Electrochemically Assisted Persulfate Oxidation of Organic Pollutants in Aqueous Solution: Influences, Mechanisms and Feasibility
Abstract
:1. Introduction
2. Synergistic Influences of EC and PS
3. Influence of Operational Parameters on the Degradation Efficiency of EPOPs
3.1. Electrode Material
3.2. Electrolyte Type and Concentration
3.3. Current Density
3.4. Initial pH
3.5. PS Concentration
3.6. Temperature
3.7. Nitrogen/Oxygen Dosage
3.8. Coexisting Ions and Natural Organic Matter
4. Degradation Mechanisms
5. Energy Consumption and Limitations
5.1. Energy Consumption
5.2. Limitations
- (1)
- Most EPOPs perform well in acidic conditions. A pH adjustment for efficient pollutant removal can contribute to the operational cost of EPOPs.
- (2)
- A lower performance in aerated conditions is usually found in practical applications.
- (3)
- Potential electrode fouling needs to be eliminated in time. The electrode performance should be effectively monitored.
- (4)
- The concentration of sulfate ions inevitably increases during PS activation processes. The introduction of sulfate ions into the effluent should be considered later.
- (5)
- The formation of hydrated iron hydroxide/oxide film on the surface of an iron anode reduces the effective current transfer between the anode and cathode. Acidic reaction conditions could avoid the occurrence of this phenomenon.
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Devi, P.; Das, U.; Dalai, A.K. In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems. Sci. Total Environ. 2016, 571, 643–657. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xue, J.; He, L.; Wu, L.; Ma, Y.; Chen, H.; Li, H.; Peng, P.; Zhang, Z. Review on ultrasound assisted persulfate degradation of organic contaminants in wastewater: Influences, mechanisms and prospective. Chem. Eng. J. 2019, 378, 122146. [Google Scholar] [CrossRef]
- Wacławek, S.; Lutze, H.V.; Grübel, K.; Padil, V.V.T.; Černík, M.; Dionysiou, D.D. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 2017, 330, 44–62. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar]
- Nzeribe, B.N.; Crimi, M.; Mededovic Thagard, S.; Holsen, T.M. Physico-Chemical Processes for the Treatment of Per- And Polyfluoroalkyl Substances (PFAS): A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 866–915. [Google Scholar] [CrossRef]
- Guerra-Rodríguez, S.; Rodríguez, E.; Singh, D.N.; Rodríguez-Chueca, J. Assessment of Sulfate Radical-Based Advanced Oxidation Processes for Water and Wastewater Treatment: A Review. Water 2018, 10, 1828. [Google Scholar]
- Wang, S.; Zhou, N.; Wu, S.; Zhang, Q.; Yang, Z. Modeling the oxidation kinetics of sono-activated persulfate’s process on the degradation of humic acid. Ultrason. Sonochem. 2015, 23, 128–134. [Google Scholar] [CrossRef]
- Tan, C.; Gao, N.; Deng, Y.; An, N.; Deng, J. Heat-activated persulfate oxidation of diuron in water. Chem. Eng. J. 2012, 203, 294–300. [Google Scholar] [CrossRef]
- Bruton, T.A.; Sedlak, D.L. Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation. Chemosphere 2018, 206, 457–464. [Google Scholar] [CrossRef]
- Pourehie, O.; Saien, J. Treatment of real petroleum refinery wastewater with alternative ferrous-assisted UV/persulfate homogeneous processes. Desalin. Water Treat. 2019, 142, 140–147. [Google Scholar]
- Ma, H.; Zhang, L.; Huang, X.; Ding, W.; Jin, H.; Li, Z.; Cheng, S.; Zheng, L. A novel three-dimensional galvanic cell enhanced Fe2+/persulfate system: High efficiency, mechanism and damaging effect of antibiotic resistant E. coli and genes. Chem. Eng. J. 2019, 362, 667–678. [Google Scholar] [CrossRef]
- Qi, C.; Liu, X.; Lin, C.; Zhang, X.; Ma, J.; Tan, H.; Ye, W. Degradation of sulfamethoxazole by microwave-activated persulfate: Kinetics, mechanism and acute toxicity. Chem. Eng. J. 2014, 249, 6–14. [Google Scholar] [CrossRef]
- Xiao, R.; Luo, Z.; Wei, Z.; Luo, S.; Spinney, R.; Yang, W.; Dionysiou, D.D. Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies. Curr. Opin. Chem. Eng. 2018, 19, 51–58. [Google Scholar] [CrossRef]
- Liu, H.; Bruton, T.A.; Li, W.; Buren, J.V.; Prasse, C.; Doyle, F.M.; Sedlak, D.L. Oxidation of Benzene by Persulfate in the Presence of Fe(III)- and Mn(IV)-Containing Oxides: Stoichiometric Efficiency and Transformation Products. Environ. Sci. Technol. 2016, 50, 890–898. [Google Scholar] [CrossRef]
- Kattel, E.; Dulova, N.; Viisimaa, M.; Tenno, T.; Trapido, M. Treatment of high-strength wastewater by Fe2+-activated persulphate and hydrogen peroxide. Environ. Technol. 2016, 37, 352–359. [Google Scholar] [CrossRef]
- Wang, J.; Liao, Z.; Ifthikar, J.; Shi, L.; Du, Y.; Zhu, J.; Xi, S.; Chen, Z.; Chen, Z. Treatment of refractory contaminants by sludge-derived biochar/persulfate system via both adsorption and advanced oxidation process. Chemosphere 2017, 185, 754–763. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, C.; Zhang, M.; Zhang, B.-T.; Yu, Y.-G. The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode: Influencing factors, reaction pathways and energy demand. Chem. Eng. J. 2016, 296, 79–89. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Xu, Z.; Niu, J.; Hou, L.-A. Electrochemical degradation of enrofloxacin by lead dioxide anode: Kinetics, mechanism and toxicity evaluation. Chem. Eng. J. 2017, 326, 911–920. [Google Scholar] [CrossRef]
- Zhuo, Q.; Wang, J.; Niu, J.; Yang, B.; Yang, Y. Electrochemical oxidation of perfluorooctane sulfonate (PFOS) substitute by modified boron doped diamond (BDD) anodes. Chem. Eng. J. 2020, 379, 122280. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes. Chem. Eng. J. 2012, 183, 1–9. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; Souiad, F.; Fernandes, A.; Baía, A.; Pacheco, M.J.; Ciríaco, L.; Bendaoud-Boulahlib, Y.; Lopes, A. Treatment of fruit processing wastewater by electrochemical and activated persulfate processes: Toxicological and energetic evaluation. Environ. Res. 2022, 209, 112868. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Mao, Q.; Zhou, Y.; Wei, J.; Liu, X.; Yang, J.; Luo, L.; Zhang, J.; Chen, H.; Chen, H.; et al. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications. Chemosphere 2017, 189, 224–238. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, H.; Qiu, J. Degradation of Acid Orange 7 in aqueous solution by a novel electro/Fe2+/peroxydisulfate process. J. Hazard Mater. 2012, 215–216, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.A.; Huie, R.E.; Koppenol, W.H.; Lymar, S.V.; Merenyi, G.; Neta, P.; Ruscic, B.; Stanbury, D.M.; Steenken, S.; Wardman, P. Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1139–1150. [Google Scholar] [CrossRef]
- de Araújo, F.K.C.; de Barreto, P.J.P.; Cardozo, J.C.; dos Santos, E.V.; de Araújo, D.M.; Martínez-Huitle, C.A. Sulfate pollution: Evidence for electrochemical production of persulfate by oxidizing sulfate released by the surfactant sodium dodecyl sulfate. Environ. Chem. Lett. 2018, 16, 647–652. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.-Q.; Cui, Y.-H.; Liu, Y.-Y.; Liu, Z.-Q.; Li, X.-Y. Electrochemical generation of persulfate and its performance on 4-bromophenol treatment. Sep. Purif. Technol. 2018, 207, 461–469. [Google Scholar] [CrossRef]
- Si, F.; Zhang, Y.; Yao, C.; Du, M.; Hussain, I.; Huang, S.; Wen, W.; Hu, X. Degradation of ronidazole by electrochemically simultaneously generated persulfate and ferrous ions. Chemosphere 2020, 238, 124579. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, H.; Zhong, X.; Hou, L. Electrochemical enhanced heterogeneous activation of peroxydisulfate by Fe–Co/SBA-15 catalyst for the degradation of Orange II in water. Water Res. 2014, 66, 473–485. [Google Scholar] [CrossRef]
- Lin, H.; Wu, J.; Zhang, H. Degradation of bisphenol A in aqueous solution by a novel electro/Fe3+/peroxydisulfate process. Sep. Purif. Technol. 2013, 117, 18–23. [Google Scholar] [CrossRef]
- Bu, L.; Zhou, S.; Shi, Z.; Bi, C.; Zhu, S.; Gao, N. Iron electrode as efficient persulfate activator for oxcarbazepine degradation: Performance, mechanism, and kinetic modeling. Sep. Purif. Technol. 2017, 178, 66–74. [Google Scholar] [CrossRef]
- Bu, L.; Zhu, S.; Zhou, S. Degradation of atrazine by electrochemically activated persulfate using BDD anode: Role of radicals and influencing factors. Chemosphere 2018, 195, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Poza-Nogueiras, V.; Rosales, E.; Pazos, M.; Sanromán, M.Á. Current advances and trends in electro-Fenton process using heterogeneous catalysts—A review. Chemosphere 2018, 201, 399–416. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Zhou, M.; Oturan, M.A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 2018, 197, 210–227. [Google Scholar] [CrossRef] [PubMed]
- Sirés, I.; Brillas, E.; Oturan, M.A.; Rodrigo, M.A.; Panizza, M. Electrochemical advanced oxidation processes: Today and tomorrow. A review. Environ. Sci. Pollut. Res. 2014, 21, 8336–8367. [Google Scholar] [CrossRef]
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B Environ. 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Xiong, Z.; Yao, G.; Lai, B. The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: A mini-review. Chin. Chem. Lett. 2019, 30, 2139–2146. [Google Scholar] [CrossRef]
- Anglada, Á.; Urtiaga, A.; Ortiz, I. Contributions of electrochemical oxidation to waste-water treatment: Fundamentals and review of applications. J. Chem. Technol. Biotechnol. 2009, 84, 1747–1755. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, M.; Hu, Y.; Groenen Serrano, K.; Yu, F. Recent updates on electrochemical degradation of bio-refractory organic pollutants using BDD anode: A mini review. Environ. Sci. Pollut. Res. 2014, 21, 8417–8431. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Hassan, S.U.; Zhu, Y.; Zhang, S.; Liu, H.; Zhang, S.; Li, J.; Wang, Z.; Zhao, C. Significance of activated carbon fiber as cathode in electro/Fe3+/peroxydisulfate oxidation process for removing carbamazepine in aqueous environment. Ind. Eng. Chem. Res. 2019, 58, 19709–19718. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, S.; Bu, L.; Shi, Z.; Zhu, S. Degradation of Diuron by Electrochemically Activated Persulfate. Water Air Soil Pollut. 2016, 227, 279. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, Y.; Jiang, Y.; Xi, B.; Yang, T.; Peng, X.; Lian, X.; Yan, K.; Liu, H. Enhanced degradation of 2,4-dinitrotoluene in groundwater by persulfate activated using iron–carbon micro-electrolysis. Chem. Eng. J. 2017, 311, 183–190. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, H.; Li, Y.; Zhang, H. The mechanism and efficiency of MnO2 activated persulfate process coupled with electrolysis. Sci. Total Environ. 2017, 609, 644–654. [Google Scholar] [CrossRef]
- Chen, W.-S.; Huang, C.-P. Mineralization of aniline in aqueous solution by electrochemical activation of persulfate. Chemosphere 2015, 125, 175–181. [Google Scholar] [CrossRef]
- Chen, W.-S.; Huang, C.-P. Mineralization of aniline in aqueous solution by electro-activated persulfate oxidation enhanced with ultrasound. Chem. Eng. J. 2015, 266, 279–288. [Google Scholar] [CrossRef]
- Nie, C.; Ao, Z.; Duan, X.; Wang, C.; Wang, S.; An, T. Degradation of aniline by electrochemical activation of peroxydisulfate at MWCNT cathode: The proofed concept of nonradical oxidation process. Chemosphere 2018, 206, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Bu, L.; Ding, J.; Zhu, N.; Kong, M.; Wu, Y.; Shi, Z.; Zhou, S.; Dionysiou, D.D. Unraveling different mechanisms of persulfate activation by graphite felt anode and cathode to destruct contaminants of emerging concern. Appl. Catal. B Environ. 2019, 253, 140–148. [Google Scholar] [CrossRef]
- Deng, B.; Li, Y.; Tan, W.; Wang, Z.; Yu, Z.; Xing, S.; Lin, H.; Zhang, H. Degradation of bisphenol A by electro-enhanced heterogeneous activation of peroxydisulfate using Mn-Zn ferrite from spent alkaline Zn-Mn batteries. Chemosphere 2018, 204, 178–185. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, X.; Shi, Y.; Zhang, H. Natural Fe-bearing manganese ore facilitating bioelectro-activation of peroxymonosulfate for bisphenol A oxidation. Chem. Eng. J. 2018, 354, 1120–1131. [Google Scholar] [CrossRef]
- Song, H.; Yan, L.; Jiang, J.; Ma, J.; Zhang, Z.; Zhang, J.; Liu, P.; Yang, T. Electrochemical activation of persulfates at BDD anode: Radical or nonradical oxidation? Water Res. 2018, 128, 393–401. [Google Scholar] [CrossRef]
- Song, H.; Yan, L.; Ma, J.; Jiang, J.; Cai, G.; Zhang, W.; Zhang, Z.; Zhang, J.; Yang, T. Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: Efficiency, mechanism and influencing factors. Water Res. 2017, 116, 182–193. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, C.; Wang, P.; Zheng, H.; Sun, Y.; Dionysiou, D.D. Removal of carbamazepine in water by electro-activated carbon fiber-peroxydisulfate: Comparison, optimization, recycle, and mechanism study. Chem. Eng. J. 2018, 343, 28–36. [Google Scholar] [CrossRef]
- Malakootian, M.; Ahmadian, M. Ciprofloxacin removal by electro-activated persulfate in aqueous solution using iron electrodes. Appl. Water Sci. 2019, 9, 140. [Google Scholar] [CrossRef] [Green Version]
- Malakootian, M.; Ahmadian, M. Removal of ciprofloxacin from aqueous solution by electro-activated persulfate oxidation using aluminum electrodes. Water Sci. Technol. 2019, 80, 587–596. [Google Scholar] [CrossRef]
- Chen, W.-S.; Jhou, Y.-C.; Huang, C.-P. Mineralization of dinitrotoluenes in industrial wastewater by electro-activated persulfate oxidation. Chem. Eng. J. 2014, 252, 166–172. [Google Scholar] [CrossRef]
- Huang, X.; An, D.; Song, J.; Gao, W.; Shen, Y. Persulfate/electrochemical/FeCl2 system for the degradation of phenol adsorbed on granular activated carbon and adsorbent regeneration. J. Clean. Prod. 2017, 165, 637–644. [Google Scholar] [CrossRef]
- Song, H.; Yan, L.; Jiang, J.; Ma, J.; Pang, S.; Zhai, X.; Zhang, W.; Li, D. Enhanced degradation of antibiotic sulfamethoxazole by electrochemical activation of PDS using carbon anodes. Chem. Eng. J. 2018, 344, 12–20. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, S.; Song, Y.; Wang, B.; Zhang, F. Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation. J. Electroanal. Chem. 2018, 809, 74–79. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, Y.; Li, Y.; Hu, Z.; Zhou, L.; Zhou, M. Three-dimensional electrochemical process for wastewater treatment: A general review. Chem. Eng. J. 2013, 228, 455–467. [Google Scholar] [CrossRef]
- Long, A.; Zhang, H. Selective oxidative degradation of toluene for the recovery of surfactant by an electro/Fe2+/persulfate process. Environ. Sci. Pollut. Res. 2015, 22, 11606–11616. [Google Scholar] [CrossRef]
- Park, S.-M.; Lee, S.-W.; Jeon, P.-Y.; Baek, K. Iron Anode-Mediated Activation of Persulfate. Water Air Soil Pollut. 2016, 227, 462. [Google Scholar] [CrossRef]
- Silveira, J.E.; Cardoso, T.O.; Barreto-Rodrigues, M.; Zazo, J.A.; Casas, J.A. Electro activation of persulfate using iron sheet as low-cost electrode: The role of the operating conditions. Environ. Technol. 2018, 39, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Xiong, W.; Xing, S.; Shao, Y.; Guo, R.; Zhang, H. Oxidation of organic contaminant in a self-driven electro/natural maghemite/peroxydisulfate system: Efficiency and mechanism. Sci. Total Environ. 2017, 599–600, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Z.; Liu, C.; Guo, Y.; Shan, N.; Meng, C.; Sun, L. Removal of COD from landfill leachate by an electro/Fe2+/peroxydisulfate process. Chem. Eng. J. 2014, 250, 76–82. [Google Scholar] [CrossRef]
- Long, Y.; Feng, Y.; Li, X.; Suo, N.; Chen, H.; Wang, Z.; Yu, Y. Removal of diclofenac by three-dimensional electro-Fenton-persulfate (3D electro-Fenton-PS). Chemosphere 2019, 219, 1024–1031. [Google Scholar] [CrossRef]
- Matzek, L.W.; Carter, K.E. Activated persulfate for organic chemical degradation: A review. Chemosphere 2016, 151, 178–188. [Google Scholar] [CrossRef]
- Jeon, P.; Park, S.-M.; Baek, K. Controlled release of iron for activation of persulfate to oxidize orange G using iron anode. Korean J. Chem. Eng. 2017, 34, 1305–1309. [Google Scholar] [CrossRef]
- Mehralipour, J.; Leili, M.; ZolghadrNasab, H.; Seyed Mohammadi, A.; Shabanlo, A. Efficiency of Electro/Fe2+/Persulfate Process in Industrial Wastewater Treatment. J. Maz. Univ. Med. Sci. 2015, 25, 137–148. [Google Scholar]
- Samarghandi, M.R.; Mehralipour, J.; Azarin, G.; Godini, K.; Shabanlo, A. Decomposition of sodium dodecylbenzene sulfonate surfactant by Electro/Fe2+ -activated Persulfate process from aqueous solutions. Glob. NEST J. 2017, 19, 115–121. [Google Scholar]
- Li, P.; Liu, Z.; Wang, X.; Guo, Y.; Wang, L. Enhanced decolorization of methyl orange in aqueous solution using iron–carbon micro-electrolysis activation of sodium persulfate. Chemosphere 2017, 180, 100–107. [Google Scholar] [CrossRef]
- Frontistis, Z.; Mantzavinos, D.; Meriç, S. Degradation of antibiotic ampicillin on boron-doped diamond anode using the combined electrochemical oxidation—Sodium persulfate process. J. Environ. Manag. 2018, 223, 878–887. [Google Scholar] [CrossRef]
- Matzek, L.W.; Tipton, M.J.; Farmer, A.T.; Steen, A.D.; Carter, K.E. Understanding Electrochemically Activated Persulfate and Its Application to Ciprofloxacin Abatement. Environ. Sci. Technol. 2018, 52, 5875–5883. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lei, C.; Li, Z.; Yang, B.; Zhang, X.; Lei, L. Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants. Chemosphere 2018, 210, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Zhou, M.; Liu, Y.; Savall, A.; Groenen Serrano, K. Indirect electrochemical oxidation of 2,4-dichlorophenoxyacetic acid using electrochemically-generated persulfate. Chemosphere 2018, 204, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Farhat, A.; Keller, J.; Tait, S.; Radjenovic, J. Removal of Persistent Organic Contaminants by Electrochemically Activated Sulfate. Environ. Sci. Technol. 2015, 49, 14326–14333. [Google Scholar] [CrossRef]
- Shin, Y.-U.; Yoo, H.-Y.; Ahn, Y.-Y.; Kim, M.S.; Lee, K.; Yu, S.; Lee, C.; Cho, K.; Kim, H.-i.; Lee, J. Electrochemical oxidation of organics in sulfate solutions on boron-doped diamond electrode: Multiple pathways for sulfate radical generation. Appl. Catal. B Environ. 2019, 254, 156–165. [Google Scholar] [CrossRef]
- Xue, W.-J.; Cui, Y.-H.; Liu, Z.-Q.; Yang, S.-Q.; Li, J.-Y.; Guo, X.-L. Treatment of landfill leachate nanofiltration concentrate after ultrafiltration by electrochemically assisted heat activation of peroxydisulfate. Sep. Purif. Technol. 2020, 231, 115928. [Google Scholar] [CrossRef]
- Arellano, M.; Sanromán, M.A.; Pazos, M. Electro-assisted activation of peroxymonosulfate by iron-based minerals for the degradation of 1-butyl-1-methylpyrrolidinium chloride. Sep. Purif. Technol. 2019, 208, 34–41. [Google Scholar] [CrossRef]
- Yang, C.; Ren, B.; Wang, D.; Tang, Q. Synthesis of Nano-Fe@NdFeB/AC magnetic catalytic particle electrodes and application in the degradation of 2,4,6-trichlorophenol by electro-assisted peroxydisulfate process. Environ. Technol. 2019, 41, 2464–2477. [Google Scholar] [CrossRef]
- Li, J.; Ren, Y.; Lai, L.; Lai, B. Electrolysis assisted persulfate with annular iron sheet as anode for the enhanced degradation of 2,4-dinitrophenol in aqueous solution. J. Hazard Mater. 2018, 344, 778–787. [Google Scholar] [CrossRef]
- Li, J.; Yan, J.; Yao, G.; Zhang, Y.; Li, X.; Lai, B. Improving the degradation of atrazine in the three-dimensional (3D) electrochemical process using CuFe2O4 as both particle electrode and catalyst for persulfate activation. Chem. Eng. J. 2019, 361, 1317–1332. [Google Scholar] [CrossRef]
- Gozmen, B.; Sonmez, O.; Sozutek, A. Comparative mineralization of Basic Red 18 with electrochemical advanced oxidation processes. J. Serb. Chem. Soc. 2018, 83, 93–105. [Google Scholar] [CrossRef]
- Zeng, H.; Liu, S.; Chai, B.; Cao, D.; Wang, Y.; Zhao, X. Enhanced Photoelectrocatalytic Decomplexation of Cu–EDTA and Cu Recovery by Persulfate Activated by UV and Cathodic Reduction. Environ. Sci. Technol. 2016, 50, 6459–6466. [Google Scholar] [CrossRef] [PubMed]
- Silveira, J.E.; Garcia-Costa, A.L.; Cardoso, T.O.; Zazo, J.A.; Casas, J.A. Indirect decolorization of azo dye Disperse Blue 3 by electro-activated persulfate. Electrochim. Acta 2017, 258, 927–932. [Google Scholar] [CrossRef]
- Wacławek, S.; Antoš, V.; Hrabák, P.; Černík, M.; Elliott, D. Remediation of hexachlorocyclohexanes by electrochemically activated persulfates. Environ. Sci. Pollut. Res. 2016, 23, 765–773. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, Z.; Zhang, H. Electro-assisted heterogeneous activation of persulfate by Fe/SBA-15 for the degradation of Orange II. J. Hazard Mater. 2016, 313, 209–218. [Google Scholar] [CrossRef]
- Luo, H.; Li, C.; Sun, X.; Chen, S.; Ding, B.; Yang, L. Ultraviolet assists persulfate mediated anodic oxidation of organic pollutant. J. Electroanal. Chem. 2017, 799, 393–398. [Google Scholar] [CrossRef]
- Govindan, K.; Raja, M.; Noel, M.; James, E.J. Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxide. J. Hazard Mater. 2014, 272, 42–51. [Google Scholar] [CrossRef]
- Li, X.; Tang, S.; Yuan, D.; Tang, J.; Zhang, C.; Li, N.; Rao, Y. Improved degradation of anthraquinone dye by electrochemical activation of PDS. Ecotox Environ. Safe 2019, 177, 77–85. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, W.; Qiu, J.; Jin, H.; Ma, H.; Li, Z.; Cang, D. Modeling and optimization study on sulfamethoxazole degradation by electrochemically activated persulfate process. J. Clean. Prod. 2018, 197, 297–305. [Google Scholar] [CrossRef]
- Yuan, S.; Liao, P.; Alshawabkeh, A.N. Electrolytic Manipulation of Persulfate Reactivity by Iron Electrodes for Trichloroethylene Degradation in Groundwater. Environ. Sci. Technol. 2014, 48, 656–663. [Google Scholar] [CrossRef] [Green Version]
- Tsitonaki, A.; Petri, B.; Crimi, M.; MosbÆK, H.; Siegrist, R.L.; Bjerg, P.L. In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 55–91. [Google Scholar] [CrossRef]
- Xu, X.-R.; Li, X.-Z. Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Sep. Purif. Technol. 2010, 72, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Silveira, J.E.; Zazo, J.A.; Casas, J.A. Coupled heat-activated persulfate—Electrolysis for the abatement of organic matter and total nitrogen from landfill leachate. Waste Manag. 2019, 97, 47–51. [Google Scholar] [CrossRef]
- Yousefi, N.; Pourfadakari, S.; Esmaeili, S.; Babaei, A.A. Mineralization of high saline petrochemical wastewater using Sonoelectro-activated persulfate: Degradation mechanisms and reaction kinetics. Microchem. J. 2019, 147, 1075–1082. [Google Scholar] [CrossRef]
- El-Zomrawy, A.A. Kinetic studies of photoelectrocatalytic degradation of Ponceau 6R dye with ammonium persulfate. J. Saudi Chem. Soc. 2013, 17, 397–402. [Google Scholar] [CrossRef]
- Chen, W.-S.; Huang, C.-P. Mineralization of dinitrotoluenes in aqueous solution by sono-activated persulfate enhanced with electrolytes. Ultrason. Sonochem. 2019, 51, 129–137. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ghanbari, F. Optimizing COD removal from greywater by photoelectro-persulfate process using Box-Behnken design: Assessment of effluent quality and electrical energy consumption. Environ. Sci. Pollut. Res. 2016, 23, 19350–19361. [Google Scholar] [CrossRef]
- Jaafarzadeh, N.; Ghanbari, F.; Alvandi, M. Integration of coagulation and electro-activated HSO5− to treat pulp and paper wastewater. Sustain. Environ. Res. 2017, 27, 223–229. [Google Scholar] [CrossRef]
- Hou, L.; Wang, L.; Royer, S.; Zhang, H. Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. J. Hazard Mater. 2016, 302, 458–467. [Google Scholar] [CrossRef]
- Liu, F.Z.; Yi, P.; Wang, X.; Gao, H.; Zhang, H. Degradation of Acid Orange 7 by an ultrasound/ZnO-GAC/persulfate process. Sep. Purif. Technol. 2018, 194, 181–187. [Google Scholar] [CrossRef]
- Duan, X.; Indrawirawan, S.; Kang, J.; Tian, W.; Zhang, H.; Duan, X.; Zhou, X.; Sun, H.; Wang, S. Synergy of carbocatalytic and heat activation of persulfate for evolution of reactive radicals toward metal-free oxidation. Catal. Today 2019, 355, 319–324. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, H.; Hou, L. Degradation of C. I. Acid Orange 7 in aqueous solution by a novel electro/Fe3O4/PDS process. J. Hazard Mater. 2014, 276, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Daneshvar, N.; Rasoulifard, M.H.; Khataee, A.R.; Hosseinzadeh, F. Removal of C.I. Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder. J. Hazard Mater. 2007, 143, 95–101. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Zhou, X.; Zhao, Q.; Jiang, W.; Wang, J.; He, L.; Ma, Y.; Yang, L.; Chen, Z. Understanding the nonradical activation of peroxymonosulfate by different crystallographic MnO2: The pivotal role of MnIII content on the surface. J. Hazard Mater. 2022, 439, 129613. [Google Scholar] [CrossRef] [PubMed]
- Sadik, W.A. Decolourization of an Azo Dye by Heterogeneous Photocatalysis. Process Saf. Environ. Prot. 2007, 85, 515–520. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kim, S.D.; Kim, H.Y.; Lim, S.J.; Lee, M.; Yu, S. Degradation and toxicity assessment of sulfamethoxazole and chlortetracycline using electron beam, ozone and UV. J. Hazard Mater. 2012, 227–228, 237–242. [Google Scholar] [CrossRef]
- Lin, H.; Niu, J.; Xu, J.; Li, Y.; Pan, Y. Electrochemical mineralization of sulfamethoxazole by Ti/SnO2-Sb/Ce-PbO2 anode: Kinetics, reaction pathways, and energy cost evolution. Electrochim. Acta 2013, 97, 167–174. [Google Scholar] [CrossRef]
System | Analytes | Analyte Conc. | Removal Efficiency (%/min) | Ref. | ||
---|---|---|---|---|---|---|
PS/Contact Time | EC/Contact Time | EC + PS/Contact Time | ||||
Fe-C/PS | 2,4-dinitrotoluene | 100 mg/L | ≈20/340 | - | 94/340 | [41] |
EC/Fe2+/PDS | Acid Orange 7 | 0.1 mM | 0/60 | 65.8/60 | 71.6/60 | [23] |
EC/Catalyst/PDS | Acid Orange 7 | 0.14 mM | 67.4/30 | - | 67.4/30 | [42] |
EC/PDS | Aniline | 60 mg/L | 18/420 | 21/420 | 55/420 | [43] |
EC/US/PDS | Aniline | 75 mg/L | 22/420 | - | 69/420 | [44] |
EC/PDS | Aniline | 0.45 mM | 20/150 | - | 98/150 | [45] |
EC/PDS | Atrazine | 5 μM | 0/30 | 36.3/30 | 78.2/30 | [31] |
EC/PDS | Atrazine | 2 μM | <10/20 | - | 90.6/10 | [46] |
EC/Fe3+/PDS | Bisphenol A | 0.22 mM | 0/60 | 0/60 | 26.3/60 | [29] |
EC/Catalyst/PDS | Bisphenol A | 0.1 mM | 4.1/60 | 1.8/60 | 7.6/60 | [47] |
EC/Catalyst/PMS | Bisphenol A | 50 μM | 0/80 | 8/80 | 41.6/80 | [48] |
EC/PDS | Carbamazepine | 5 μM | 9/30 | 82/30 | 88/20 | [49] |
EC/PDS | Carbamazepine | 5 μM | - | 65/60 | 81/30 | [50] |
EC/Fe3+/PMS | Carbamazepine | 0.04mM | 1.9/30 | 2.18/30 | 12.68/30 | [39] |
EC/PDS | Carbamazepine | 0.042 mM | 6.87/30 | 43.04/30 | 98.78/30 | [51] |
EC/PDS | Ciprofloxacin | 30 mg/L | 0/80 | ≈40/80 | 96/80 | [52] |
EC/PDS | Ciprofloxacin | 20 mg/L | 0/160 | 25/160 | 90.37/160 | [53] |
EC/PDS | Diuron | 10 μM | 0/15 | 15/15 | 77/15 | [40] |
EC/PDS | Dinitrotoluenes | 300 mg/L (TOC) | 4/480 | 45/480 | 70/480 | [54] |
EC/Catalyst/PDS | Orange Ⅱ | 100 mg/L | 0/60 | 89.4/60 | 91.2/60 | [28] |
EC/PDS | Oxcarbazepine | 20 μM | <1/10 | 9/10 | 75/10 | [30] |
EC/FeCl2/PDS | Phenol | 100 mg/L | 0/60 | - | <5/60 | [55] |
EC/PDS | Sulfamethoxazole | 5 μM | - | 58/30 | 96/30 | [56] |
EC/PDS | Tetracycline hydrochloride | 50 mg/L | 19.8/240 | 43.8/240 | ≈81/240 | [57] |
Analytes | Selected Current Densities | Optimal Current for Higher Removal Rates | Ref. |
---|---|---|---|
1-Butyl-1-methylpyrrolidinium chloride | 25, 50, 100, 150 mA | 150 mA | [77] |
2,4,6-Trichlorophenol | 50, 60, 70, 80, 90 mA | 90 mA | [78] |
2, 4-Dinitrophenol | 2, 4, 6, 8, 10 mA·cm−2 | 4 mA·cm−2 | [79] |
Acid Orange 7 | 8.4, 16.8, 33.6 mA·cm−2 | 33.6 mA·cm−2 | [23] |
Acid Orange 7 | 2, 4, 12, 16 mA·cm−2 | 16 mA·cm−2 | [42] |
Ampicillin | 5, 10, 25, 110 mA·cm−2 | 110 mA·cm−2 | [70] |
Atrazine | 1, 3, 5, 7, 9 mA·cm−2 | 9 mA·cm−2 | [31] |
Atrazine | 4, 8, 12, 16, 20, 24 mA·cm−2 | 24 mA·cm−2 | [80] |
Basic Red 18 | 100, 200, 300, 400 mA | 400 mA | [81] |
Bisphenol A | 1.68, 3.36, 5.04, 8.40 mA·cm−2 | 8.40 mA·cm−2 | [47] |
Bisphenol A | 8.4, 16.8, 33.6 mA·cm−2 | 33.6 mA·cm−2 | [29] |
Bisphenol A | 50, 100, 150 mA·m−2 | 150 mA·m−2 | [48] |
Carbamazepine | 0.1 × 105, 0.5 × 105, 1 × 105, 2 × 105 mA·m−2 | 2 × 105 mA·m−2 | [50] |
Carbamazepine | 3.57, 7.14, 10.71, 14.28 mA·cm−2 | 14.28 mA·cm−2 | [39] |
Ciprofloxacin | 0.75, 1.45, 2.3 mA·cm−2 | 1.45 mA·cm−2 | [52] |
Ciprofloxacin | 0.9, 1.55, 2.75, 4.25 mA·cm−2 | 2.75 mA·cm−2 | [53] |
Cu-EDTA | 0.1, 0.2, 0.5, 1.0 mA·cm−2 | 1.0 mA·cm−2 | [82] |
Diatrizoate | 1 × 105, 1.5 × 105, 2 × 105 mA·m−2 | 2 × 105 mA·m−2 | [74] |
Disperse Blue 3 | 5, 10, 20, 30, 40, 80 mA·cm−2 | 80 mA·cm−2 | [83] |
Diuron | 10, 20, 30, 40 mA | 40 mA | [40] |
Hexachlorocyclohexanes | 0, 10, 20 mA | 20 mA | [84] |
Orange Ⅱ | 5.0, 8.4, 11.8, 16.8 mA·cm−2 | 16.8 mA·cm−2 | [85] |
Orange Ⅱ | 1.68, 5.04, 8.40, 11.76, 16.80 mA·cm−2 | 16.8 mA·cm−2 | [28] |
Oxcarbazepine | 1.6–50.0 mA·cm−2 | 8.3 mA·cm−2 | [30] |
Phenol | 1, 3, 5, 10 mA·cm−2 | 10 mA·cm−2 | [61] |
Phenol | 140, 270, 540 mA·L−1 | 540 mA·L−1 | [60] |
Phenol | 20, 40, 80, 120 mA·cm−2 | 120 mA·cm−2 | [86] |
Pentachlorophenol | 15, 30, 45, 60, 75, 90 mA | 90 mA | [87] |
Reactive Brilliant Blue | 5, 7.5, 10, 20 mA·cm−2 | 20 mA·cm−2 | [88] |
Sulfamethoxazole | 10, 50, 100, 200 A·m−2 | 200 A·m−2 | [56] |
Sulfamethoxazole | 5, 10, 15, 20 mA | 20 mA | [89] |
Tetracycline hydrochloride | 6.67, 10, 13.33, 16.67 mA·cm−2 | 13.33 mA·cm−2 | [57] |
Trichloroethylene | −50, −25, −10, 0, 25, 50, 100 mA | 100 mA | [90] |
Analytes | Selected pH Values | Optimal Ph For Higher Removal Rates | Ref. |
---|---|---|---|
2, 4-Dinitrophenol | 3, 4, 5, 7, 8, 9, 11 | 3 | [79] |
2,4,6-Trichlorophenol | 3, 5, 7, 9, 11 | 9 | [78] |
2,4-dinitrotoluene | 2, 3, 5, 7, 9, 11 | 2 | [41] |
Acid Orange 7 | 3, 7, 9 | 3 | [23] |
Acid Orange 7 | 3, 6, 9, 11 | 3 | [42] |
Aniline | 3, 4, 5, 7 | 3 | [43] |
Aniline | 3, 4, 5, 7 | 3 | [44] |
Atrazine | 4, 6, 8, 10 | 4 | [31] |
Atrazine | 3, 5, 6.3, 7, 9, 11 | 3 | [80] |
Bisphenol A | 3, 6, 9 | 3 | [29] |
Bisphenol A | 3, 6.6, 9 | 3 | [48] |
Carbamazepine | 5, 7, 9 | 5 | [51] |
Carbamazepine | 3, 5, 7, 9, 11 | 3 | [39] |
Ciprofloxacin | 3, 5, 7, 9 | 5 | [52] |
Ciprofloxacin | 3, 5, 7, 9 | 7 | [53] |
Dinitrotoluenes | 0.5, 1, 2, 3 | 0.5 | [54] |
Disperse Blue 3 | 3, 6.3, 9, 12 | 12 | [83] |
Diuron | 3, 5, 7, 9, 11 | 3 | [40] |
Landfill leachate | 3.5, 6.5, 8.5, 12 | 3.5 | [93] |
Methyl orange | 3, 5, 7, 9 | 3 | [69] |
Orange Ⅱ | 2, 3, 6, 9 | 3 | [28] |
Orange Ⅱ | 3, 6, 7, 9 | 3 | [85] |
Oxcarbazepine | 3, 5, 7, 9, 11 | 3 | [30] |
Pentachlorophenol | 4.5, 6.5, 8.5 | 4.5 | [87] |
Petrochemical wastewater | 3, 5, 7, 9 | 3 | [94] |
Ponceau 6R | 0.5, 1, 2, 3 | 2 | [95] |
Reactive Brilliant Blue | 3, 6, 9, 11 | 6 | [88] |
Sodium dodecylbenzene sulfonate | 3, 6, 7, 9, 11 | 3 | [68] |
Sulfamethoxazole | 1, 2, 3, 4 | 3 | [89] |
Tetracycline hydrochloride | 2, 4, 7, 9 | 4 | [57] |
Analytes | Selected PS Concentrations | Optimal PS Concentration | Ref. |
---|---|---|---|
2, 4-dinitrophenol | 1, 2, 4, 5, 6, 8 mM | 5 mM | [79] |
2,4-dinitrotoluene | 0.037, 0.185, 0.37, 1.85, 3.7 mM | 0.185 mM | [41] |
Acid Orange 7 | 2, 4, 8, 12 mM | 12 mM | [23] |
Acid Orange 7 | 2.1, 4.2, 8.4 mM | 8.4 mM | [42] |
Ampicillin | 0.42, 1.05, 2.1 mM | 2.1 mM | [70] |
Aniline | 42, 84, 126, 168 mM | 126 mM | [43] |
Aniline | 42, 84, 105, 126 mM | 105 mM | [44] |
Aniline | 1.85, 3.7, 5.55, 7.4 mM | 7.4 mM | [45] |
Atrazine | 0.25, 0.5, 1, 2, 5 mM | 5 mM | [31] |
Atrazine | 0.3, 0.5, 1, 3, 5 mM | 5 mM | [46] |
Atrazine | 1, 2, 3, 4, 4.5 mM | 4.5 mM | [80] |
Bisphenol A | 1, 5, 10, 20 mM | 10 mM | [29] |
Bisphenol A | 5, 10, 15 mM | 15 mM | [48] |
Carbamazepine | 1, 2, 5 mM | 5 mM | [50] |
Carbamazepine | 0.5, 1, 5, 10, 50, 100, 150 mM | 100 mM | [51] |
Carbamazepine | 0.5, 1, 2, 4, 8 mM | 2 mM | [39] |
Dinitrotoluenes | 25.9, 37, 48.1, 63 mM | 63 mM | [54] |
Dinitrotoluenes | 84, 105, 126, 147 mM | 126 mM | [96] |
Diuron | 0.1, 0.25, 0.5, 0.75, 1 mM | 1 mM | [40] |
Greywater | 3, 4.5, 6, 7.5, 9 mM | 9 mM | [97] |
Hexachlorocyclohexanes | 0.5, 1, 2, 4 mM | 2 mM | [84] |
Methyl orange | 4, 6, 8, 10, 20 mM | 10 mM | [69] |
Orange Ⅱ | 4.2, 6.3, 8.4, 12.6, 16.8 mM | 16.8 mM | [28] |
Orange Ⅱ | 4.2, 8.4, 16.8 mM | 8.4 mM | [85] |
Orange G | 0.05, 0.5, 1, 5 mM | 5 mM | [66] |
Oxcarbazepine | 0.1, 0.25, 0.5, 0.75, 1 mM | 1 mM | [30] |
Pentachlorophenol | 33, 49, 69, 82, 99, 115 μM | 115 μM | [87] |
Ponceau 6R | 1, 1.5, 2, 3, 4 mM | 4 mM | [95] |
Pulp and paper wastewater | 2, 4, 6, 8 mM | 6 mM | [98] |
Reactive Brilliant Blue | 1, 4, 5, 10 mM | 10 mM | [88] |
Sodium dodecylbenzene sulfonate | 10, 25, 50, 100 mM | 25 mM | [68] |
Sulfamethoxazole | 0.1, 1, 2, 5 mM | 5 mM | [56] |
Tetracycline hydrochloride | 4.2, 8.4, 12.6, 16.8 mM | 12.6 mM | [57] |
Toluene | 10, 20, 30 mM | 30 mM | [59] |
Reactions | Ref. |
---|---|
Anode: | |
M + H2O → M(•OH) + H+ + e− | [74] |
2SO42− → S2O82− + 2e− | [25] |
SO42− →SO4•− + e− | [71] |
Cathode: | |
S2O82− + e−→SO4•− + SO42− | [82] |
O2 + 2H+ + 2e−→H2O2 | [51] |
H2O2→2•OH | [103] |
Radicals: | |
SO4•− + H2O →H+ + SO42− + •OH | [51] |
SO4•− + OH−→SO42− + •OH | [51] |
•OH + •OH→H2O2 | [103] |
SO4•− + SO4•−→S2O82− | [51] |
System | Analytes | C initial | Electricity Energy Consumption (kWh/m3) | Ref. |
---|---|---|---|---|
EC/Pyrite/PMS | 1-Butyl-1-methylpyrrolidinium chloride | 323.43 mg/L | 5.45 kWh/m3 | [77] |
EC/AIS/PDS | 2, 4-Dinitrophenol | 200 mg/L | 0.0336 kWh/m3 | [79] |
EC/Nano-Fe@NdFeB/AC/PDS | 2,4,6-Trichlorophenol | 10 mg/L | 7.44 kWh/m3 (TOC) | [78] |
EC/MnO2/PDS | Acid Orange 7 | 49 mg/L | 7.84 kWh/m3 | [42] |
EC/Fe3O4/PDS | Acid Orange 7 | 25 mg/L | 8.64 kWh/m3 | [102] |
EC/CuFe2O4/PDS | Atrazine | 9.92 mg/L | 0.21 kWh/g | [80] |
EC/Fe3+/PDS | Carbamazepine | 9.45 mg/L | 0.0788 kWh/m3 | [39] |
EC/Fe/SBA-15/PDS | Orange Ⅱ | 105.1 mg/L | 9.87 kWh/m3 | [85] |
EC/PDS | Sulfamethoxazole | 25.33 mg/L | 0.04 kWh/m3 | [89] |
EC/PDS | Tetracycline hydrochloride | 50 mg/L | 11.48 kWh/m3 | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Zheng, W.; Hu, G.; Liu, F.; Liu, S.; Yang, L.; Zhang, Z. Electrochemically Assisted Persulfate Oxidation of Organic Pollutants in Aqueous Solution: Influences, Mechanisms and Feasibility. Catalysts 2023, 13, 135. https://doi.org/10.3390/catal13010135
Sun J, Zheng W, Hu G, Liu F, Liu S, Yang L, Zhang Z. Electrochemically Assisted Persulfate Oxidation of Organic Pollutants in Aqueous Solution: Influences, Mechanisms and Feasibility. Catalysts. 2023; 13(1):135. https://doi.org/10.3390/catal13010135
Chicago/Turabian StyleSun, Jianting, Wei Zheng, Gang Hu, Fan Liu, Siyuan Liu, Lie Yang, and Zulin Zhang. 2023. "Electrochemically Assisted Persulfate Oxidation of Organic Pollutants in Aqueous Solution: Influences, Mechanisms and Feasibility" Catalysts 13, no. 1: 135. https://doi.org/10.3390/catal13010135
APA StyleSun, J., Zheng, W., Hu, G., Liu, F., Liu, S., Yang, L., & Zhang, Z. (2023). Electrochemically Assisted Persulfate Oxidation of Organic Pollutants in Aqueous Solution: Influences, Mechanisms and Feasibility. Catalysts, 13(1), 135. https://doi.org/10.3390/catal13010135