New In Situ Catalysts Based on Nitro Functional Pyrazole Derivatives and Copper (II) Salts for Promoting Oxidation of Catechol to o-Quinone
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Characterization Techniques
2.2. Synthesis and Characterization
2.2.1. Preparation of Compounds L1–L4
2.2.2. Characterization
3. Study of Conversion Reaction of Catechol to o-Quinone
3.1. Effect of Concentration
3.1.1. Catalytic Studies Using Ligand/Metal Ratio as 1L/1M in MeOH
3.1.2. Catalytic Studies Using Ligand/Metal Ratio as (2L/1M) in Methanol
3.2. Solvent Effect
3.3. Kinetic Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouroumane, N.; El Kodadi, M.; Touzani, R.; El Boutaybi, M.; Oussaid, A.; Hammouti, B.; Nandiyanto, A.B.D. New Pyrazole-Based Ligands: Synthesis, Characterization, and Catalytic Activity of Their Copper Complexes. Arab. J. Sci. Eng. 2022, 47, 269–279. [Google Scholar] [CrossRef]
- Titi, A.; Almutairi, S.M.; Touzani, R.; Messali, M.; Tillard, M.; Hammouti, B.; El Kodadi, M.; Eddike, D.; Zarrouk, A.; Warad, I. A new mixed pyrazole-diamine/Ni(II) complex, Crystal structure, physicochemical, thermal and antibacterial investigation. J. Mol. Struct. 2021, 1236, 130304. [Google Scholar] [CrossRef]
- Kaddouri, Y.; Abrigach, F.; Ouahhoud, S.; Benabbes, R.; El Kodadi, M.; Alsalme, A.; Al-Zaqri, N.; Warad, I.; Touzani, R. Synthesis, characterization, reaction mechanism prediction and biological study of mono, bis and tetrakis pyrazole derivatives against Fusarium oxysporum f. sp. Albedinis with conceptual DFT and ligand-protein docking studies. Bioorg. Chem. 2021, 110, 104696. [Google Scholar] [CrossRef]
- Ouadi, Y.E.; Lamsayah, M.; Bendaif, H.; Benhiba, F.; Touzani, R.; Warad, I.; Zarrouk, A. Electrochemical and theoretical considerations for interfacial adsorption of novel long chain acid pyrazole for mild steel conservation in 1 M HCl medium. Chem. Data Collec. 2021, 31, 100638. [Google Scholar] [CrossRef]
- Kaddouri, Y.; Bouchal, B.; Abrigach, F.; El Kodadi, M.; Bellaoui, M.; Touzani, R. Synthesis, Molecular Docking, MEP and SAR Analysis, ADME-Tox Predictions, and Antimicrobial Evaluation of Novel Mono-and Tetra-Alkylated Pyrazole and Triazole Ligands. J. Chem. 2021, 2021, 6663245. [Google Scholar] [CrossRef]
- Titi, A.; Messali, M.; Alqurashy, B.A.; Touzani, R.; Shiga, T.; Oshio, H.; Fettouhi, M.; Rajabi, M.; Almalki, F.A.; Ben Hadda, T. Synthesis, characterization, X-Ray crystal study and bioctivities of pyrazole derivatives: Identification of antitumor, antifungal and antibacterial pharmacophore sites. J. Mol. Struct. 2020, 1205, 127625. [Google Scholar] [CrossRef]
- Kaddouri, Y.; Abrigach, F.; Yousfi, E.B.; El Kodadi, M.; Touzani, R. New thiazole, pyridine and pyrazole derivatives as antioxidant candidates: Synthesis, DFT calculations and molecular docking study. Heliyon 2020, 6, e03185. [Google Scholar] [CrossRef] [Green Version]
- Khoutoul, M.; Djedouani, A.; Lamsayah, M.; Abrigach, F.; Touzani, R. Liquid-liquid extraction of metal ions, DFT and TD-DFT analysis for some pyrane derivatives with high selectivity for Fe(II) and Pb(II). Sep. Sci. Technol. 2016, 51, 1112–1123. [Google Scholar] [CrossRef]
- Abrigach, F.; Bouchal, B.; Riant, O.; Macé, Y.; Takfaoui, A.; Radi, S.; Oussaid, A.; Bellaoui, M.; Touzani, R. New N,N,N′,N′-tetradentate pyrazoly agents: Synthesis and evaluation of their antifungal and antibacterial activities. Med. Chem. 2016, 12, 83–89. [Google Scholar] [CrossRef]
- Takfaoui, A.; Zhao, L.; Touzani, R.; Dixneuf, P.H.; Doucet, H. Palladium-catalysed direct diarylations of pyrazoles with aryl bromides: A one step access to 4,5-diarylpyrazoles. Tetrahedron Lett. 2015, 55, 1697–1701. [Google Scholar] [CrossRef]
- Penning, T.D.; Talley, J.J.; Bertenshaw, S.R.; Carter, J.S.; Collins, P.W.; Docter, S.; Graneto, M.J.; Lee, L.F.; Miyashiro, J.M.; Rogers, R.S.; et al. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: Identification of 4-[5-(4-methylphenyl)- 3(trifluoromethyl)-1h-pyrazol-1-yl]benzenesulfonamide (sc-58635, celecoxib). J. Med. Chem. 1997, 40, 1347–1365. [Google Scholar] [CrossRef]
- Lv, P.-C.; Li, H.-Q.; Sun, J.; Zhou, Y.; Zhu, H.-L. Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents. Bioorg. Med. Chem. 2010, 18, 4606–4614. [Google Scholar] [CrossRef]
- Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; dos Santos, M.S.; Boechat, N.; Bernardino, A.M.R. Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem. 2017, 25, 5891–5903. [Google Scholar] [CrossRef]
- Zavozin, A.G.; Ignat’ev, N.V.; Schulte, M.; Zlotin, S.G. Synthesis of novel tridentate pyrazole–bipyridine ligands for Co-complexes as redox-couples in dye-sensitized solar cells. Tetrahedron 2015, 71, 8551–8556. [Google Scholar] [CrossRef]
- Megyes, T.; May, Z.; Schubert, G.; Grósz, T.; Simándi, L.I.; Radnai, T. Synthesis and structure study of some catecholase-mimetic iron complexes. Inorg. Chim. Acta 2006, 359, 2329–2336. [Google Scholar] [CrossRef]
- Ayad, M.I. Synthesis, characterization and catechol oxidase biomimetic catalytic activity of cobalt (II) and copper (II) complexes containing N2O2 donor sets of imine ligands. Arab. J. Chem. 2016, 9, S1297–S1306. [Google Scholar] [CrossRef] [Green Version]
- Dey, S.K.; Mukherjee, A. The synthesis, characterization and catecholase activity of dinuclear cobalt (II/III) complexes of an O-donor rich Schiff base ligand. New J. Chem. 2014, 38, 4985–4995. [Google Scholar] [CrossRef] [Green Version]
- Saddik, R.; Abrigach, F.; Benchat, N.; El Kadiri, S.; Hammouti, B.; Touzani, R. Catecholase activity investigation for pyridazinone-and thiopyridazinone-based ligands. Res. Chem. Inter. 2012, 38, 1987–1998. [Google Scholar] [CrossRef]
- Mouadili, A.; Attayibat, A.; El Kadiri, S.; Radi, S.; Touzani, R. Catecholase activity investigations using in situ copper complexes with pyrazole and pyridine based ligands. Appl. Cat. A Gen. 2013, 454, 93–99. [Google Scholar] [CrossRef]
- Marion, R.; Saleh, N.M.; Le Poul, N.; Lavastre, D.; Geneste, F. Rate enhancement of the catechol oxidase activity of a series of biomimetic monocopper (II) complexes by introduction of non-coordinating groups in N-tripodal ligands. New J. Chem. 2012, 36, 1828–1835. [Google Scholar] [CrossRef]
- Sarkar, S.; Sim, A.; Kim, S.; Lee, H.I. Catecholase activity of a self-assembling dimeric Cu (II) complex with distant Cu (II) centers. J. Mol. Cat. A Chem. 2015, 410, 149–159. [Google Scholar] [CrossRef]
- Allam, A.; Dechamps-Olivier, I.; Behr, J.B.; Dupont, L.; Plantier-Royon, R. Thermodynamic, spectroscopic studies and catechol oxidase activity of copper (II) complexes with amphiphilic d-galacturonic acid derived ligands. Inorg. Chim. Acta 2011, 366, 310–319. [Google Scholar] [CrossRef]
- Titi, A.; Al-Noaimi, M.; Kaddouri, Y.; El Ati, R.; Yousfi, E.B.; El Kodadi, M.; Touzani, R. Study of the catecholase catalytic properties of copper (II) complexes prepared in-situ with monodentate ligands. Mater. Today Proc. 2019, 13, 1134–1142. [Google Scholar] [CrossRef]
- El Boutaybi, M.; Titi, A.; Alzahrani, A.Y.A.; Bahari, Z.; Tillard, M.; Hammouti, B.; Touzani, R. Aerial Oxidation of Phenol/Catechol in the Presence of Catalytic Amounts of [(Cl)2Mn(RCOOET)], RCOOET=Ethyl-5-Methyl-1-(((6-methyl-3-nitropyridin-2-yl)amino)methyl)-1Hpyrazole-3-carboxylate. Catalysts 2022, 12, 1642. [Google Scholar] [CrossRef]
- Titi, A.; Rachid Touzani, R.; Moliterni, A.; Giacobbe, C.; Baldassarre, F.; Taleb, M.; Al-Zaqri, N.; Zarrouk, A.; Warad, I. Ultrasonic Clusterization Process to Prepare [(NNCO)6Co4Cl2] as a Novel Double-Open-Co4O6 Cubane Cluster: SXRD Interactions, DFT, Physicochemical, Thermal Behaviors, and Biomimicking of Catecholase Activity. ACS Omega 2022, 7, 32949. [Google Scholar] [CrossRef]
- Titi, A.; Shiga, T.; Oshio, H.; Touzani, R. Synthesis of novel Cl2Co4L6 cluster using 1-hydroxymethyl-3, 5-dimethylpyrazole (LH) ligand: Crystal structure, spectral, thermal, Hirschfeld surface analysis and catalytic oxidation evaluation. J. Mol. Struct. 2020, 1199, 126995. [Google Scholar] [CrossRef]
- Titi, A.; Warad, I.; Tillard, M.; Messali, M.; Touzani, R. Inermolecular interaction in [C6H10N3]2[CoCl4] complex: Synthesis, XRD/HSA relation, spectral and catecholase catalytic analysis. J. Mol. Struct. 2020, 1217, 128422. [Google Scholar] [CrossRef]
- Titi, A.; Oshio, H.; Messali, M.; Touzani, R.; Warad, I. Synthesis and XRD of Novel Ni 4 (µ 3-O) 4 Twist Cubane Cluster Using Three NNO Mixed Ligands: Hirshfeld, Spectral, Thermal and Oxidation Properties. J. Cluster Sci. 2020, 32, 227–234. [Google Scholar] [CrossRef]
- El Kodadi, M.; Malek, F.; Touzani, R.; Ramdani, A. Synthesis of new tripodal ligand 5-(bis (3, 5-dimethyl-1H-pyrazol-1-ylmethyl) amino) pentan-1-ol, catecholase activities studies of three functional tripodal pyrazolyl N-donor ligands, with different copper (II) salts. Cat. Commun. 2008, 9, 966–969. [Google Scholar] [CrossRef]
- Elmsellem, H.; Harit, T.; Aouniti, A.; Malek, F.; Riahi, A.; Chetouani, A.; Hammouti, B. Adsorption properties and inhibition of mild steel corrosion in 1 M HCl solution by some bipyrazolic derivatives: Experimental and theoretical investigations. Prot. Met. Phys. Chem. Sur. 2015, 51, 873–884. [Google Scholar] [CrossRef]
- Touzani, R.; Ramdani, A.; Ben-Hadda, T.; El Kadiri, S.; Maury, O.; Le Bozec, H.; Dixneuf, P.H. Efficient synthesis of new nitrogen donor containing tripods under microwave irradiation and without solvent. Synth. Commun. 2001, 31, 1315–1321. [Google Scholar] [CrossRef]
- Bouabdallah, I.; Touzani, R.; Zidane, I.; Ramdani, A. Synthesis of new tripodal ligand: N,N-bis [(1, 5-dimethylpyrazol-3-yl) methyl] benzylamine.: Catecholase activity of two series of tripodal ligands with some copper (II) salts. Catal. Commun. 2007, 8, 707–712. [Google Scholar] [CrossRef]
- Harit, T.; Malek, F.; El Bali, B.; Khan, A.; Dalvandi, K.; Marasini, B.P.; Noreen, S.; Malik, R.; Khan, S.; Choudhary, M.I. Synthesis and enzyme inhibitory activities of some new pyrazole-based heterocyclic compounds. Med. Chem. Res. 2012, 21, 2772–2778. [Google Scholar] [CrossRef]
- El Kodadi, M.; Benamar, M.; Bouabdallah, I.; Zyad, A.; Malek, F.; Touzani, R.; Ramdani, A.; Melhaoui, A. New synthesis of two tridentate bipyrazolic compounds and their cytotoxic activity tumor cell lines. Nat. Prod. Res. 2007, 21, 947–952. [Google Scholar] [CrossRef]
- Kaddouri, Y.; Haddari, H.; Titi, A.; Yousfi, E.B.; Chetouani, A.; Touzani, R. Catecholase catalytic properties of copper (II) complexes prepared in-situ with heterocyclic ligands: Experimental and DFT study. Mor. J. Chem. 2020, 8, 8-1. [Google Scholar]
- Harit, T.; Isaad, J.; Malek, F. Novel efficient functionalized tetrapyrazolic macrocycle for the selective extraction of lithium cations. Tetrahedron 2016, 72, 2227–2232. [Google Scholar] [CrossRef]
- Ding, H.Y.; Cheng, H.J.; Wang, F.; Liu, D.X.; Li, H.X.; Fang, Y.Y.; Zhao, W.; Lang, J.P. [(bmppy) Cu (μ-I)]2 (bmppy = 2,6-bis (1-methyl-1H-pyrazol-3-yl) pyridine): Synthesis, crystal structure and its catalytic performance for MMA polymerization. J. Organomet. Chem. 2013, 741, 1–6. [Google Scholar] [CrossRef]
- Titi, A.; Touzani, R.; Moliterni, A.; Ben Hadda, T.; Messali, M.; Benabbes, R.; Berredjem, M.; Bouzina, A.; Al-Zaqri, N.; Taleb, M.; et al. Synthesis, Structural, Biocomputational Modeling and Antifungal Activity of Novel Armed pyrazoles. J. Mol. Struct. 2022, 1264, 133156. [Google Scholar] [CrossRef]
- Zerrouki, A.; Touzani, R.; Bouabdallah, I.; El Kadiri, S.; Ghalem, S. Synthesis of new derivatized pyrazole based ligands and their catecholase activity studies. Arab. J. Chem. 2011, 4, 459–464. [Google Scholar] [CrossRef] [Green Version]
- Banu, K.S.; Mukherjee, M.; Guha, A.; Bhattacharya, S.; Zangrando, E.; Das, D. Dinuclear copper(2) complexes:solvent dependent catecholase activity. Polyhedron 2012, 45, 245–254. [Google Scholar] [CrossRef]
- Boussalah, N.; Touzani, R.; Bouabdallah, I.; Ghalem, S.; El Kadiri, S. Oxidation catalytic properties of new amino acid based on pyrazole tripodal ligands. Inter. J. Acad. Res. 2009, 1, 137–143. [Google Scholar]
- Takfaoui, A.; Lamsayah, M.; El Ouafi, A.; Oussaid, A.; Kabouche, Z.; Touzani, R. N,N′-bipyrazole compounds: Effect of concentration, solvent, ligand and metal anions on the catecholase properties. J. Mater. Environ. Sci. 2015, 6, 2129–2136. [Google Scholar]
L/M | Cu(NO3)2 | Cu(CH3COO)2 | CuSO4 | CuCl2 |
---|---|---|---|---|
L1 | 0.6667 | 1.9167 | 3.0104 | 0.1458 |
L2 | 12.5521 | 14.010 | 14.115 | 4.1042 |
L3 | 1.1875 | 0.5625 | 4.5833 | 4.5729 |
L4 | 0.1562 | 1.4166 | 0.7292 | 1.7083 |
2L/1M | Cu(NO3)2 | Cu(CH3COO)2 | CuSO4 | CuCl2 |
---|---|---|---|---|
L1 | 1.1041 | -------- | 1.3854 | -------- |
L2 | 22.3956 | 32.2917 | 16.6563 | 1.3021 |
L3 | 6.8333 | 4.4895 | -------- | -------- |
L4 | 0.4375 | 1.5104 | 0.0937 | -------- |
2L2/Copper (II) Salt | Solvents | V (μmol·L−1·min−1) |
---|---|---|
2L2/Cu(NO3)2 | MeOH | 22.3958 |
THF | 1.1667 | |
CH3CN | 0.0417 | |
CHCl3 | 0.3021 | |
2L2/Cu(CH3COO)2 | MeOH | 32.2917 |
THF | 5.5625 | |
CH3CN | 0.0417 | |
CHCl3 | 0.1458 | |
2L2/CuSO4 | MeOH | 16.6563 |
CH3CN | 0.1458 | |
CHCl3 | 0.2604 | |
2L2/CuCl2 | MeOH | 0.1302 |
THF | 0.1812 | |
CH3CN | 0.0021 | |
CHCl3 | 0.0208 |
2L2/Cu(II) Salt | Vmax (μmol·L−1·min−1) | Km (mol·L−1) |
---|---|---|
2L2/Cu(NO3)2 | 32.86 | 0.04 |
2L2/Cu(CH3COO)2 | 41.67 | 0.02 |
2L2/CuSO4 | 33.56 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Titi, A.; Zaidi, K.; Alzahrani, A.Y.A.; El Kodadi, M.; Yousfi, E.B.; Moliterni, A.; Hammouti, B.; Touzani, R.; Abboud, M. New In Situ Catalysts Based on Nitro Functional Pyrazole Derivatives and Copper (II) Salts for Promoting Oxidation of Catechol to o-Quinone. Catalysts 2023, 13, 162. https://doi.org/10.3390/catal13010162
Titi A, Zaidi K, Alzahrani AYA, El Kodadi M, Yousfi EB, Moliterni A, Hammouti B, Touzani R, Abboud M. New In Situ Catalysts Based on Nitro Functional Pyrazole Derivatives and Copper (II) Salts for Promoting Oxidation of Catechol to o-Quinone. Catalysts. 2023; 13(1):162. https://doi.org/10.3390/catal13010162
Chicago/Turabian StyleTiti, Abderrahim, Kaoutar Zaidi, Abdullah Y. A. Alzahrani, Mohamed El Kodadi, El Bekkaye Yousfi, Anna Moliterni, Belkheir Hammouti, Rachid Touzani, and Mohamed Abboud. 2023. "New In Situ Catalysts Based on Nitro Functional Pyrazole Derivatives and Copper (II) Salts for Promoting Oxidation of Catechol to o-Quinone" Catalysts 13, no. 1: 162. https://doi.org/10.3390/catal13010162
APA StyleTiti, A., Zaidi, K., Alzahrani, A. Y. A., El Kodadi, M., Yousfi, E. B., Moliterni, A., Hammouti, B., Touzani, R., & Abboud, M. (2023). New In Situ Catalysts Based on Nitro Functional Pyrazole Derivatives and Copper (II) Salts for Promoting Oxidation of Catechol to o-Quinone. Catalysts, 13(1), 162. https://doi.org/10.3390/catal13010162