−2 | [202] |
MoS2/N-Graphene | 0.5 M H2SO4 | White LED Lamp | ~1.7 eV | 94 mA cm−2 | [203] |
PANI-GO-TiO2 | NaCl, MgCl2, Na2SO4 | 300 W Xenon Lamp | 2.50 eV | 0.13 mA cm−2 | [205] |
PbS-Graphene Oxide-PANI | 0.3 M Na2S2O3 | 400 W Metal Halide Lamp/1.75% | 1.16, 2.0 eV | 1.75 mA cm−2 | [206] |
BTO/rGO | 0.5 M NaOH | 500 W Xenon Lamp | 2.26 eV | 41 µA | [207] |
CNG/Ni | Methanol, 0.5 M NaOH | 300 W Xenon Lamp | 2.51 eV | 1.0 mA cm−2 | [208] |
N-doped rGO-Cd0.60Zn0.40S | Na2S/Na2SO3 | 300 W Xenon Lamp/1.77% | 2.43 eV | 0.92 mA cm−2 | [209] |
rGO/g-C3N4/BiVO4 | 0.5 M Na2SO4 | 500 W Halogen Lamp/0.41% | 2.54 eV | 14.44 mA cm−2 | [210] |
Mo-TiO2/rGO | 0.1 M Na2SO4 | PHILIPS PL-S9W lamp | 2.22 eV | 55.8 µA cm−2 | [211] |
TiO2/rGO/CdS | Na2S/Na2SO3 | Xenon Lamp/5.11% | ~2.2 eV | ~11 mA cm−2 | [212] |
rGO/TiO2 | 0.5 M Na2SO4 | 300 W Xenon Lamp/0.12% | - | 0.26 mA/cm2 | [213] |
ZnAgInSe/TiO2/GO | Na2S/Na2SO3 | AM 1.5G, 100 mW/cm2 | ~1.82 eV | ~6.7 mA/cm2 | [214] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadiq, I.; Ali, S.A.; Ahmad, T. Graphene-Based Derivatives Heterostructured Catalytic Systems for Sustainable Hydrogen Energy via Overall Water Splitting. Catalysts 2023, 13, 109. https://doi.org/10.3390/catal13010109
Sadiq I, Ali SA, Ahmad T. Graphene-Based Derivatives Heterostructured Catalytic Systems for Sustainable Hydrogen Energy via Overall Water Splitting. Catalysts. 2023; 13(1):109. https://doi.org/10.3390/catal13010109
Chicago/Turabian StyleSadiq, Iqra, Syed Asim Ali, and Tokeer Ahmad. 2023. "Graphene-Based Derivatives Heterostructured Catalytic Systems for Sustainable Hydrogen Energy via Overall Water Splitting" Catalysts 13, no. 1: 109. https://doi.org/10.3390/catal13010109
APA StyleSadiq, I., Ali, S. A., & Ahmad, T. (2023). Graphene-Based Derivatives Heterostructured Catalytic Systems for Sustainable Hydrogen Energy via Overall Water Splitting. Catalysts, 13(1), 109. https://doi.org/10.3390/catal13010109