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Abstract: Three-dimensional nanomaterials of desired structural/morphological properties and
highly porous with a high specific surface area are important in a variety of applications. In this
work, glycerol-mediated self-growth of 3-D dandelion flower-like nickel chloride (NiCl,) from nickel-
foam (NiF) is obtained for the first time using a room-temperature (27 °C) processed wet chemical
method for electrocatalysis application. Glycerol-mediated self-grown NiCl, flowers demonstrate
an excellent electrocatalytic performance towards the hydrogen evolution reaction (HER), which is
much superior to the NiF (303 mV) and NiCl, electrode prepared without glycerol (208 mV) in the
same electrolyte solution. With a Tafel slope of 41 mV dec~!, the NiCl, flower electrode confirms
improved reaction kinetics as compared to the other two electrodes, i.e., NiF (106 mVdec™1) and
NiCl, obtained without glycerol (56 mV dec™1). The stability of the glycerol-based NiCl, electrode
has further been carried out for 2000 cycles with the overpotential diminution of just 8 mV, approving
an electrocatalyst potential of glycerol-based NiCl, electrode towards HER kinetics. This simple and
easy growth process involves nucleation, aggregation, and crystal growth steps for producing NiCl,
nanostructures for electrocatalytic water splitting application through the HER process.

Keywords: self-grown nanostructures; NiCly; structural elucidation and morphology evolution;
electrocatalysis

1. Introduction

The large-scale reliance on fossil fuels, and their predictable reduction, is of serious
concern not only for worldwide environmental pollution but also the energy crisis, which
has encouraged researchers to look for new renewable and clean energy resources [1-4].
Hydrogen is a viable alternative to fossil fuels [5,6]. After water electrolysis, high-purity
hydrogen evolution reactions (HER) take place at the cathode, while the anode produces
oxygen evolution reactions (OER). Both HER and OER kinetics are essential for the overall
water-splitting process. Because the hydrogen adsorption free energy on these metal surfaces
is thermally neutral, platinum group metals are known to be the best HER catalysts [6,7]. Due
to the high cost of platinum, its use as an HER catalyst has been substantially limited [8-15].
The development and synthesis of HER catalysts with high catalytic activity are some of the
top issues for researchers across the globe. Versatile nickel-based electrodes, including NiS,,
NiO, NiSe, etc., have widely been envisaged for HER as well as OER electrocatalysts [16-22].
An electrocatalyzer assembly consisting of a cathode (platinum—carbon) for the HER with
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zero overpotential and an anode (ruthenium oxide/iridium oxide) for the OER with a
1.23 V overpotential for water splitting (at 10 mA cm~2 current density) is considered to be a
standard measurement [7]. To-date, very few reports describing the use of self-supported Ni-
based electrocatalysts in HER studies are known. For example, Zhu et al. revealed an in-situ
chemical etching (ICE) approach for obtaining 3D Ni3S, superstructures (needle array and
leaf pattern) on a nickel-foam (NF) substrate for probable HER/OER catalyst with the lowest
overpotential of 182/340 mV [23]. Shinde et al. have grown promising NiF, nanorod arrays
directly on a 3D NF via a reduction procedurethat obtained172 mV HER overpotential [24].
According to Wang et al., a NiS/NiF electrode delivered 158 mV overpotential for the HER
and 50 mV overpotential for the OER [25]. These processes produce only one form of
nanostructure, and their sophisticated customization necessitates the precursor composition
ratio variation [26—41]. If the product is in powder form, several annealing courses are
required to remove the binders, which eventually can reduce electrochemical performance
by obstructing the porosity of the employed matrix or host materials.

This issue has been resolved in this manuscript to some limit by self-growing dandelion
flower-like NiCl,@NjiF nanostructured electrode material at room-temperature (25°C) in
the presence of glycerol. The use of glycerol demonstrates a significant impact on the
shape, surface area, and electrochemical performance of 3D NiCl,@NiF nanostructure over
pristine NiF and NiCl,@NiF (obtained without glycerol) electrodes. Glycerol in a precursor
solution can aid in the formation of a well-controlled dandelion flower-like nanostructure.
We present a simple and scalable self-grown wet chemical, i.e., hydrothermal synthesis
method, for obtaining the NiCl,@NiF electrode, which is intended for water splitting with
a low overpotential of 176 mV for HER electrocatalysis with a Tafel slope of 41 mV dec™!
and long-term stability up to 2000 cycles.

2. Results
2.1. Morphology Evolution Studies

The FE-SEM depictions of the NiCl,@NiF electrodes obtained with and without
glycerol are shown in Figure 1. From Figure 1a, several nanorods are interlocked with each
other and well-cover the 3D NiF skeleton. The diameters of these nanorods are found to
be in the range of 1-3 um, and the average length is 10 (£4) um. The compact nanorod
structure of this electrode may offer a smaller surface area and hence may seriously impact
on its electrochemical performance. Moreover, the ion percolation is complicated with the
present form of nanorods. So, it is hopefully possible to control the NiCl, nanostructure
using glycerol as a surfactant.

As shown in Figure 1b, well-controlled parallel and conical arranged nanorods are
grown together to form dandelion flowers on the NiF (see Figure 1(b-1) for a closer view).
Some NiF spaces are exposed, suggesting the selective growth of NiCl, for obtaining
dandelion flower-like architecture from NiF without adding any nickel salt. Compared
with Figure 1a, the dandelion flowers are uniformly distributed on the NiF substrate sur-
face, suggestinga decrease in the self-aggregation of NiCl,, which is totally disappeared
(Figure 1(b,b-1)). Vertically inclined nanorods are confirmed in the dandelion flowers.
These upright standing nanorods have an average height of 10 (£3) um with a separation
distance of 5-10 um (see Figure 1(b-2)), which will effectively help the deep penetra-
tion of the electrolyte ion for majority access and hassle-free charge/mass transportation.
Figure S1 shows the related FE-SEM-assisted EDX elemental mapping measurements of
the NiCl; electrodes obtained with and without glycerol (a, a-2 and b, b-2). Both Ni and
Cl elements are evenly distributed over the NiCl, electrode surface (with and without
glycerol) in a 1:2 stoichiometric ratio, indicating that the 3D NiF surface has converted to
NiCl,. The TEM image of the NiCl, sample obtained with glycerol, as shown in Figure 1c,
clearly displays a dandelion flower-like nanostructure, which is constructed by several
nanorods. As screened at higher magnification images, these interconnected nanorods
are well-distinguished from one another. The HR-TEM image shown in Figure 1c is a
TEM image of the NiCl, obtained with glycerol where a dandelion flower-like morphology,
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consistent with the FE-SEM image, is constructed by the nanorods, which is consistent with
the above FE-SEM observations as shown in the Figure 1b.

Figure 1. [(a,a-1,b,b-1)] False FE-SEM images of NiCl, obtained with and without glycerol at different
magnifications, and (c¢) TEM image; (c-1) HR-TEM (inset shows SEAD pattern) of NiCl, electrode
prepared with glycerol.

The formation of the NiCl, is confirmed by HR-TEM imaging (Figure 1(c,c-1)) as the
visible lattice fringes with an interlayer spacing of 0.271 nm, in close agreement with the
XRD result (discussed later), are observed. The same part of the nanorods, as seen in the
HR-TEM image, does not have clearly reflected lattice fringes, suggesting the presence of
an amorphous or non-crystallineNiCl,. The well-ordered circular arrays of lattice points in
the selected-area electron diffraction pattern (inset of Figure 1(c-1)) are noted, indicating
the significant single crystallinity of the NiCl, nanorods [32]. The above results suggest
that the formation process of the NiCl, dandelion flowers strongly depends on the use
of glycerol in the precursor solution, which has been described as a growth process (see
Scheme 1), in which the use of an appropriate amount of glycerol with acetone to form a
uniform and transparent mixed solution can act as a micro-emulsion. This can be confirmed
to be a Tyndall-effect-free and miscible solvent under thermodynamic equilibrium [40], so
it is reasonable to control the self-aggregation of a NiCl, dandelion flower in precursor
solution through the following reaction steps. The NiF is initially oxidized to create
nickel ions on the surface when dipped in a homogeneous solution containing acetone,
glycerol, and hydrochloric acid (Equation (1)). Glycerol surfactant and hydrochloric acid
are disintegrated in acetone at the same time, yielding glycerol, chlorine, and hydrogen
free radical ions (see Equations (2) and (3)). Furthermore, Ni* ions serve as nucleation
sites, attracting glycerol surfactant molecules to create an intermediate complex known
as Ni[O-CH,-CH(OH)-CH,-OH]s. Furthermore, this intermediate combination transfers
electrons to Cl” ions, converting NiCl, primary nanorods on the NiF surface, which serves
as a basic mother root for the growth of a dandelion flower NiCl, nanostructure (see
bottom reaction pathway of schematic 1). As time proceeds, seed nuclei will grow in the
vertical direction without aggregation under the control of the glycerol surfactant (see
Scheme 1), forming dandelion flower-type NiCl,, which is summarized in flowing reaction
kinetics [32]. On the other hand, in the case of the NiCl, sample prepared without glycerol
surfactant, the growth of the NiCl, nanorods is out of control; hence the formation of
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scattered and irregular nanorods over the NiF surface (see upper reaction pathway in
Scheme 1) is seen. A very similar type of growth mechanism for the Fe;O3 nanoparticles
obtained in the presence of glycerol has been reported elsewhere [32,40].

Ni — foam — Ni** 1

[HO — CH, — CH(OH) — CH,; — OH] <+ [HO — CH, — CH(OH) —CH, — O] + H*  (2)
HCl — H' +ClI™ (3)

Ni*"+3[HO — CH, — CH(OH) — CH, — O]~ — Ni[O — CH, — CH(OH) — CH, — OHJ;  (4)

Ni[O — CH, — CH(OH) — CH, — OHJ,; 4+ 2C1~ — NiCl, ®)

- - - -,

Crystal growth

Nucleation Aggregation

e e e e e e e e e e

-~

/
4

Scheme 1. Self-growth of NiCl,@NiF nanostructures with and without glycerol surfactant.

2.2. Structural Elucidation

Figure 2 confirms the X-ray diffraction patterns of the NiCl, electrode materials on
the NiF obtained with and without glycerol (A and B). Two intensive peaks, marked as
symbol ‘A’, of metallic nickel (see Figure 2a(C)) in all patterns are recognized ((JCPDS
card no. 04-0850)). The newly reflected diffraction peaks denoted with a **’ symbol and
positioned at a different 2-theta location according to JCPDS card no. 01-072-0044 are
assigned to NiCl,. According to the XRD results, the intensity of the diffraction peak in the
glycerol-meditated NiCl, sample is higher compared to the non-glycerol-involved sample,
showing higher crystallinity in the prior over the latter. The detailed surface optimization
of the glycerol-mediated NiCl, electrode was obtained using XPS, and the corresponding
results are presented in Figure 2b—d. The presence of Ni and Cl elements is confirmed by the
survey spectrum (Figure 2b). The deconvoluted Ni 2p high-resolution spectrum (Figure 2c)
adduces two major peaks at 856.3 and 874.1 eV for Ni 2p3,, and Ni 2Py /, respectively, with
a spin energy separation distance of 17.8 eV. The satellite peaks at 862.2 and 882.5 eV, which
are in good agreement with previous findings, are also evidenced [32].
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Figure 2. (a) XRD patterns (A and B) electrode with and without glycerol NiCl, and C (i.e., NiF),
(b) full XPS spectrum survey, (c) Ni 2p, (d) Cl, (e) BET and (f) pore size distribution of electrode with
glycerol, respectively.

The prominent peak obtained at 198.56 eV in the CI high-resolution spectrum indi-
cates that NiCl, develops on the NiF skeleton during the self-growth process at ambient
temperature. The specific surface area (IV-type isotherm and Hj hysteresis type), pore-size
distribution, and pore surface area estimations of the optimized with glycerol-mediated
NiCl, electrode determined by N, adsorption—-desorption measurements are, respectively,
15.98 ng’l, 7.4 nm, and 47.66 mZg’1 (Figure 2e) [32]. The nature of the adsorption and
the desorption branches is assigned to the mesoporous behavior [32].

2.3. HER Activity

Furthermore, NiCl, electrocatalysts i.e., prepared with and without glycerol were uti-
lized to study the HER water catalysis activity in 1.0 M KOH electrolyte solution (Figure 3)
and compared with pristine NiF.

The polarization curves of the as-prepared with and without glycerol-mediated NiCl,
electrode materials are shown in Figure 3a. Both electrode materials demonstrate consid-
erable HER activity. As compared to the nanorod-type NiCl, (208 mV and pristine NiF
(303 mV) electrodes, the ‘with dandelion flower-like NiCl, electrode reveals an enhanced
electrocatalytic activity with as small as 176 mV overpotential, proving an enhancement
in electrocatalytic activity due to the change in morphology caused by the glycerol in-
corporation of the NiCl, electrode for HER. The Tafel slopes for the corresponding elec-
trode materials, as shown in Figure 3b, are lowered from 41 mV dec™! to 57 mV dec!
when the HER rate is increased (see supporting information (SI) for more details on the
equations used for computation). The Volmer-Heyrovsky mechanism is obeyed on the
electrode surface, as evidenced by the tiny Tafel slope of 41 mVdec™! [39-42]. As shown in
Figure 3¢, the electrochemical impedance spectroscopy (EIS) analysis performed for the
three aforementioned electrodes from the 100 kHz to 10 kHz frequency range with a po-
tential amplitude of 5 mV adduces clear and visible difference. Compared to the NiCl,
obtained without glycerol and pristine NiF electrodes, the glycerol-mediated NiCl, elec-
trode has low equivalent series resistance (2.62 (2) and 1.78 € charge transfer resistance, the
NiCl, electrode obtained with glycerol has improved electron mobility and electrocatalytic
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activity [24,41]. The cyclability test of the dandelion flower-type NiCl, electrocatalyst for
HER was further examined by successive CV plots in a three-electrode system at a scan
rate of 10 mV s~ for 2000 cycles (Figure 3d). A negligible decrease of 8 mV has been
noticed in the 1st and 2000th polarization curves after long-term HER activity scanning,
demonstrating its excellent HER catalytic ability with moderate chemical stability. The inset
of Figure 3d presents a genuine photograph of the three-electrode system used for the elec-
trocatalytic study, where a clear progression of oxygen bubble evaluation, indicating strong
HER activity, is confirmed. This obtained over-potential is comparable with those reported
in the literature (Table 1). According to the electrocatalysis results, the glycerol-containing
NiCl, electrode exhibits excellent catalytic activity and stability towards the HER for several
reasons (Scheme 2), which are as follows; (i) the porous nano-array structure of dandelion
flower with a high surface area results in a greater number of active sites for electrocatalytic
activity, (ii) the direct binder-free growth of mesoporous dandelion flower-like NiCl, on 3D
conductive NiF substrate provides good connectivity with zero dead volume, (iii) the direct
deposition of the NiCl, dandelion flower on the NiF surface and the close interconnection
of these nanorods, forming a network that maintains good structural stability with efficient
electron transport, and (iv) the room-temperature NiCl, synthesis approach as shown in
Scheme 2 clearly depicts the important features of the dandelion flower-type structure for
better catalytic performance.
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Figure 3. (a) HER polarization curves, (b) Tafel plots, and (c) EIS spectroscopy measurements of NiF
and NiCl, (with and without glycerol) electrode materials. (d) Cyclic stability test (inset shows the
real-time image of H; evolution reaction) of dandelion flower-type NiCl,.
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Table 1. The comparative set up showing HER activities of present work with reported data.

Tafel Slope

Catalysts Electrolyte n (mV) (mV dec-1) (mA cm-2) Ref
Ni, P@NSG 1.0 M KOH 110 43 10 [42]
NiFeCo 1.0 M KOH 108 64 10 [43]
NiS/Ni,P/carbon cloth 1.0 M KOH 111 78.1 20 [44]
NiS/NiS, 1.0 M KOH 248 142.3 10 [45]
Fe- NiS, 0.5 M H,S0, 198 42 10 [46]
NiS, 1.0 M KOH 219 157 10 [47]
NiS, /graphite substrate 0.5 M HSO4 240 41 10 [48]
Te@N‘TeZéEi/ acetylene 4 )\ 1 OH 101 118 10 [49]
NiTe, 05MH,S0; 560 44 10 [50]
NizTe, 1.0 M KOH 304 94.2 10 [51]
NiSSe 1.0 M KOH 154 125 10 [52]
NiF 0.5 M H,SO4 210 1006.6 10 [53]
NiF, 0.1 M KOH 172 47 10 [12]
NiCl, 1.0 M KOH 176 41 10 (CrTE
work

High electrocatalytic
performance

ructure

pandelion flower nanost

Scheme 2. Schematic presentation showing various causes responsible for the enhanced catalytic
performance of dandelion flower-type NiCl, catalyst towards the HER.

3. Materials and Methods
3.1. Chemicals

NiF, with a pore density of 110 pore size and a mass density of 320 g m~2, was obtained
(Artenano Company Limited, Central, Hong Kong). Concentrated hydrochloric acid (HCl,
37%) was obtained from Daejung Chemicals (Seongnam-si, Republic of Korea). Acetone and
anhydrous ethanol standard solutions were purchased from SK Chemicals (Seongnam-si,
Republic of Korea). Deionized (DI) water, obtained from (Millipore Darmstadt, Darm-
stadt, Germany), was used throughout the experiments as a solvent. The NiCl, dandelion
flowers were fabricated under optimized conditions on NiF at room-temperature. A NiF
(2.00 x 6.00 cm?) was ultrasonicated for 20 minin ethanol, acetone, and finally, water to
ensure that the NiF surface was thoroughly cleaned and then dried in a vacuum oven at
60 °C for 12 h using a process described elsewhere [32]. The NiF was then placed in a glass
falcon tube (25 mL) that was filled with 20 mL acetone and 0.1 M HC], in addition to a few
drops of glycerol, which was stirred continuously for 10 min. The glass falcon tube was then
sealed with a lid and left at room-temperature for 4 h. Interestingly, after a few hours, the NiF
was changed from a polished silvery texture to a rough texture with a bright green tint (see
on-ground experimental digital images displayed in Scheme 1). Finally, the NiF was removed
and properly washed with deionized water multiple times before being thoroughly dried in
a vacuum at 60 °C for 12 h and labeled as electrode ‘with glycerol’. For comparison, a NiCl,
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sample was obtained under identical conditions but just without the addition of glycerol into
the for mentioned solution, which was referred to as ‘without glycerol’.

3.2. Characterizations

The structural interpretation and surface morphology evolution studies for the NiCl,
electrodes, i.e., with and without glycerol, were carried out using X-ray diffraction (XRD,
D8-Discovery Bruker, 40 kV, 40 mA, Cu Ka, A = 1.5406 A) patterns and field-emission
scanning electron microscopy (FE-SEM, Hitachi, S-4800, 15 kV) digital images, equipped
with an energy-dispersive X-ray spectroscopy (EDX) measurement unit. Both transmission
and high-resolution transmission electron microscopy (HRTEM, JEOL 2100F) images were
recorded over the optimized NiCl, nanostructured electrode. The X-ray photoelectron
spectroscopy (XPS, VG Scientifics ESCALAB250) measurement was carried out to analyze
the chemical bonding status of the NiCl, nanostructures. The surface area and pore-size
distribution for the NiCl, nanostructures were obtained from Brunauer—-Emmett-Teller
(BET) and Barrett-Joyner-Halenda (BJH) plots.

3.3. HER Confirmation

Both NiCl, nanostructure electrocatalysts were envisaged in a three-electrode system
(in addition to NiF as a reference) in the presence of a Hg/HgO reference electrode and
a platinum counter electrode. A nitrogen purge was used for 10 min before the trials to
normalize the system in terms of external and internal oxygen.

3.4. Formulae Used

The formulae used for estimating the overpotential and the Tafel slope are provided
in the supporting information.

4. Conclusions

In summary, the glycerol-mediated self-growth of dandelion flower-type NiCl, nanos-
tructure is proposed at room-temperature viaa soft chemical approach. After sorting out
the phase formation confirmation through the XRD pattern analysis. Change in the dande-
lion flower-type surface appearance with the 15.98 m?g~! surface area of the as-obtained
NiCl, on glycerol loading has been evidenced by the FE-SEM images and BJH curves,
respectively. Furthermore, the HER activities of the aforementioned electrodes studied
for water-splitting applications demonstrate the feasibility of NiCl, as an HER electrode
material in the water-splitting process. The NiCl, electrode prepared in the presence of
glycerol demonstrates an overpotential of 176 mV, while the electrode prepared without
glycerol confirms the overpotential of 208 mV, suggesting the impact of surface modifica-
tion on HER performance. The NiCl, dandelion flower-like electrode reveals the superior
reaction kinetics with the small Tafel slope of 41 mV dec™! as compared to that of the
nanorod-type NiCl, (57 mV dec™!) electrode obtained without glycerol. Moreover, the
NiCl, dandelion flower electrode is found to be stable even after 2000 operation cycles
with a minute decrease of 8 mV in overpotential. The considerable HER activity of the
NiCl, dandelion flower-type electrode is attributed to its high surface area, flower-like
morphology, and low internal resistance due to uncomplicated charge transport.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/catal13010177/s1, Figure S1: Figure (a-a-2, b-b-2) surface Ni and
Cl element mapping and EDX spectra of with and without glycerol NiCl, at different magnifications.
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