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Abstract: (S)-1-chloro-2-heptanol is an enantiopure chemical of great value that can synthesize Tre-
prostinil for treating primary pulmonary hypertension. In this work, a new strain B-36, capable of
asymmetric reduction of 1-chloro-2-heptanone to (S)-1-chloro-2-heptanol, was screened and iden-
tified as Curvularia hominis B-36 (CCTCC M 2017654) based on the morphological and internally
transcribed spacer (ITS) sequence. The reductive capacity of Curvularia hominis B-36 was investigated
as a whole-cell biocatalyst in the bioreduction, and the excellent yield (97.2%) and enantiomeric
excess (ee) value (99.9%) were achieved under the optimal conditions as follows: 75 mM 1-chloro-
2-heptanone, K2HPO4-KH2PO4 (100 mM, pH 6.0), 50 g L−1 resting cells (dry cell weight; DCW),
15% (v/v) isopropanol as co-substrate, 200 rpm, 30 ◦C, 20 h. The scaled-up biocatalytic process was
accomplished at a bioreactor in a 1.5 L working volume, showing superb yield (~97%) and selectivity
(99.9%). The product (S)-1-chloro-2-heptanol was purified and characterized by NMR. Curvularia
hominis B-36 is a novel catalyst and the asymmetric synthesis route is benign and eco-friendly.

Keywords: biocatalysis; asymmetric bioreduction; Curvularia hominis B-36; chiral alcohols

1. Introduction

In the pharma industry, chiral alcohols are important structural and functional chem-
icals of multiple active pharmaceutical ingredients (APIs) of drug candidates [1–3]. The
synthesis pathway of asymmetric reduction of ketones to their corresponding chiral alcohols
in a chemical reaction requires the chiral specific ligands and metals or high temperature
and pressure [4,5]. Biosynthesis has been described as a distinguished and simple path-
way to synthesize active enantiomerically pharmaceutical intermediates, accessing high
stereoselectivity (ee > 99%), 100% of theoretical yield, room reaction temperature, metal-
free catalysts, etc. [6,7]. Biocatalysis, as an environmentally benign technology, offers a
pollution-free approach to asymmetric synthesis [8,9].

(S)-1-chloro-2-heptanol is a critical chiral intermediate for synthesizing Treprostinil,
which has been used for the treatment of primary pulmonary hypertension (PPH) [10,11].
Two approaches to synthesize (S)-1-chloro-2-heptanol are chemical and biosynthetic meth-
ods. The chemical method for synthesizing (S)-1-Chloro-2-heptanone refers to lower
reaction temperature (−78 ◦C) and Grignard reagent [12,13]. Mostly, asymmetry biocat-
alytic reduction was carried out at room temperature [14,15]. In 1992, Sakai used a bakers’
yeast as biocatalyst to synthesize (S)-1-chloro-2-heptanone at room temperature with 56%
of yield and 65% of ee [16]. However, the lower ee value (65%) cannot meet the requirement
of asymmetric synthesis. Enzymes and whole cells are commonly employed as catalysts in
biocatalytic reactions. In the bioreduction, enzyme catalysis required additional co-factors
(NAD(P)H) for coenzyme regeneration [17]. The extra supplementation of NAD(P)H is
expensive, putting a burden on the commercial application [18,19]. Whole-cell-mediated
bioreduction can establish a coenzyme regeneration system without feeding additional
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NAD(P)H, so whole-cell catalysis is an efficient, green, economical, and environmentally
friendly synthetic route for asymmetric reductions [20,21]. Many microorganisms have
been developed as biocatalysts in the bioreductions, such as Weissella cibaria N9 for biore-
duction of trans-4-phenylbut-3-en-2-one [22]; Arthrobacter sp. SUK 1201 for bioreduction of
hexavalent chromium [23]; Leuconostoc pseudomesenteroides N13 for bioreduction of cyclo-
hexyl phenyl ketone [24]; Lactobacillus senmaizukei for asymmetric reduction of prochiral
aromatic and hetero aromatic ketones, etc. [15]. Therefore, screening and discovery of new
biocatalysts are of great significance in asymmetric synthesis.

In this work, a soil microbe B-36 was screened and isolated, exhibiting an outstand-
ing enantiomeric excess (ee > 99%) for efficient bioreduction of 1-chloro-2-heptanone to
(S)-1-chloro-2-heptanol. B-36 cells were identified by analyzing the sequence of the in-
ternal transcribed spacer (ITS) region and named Curvularia hominis B-36. It is a novel
biocatalyst for asymmetric reduction and was reported for the first time for synthesizing
(S)-1-chloro-2-heptanol. Some indispensable reaction parameters were systematically inves-
tigated and established an efficient and environmentally friendly approach for asymmetric
bioreduction of 1-chloro-2-heptanone to (S)-1-chloro-2-heptanol in a scale-up process.

2. Results and Discussion
2.1. Isolation and Characterization of Strain B-36

Asymmetric biocatalytic reactions have evolved increasingly broad applications in
pharmaceutical synthesis [25,26]. Screening biocatalysts with high ee value and yield
is quite principal in biocatalysis [7]. After multiple cycles of screening, a fungal strain
B-36 exhibited the highest catalytic efficiency, showing excellent enantioselectivity
(>99% ee) and yield (~90.7%) to produce (S)-1-chloro-2-heptanol. Therefore, it was identi-
fied as the best strain for further evaluation. B-36 were incubated on PDA agar plates at
25 ◦C for a week. The colonies are circular, attaining 70–73 mm diam and spread around.
The mycelia are white to dark green, with a fimbriate margin.

The partial ITS sequence of B-36 (575 bp) was verified and deposited in the GenBank
database under accession no. MH656705.1. The ITS sequence alignment and phylogenetic
analysis illustrated that strain B-36 was closely clustered with Curvularia hominis 13009
(GenBank accession no. LC494370.1), sharing a high similarity of 99% (Figure 1). Therefore,
the strain B-36 was identified as Curvularia hominis B-36 and has been deposited in the
China Center for Type Culture Collection (CCTCC M 2017654).

2.2. Effects of Key Factors for Synthesizing (S)-1-chloro-2-heptanol by Curvularia hominis B-36
2.2.1. Co-Substrate

Asymmetric reduction is a significant approach to synthesizing chiral alcohols. Car-
bonyl reductase requires nicotinamide cofactor NAD(P)H as a hydrogen donor to partic-
ipate in the coenzyme regeneration system. Carbohydrates and alcohols are commonly
employed as proton donors [27]. In this section, the effect of four carbohydrates on product
yield and stereoselectivity (ee) was investigated, including glucose, sucrose, fructose, and
lactose, four kinds of alcohols were also measured such as isopropanol, ethanol, methanol,
and glycerol. As shown in Figure 2, the lowest yield of 16.8% was obtained without the
addition of co-substrate. Among the four tested carbohydrates, the highest yield reached
59.2% while employing glucose as co-substrate. Isopropanol is a good co-substrate among
the tested alcohols to enhance the reaction efficiency, achieving 97.8% of the yield. The
ee value of the (S)-1-chloro-2-heptanol was 99% with alcohols as co-substrate, and 98%
with carbohydrates. Mostly, it is probable that alcohols may enhance the solubility of the
substrate, thereby accelerating the enzymatic reaction rate and increasing the ee value [28].
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Figure 1. Phylogenetic tree between B-36 and other related species based on ITS sequences.

2.2.2. Isopropanol Concentration

Isopropanol (IPA) was employed as a satisfactory co-substrate for the asymmetric
bioreduction. IPA concentration, as a crucial factor, was examined and is shown in
Figure 3. The highest product yield was 97.8%, while the IPA concentration reached
15%. The product yield was improved with the IPA concentration increased to 15%, which
declined along with the increased IPA concentration to 20%. The yield of (S)-1-chloro-
2-heptanol was sharply decreased with continuously increased IPA concentration from
25% to 30%. It is demonstrated that the appropriate concentration of IPA can accelerate
the asymmetric bioreduction efficiency, and the higher IPA concentration (25–30%) may
unbalance the osmotic pressure of the cells and the enzyme rush in the reaction system [7].
The original existing coenzyme regeneration system in whole cells has been destroyed;
therefore, the biocatalytic reduction is terminated, resulting in the yield sharply decreas-
ing [29]. In addition, the ee value has not been affected by the IPA concentration and is kept
constant at 99%.
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Figure 2. Effects of co-substrates on the biocatalytic reduction. Reaction conditions: 20.0 mL phos-
phate buffer (100 mM, pH 6.0), 1.0 g resting cells (DCW), 50 mM 1-chloro-2-heptanone, 15% (v/v)
various co-substrate, 200 rpm, 30 ◦C, 24 h. Symbols: 0: control (without co-substrate); 1: isopropanol;
2: ethanol; 3: methanol; 4: glycerol; 5: glucose; 6: sucrose; 7: fructose; 8: lactose.

2.2.3. pH

pH is an essential factor in the enzyme-mediated asymmetric reaction, which may
affect the activity and product ee value [30]. The effect of pH 4.0–8.0 was measured on
the bioreduction of 1-chloro-2-heptanone to (S)-1-chloro-2-heptanol. As shown in Table 1,
Curvularia hominis B-36 is effective at pH 4.0–8.0 and obtained higher yields of 86.9–94.5%,
making it suitable for acidic, neutral, and alkaline conditions. It differs from the most
reported whole cells which have a narrow pH tolerance range and is speculated to belong
to a new family of carbonyl reductases. Furthermore, different buffer systems at pH
6.0 were also investigated on the bioreduction, and the yields of (S)-1-chloro-2-heptanol
were 93.7–97.8% at four tested phosphate buffer systems involving Na2HPO4-NaH2PO4,
Na2HPO4-KH2PO4, Na2HPO4-Citric acid, and K2HPO4-KH2PO4. However, distilled water
is not an efficient medium for the reaction catalyzed by Curvularia hominis B-36; probably,
phosphate buffer can maintain the configuration and stability of the enzyme in contrast to
the distilled water [31]. The ee value kept constant above 99% in various pH conditions.
In conclusion, K2HPO4-KH2PO4 (pH = 6.0) is selected as the best buffer system for the
bioreduction of 1-chloro-2-heptanone, owing to its highest product yield.
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Figure 3. Effects of IPA concentrations on the biocatalytic reduction. Reaction conditions: 20.0 mL
phosphate buffer (100 mM, pH 6.0), 1.0 g resting cells (DCW), 50 mM 1-chloro-2-heptanone, different
concentrations of IPA, 200 rpm, 30 ◦C, 24 h.

Table 1. Effect of pH on the bioreduction of 1-chloro-2-heptanone.

Reaction Conditions Yield (%) ee (%)

pH a 4.0 89.6 ± 1.1 >99
5.0 90.4 ± 0.9 >99
5.6 87.4 ± 2.1 >99
6.0 94.5 ± 0.7 >99
6.5 90.8 ± 1.5 >99
7.0 87.9 ± 2.3 >99
8.0 89.5 ± 2.8 >99

pH 6.0 Distilled water b 74.9 ± 1.3 >99
Na2HPO4-NaH2PO4 94.5 ± 0.7 >99
Na2HPO4-KH2PO4 96.1 ± 1.5 >99

Na 2HPO4-Citric acid 93.7 ± 2.9 >99
K2HPO4-KH2PO4 97.8 ± 0.9 >99

a pH 4.0~5.6: Na 2HPO4-citric acid; pH 6.0–8.0: Na2HPO4-NaH2PO4. b Distilled water: pH = 6.04. Reaction
conditions: 20.0 mL phosphate buffer, 1.0 g resting cells (DCW), 50 mM 1-chloro-2-heptanone, 15% (v/v) IPA,
200 rpm, 30 ◦C, 24 h.
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2.2.4. Temperature

Temperature is a crucial indicator of the biosynthetic process; moderately elevated
temperatures can accelerate enzymatic reaction rates but enzymes will become inactive at
higher temperatures [32]. As shown in Figure 4, approximately 97.8% of the highest yield
was reached at 30 ◦C and 12.6% of the lowest yield was obtained at 40 ◦C, indicating that
Curvularia hominis B-36 shows poor activity at high temperature (40 ◦C). The ee values of
the products were all above 99% at 15–40 ◦C.
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Figure 4. Effects of temperatures on the biocatalytic reduction. Reaction conditions: 20.0 mL K2HPO4-
KH2PO4 (100 mM, pH 6.0), 1.0 g resting cells (DCW), 50 mM 1-chloro-2-heptanone, 15% (v/v) IPA,
different reaction temperature, 200 rpm, 24 h.

2.2.5. Fungal Concentration

Fungal concentration plays a vital role in biocatalysis; the fungal concentrations varied
from 30 to 80 g L−1 (DCW) were assayed to determine the optimum biocatalyst feeding
strategy for the bioreduction. Figure 5 demonstrates that the yield for (S)-1-chloro-2-
heptanol was increased from 75.9% to 97.8% with 30–50 g L−1 of fungus feeding. However,
the yield was slightly decreased approximately from 97.8% to 88.3% with 50–80 g L−1 of
the fungal concentration because the excessive fungal concentration may affect the mass
transfer [7]. The ee value was above 99% at tested fungal concentrations. Therefore, the
optimal fungal concentration is 50 g L−1.
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Figure 5. Effects of fungal concentration on the biocatalytic reduction. Reaction conditions: 20.0 mL
K2HPO4-KH2PO4 (100 mM, pH 6.0), 30–80 g L−1 resting cells (DCW), 50 mM 1-chloro-2-heptanone,
15% (v/v) IPA, 200 rpm, 30 ◦C, 24 h.

2.3. Time Course of Bioreduction of 1-chloro-2-heptanone to (S)-1-chloro-2-heptanol Catalyzed by
Curvularia hominis B-36

Time course of the asymmetric biosynthesis of (S)-1-chloro-2-heptanol was studied
at 50–100 mM of 1-chloro-2-heptanone. As shown in Figure 6, when the substrate concen-
tration was 50 mM, the highest (S)-1-chloro-2-heptanol concentration of 48.9 mM (97.8%
of yield) was obtained within 16 h. Notably, the product concentrations were kept at
48.6–48.9 mM, with a 12–24 h reaction time. When the substrate concentration was
75 mM, the highest product concentration of 72.9 mM (97.2% of yield) was attained within
the reaction for 20 h. Continually increasing the substrate concentration to 100 mM, the
highest product concentration is 76.8 mM (76.8% of yield) within a reaction for 28 h, and
no increased product concentration was observed while extending reaction time to 32–36 h.
Therefore, the suitable substrate concentration is 75 mM due to its relatively higher yield of
97.2%. Asymmetric reduction of 1-chloro-2-heptanone to (S)-1-chloro-2-heptanol catalyzed
by Curvularia hominis B-36 whole cells under the optimal reaction condition is summarized
in Scheme 1.
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Curvularia hominis B-36 under the optimal reaction conditions.

2.4. Scale-up Asymmetric Reduction of 1-chloro-2-heptanone to (S)-1-chloro-2-heptanol

The preparative scale bioreduction of 1-chloro-2-heptanone to (S)-1-chloro-2-heptanol
catalyzed by Curvularia hominis B-36 was established in a 5.0 L bioreactor (Sartorius
stedimTM BIOSTATB2) containing 1.5 L reaction mixture. The best yield of ~97% and
99.9% of ee were accomplished after reaction for 20 h at 800 rpm and 30 ◦C. The product
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was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate,
10:1, v/v). The isolated yield of (S)-1-chloro-2-heptanol is 93.54%. The purified (S)-1-chloro-
2-heptanol was characterized by 1H and 13C NMR (see Figures S3 and S4). 1H NMR
(500 MHz, DMSO-d6) δ 4.90 (s, 1H), 3.61 (s, 1H), 3.45 (d, J = 5.0 Hz, 2H), 1.55–1.22 (m, 8H),
0.87 (t, J = 7.0 Hz, 3H); 13C NMR (126 MHz, DMSO-d6) δ 70.52 (s), 49.88 (s), 34.30 (s),
31.82 (s), 25.12 (s), 22.58 (s), 14.12 (s); [α]25

D = +2.32 (c = 1.0, CHCl3).

2.5. Stereoselective Reduction of Various Ketones

To broaden the application of Curvularia hominis B-36, various aliphatic and aro-
matic ketones were evaluated for bioreduction under the optimal reaction conditions of
1-chloro-2-heptanone (Scheme 1). As shown in Table 2, Curvularia hominis B-36 exhibited
S-enantioselectivity for all aliphatic ketones, including Butan-2-one, Pentan-2-one, Hexan-
2-one, Octan-2-one, Methyl 4-chloro-3-oxobutanoate, and Ethyl 4-chloro-3-oxobutanoate,
affording ee values of above 99% and yields of above 90%. For aromatic ketones, Curvularia
hominis B-36 shows R-enantioselectivity and a satisfactory ee value (ee > 99%). The relatively
lower yield of 54% for acetophenone and 31% for 1-(3,5-Bis(trifluoromethyl)phenyl)ethan-
1-one might be enhanced by optimizing the reaction systems. Therefore, Curvularia hominis
B-36 shows a broad substrate spectrum for asymmetric reduction.

Table 2. Asymmetric reduction of different ketones by Curvularia hominis B-36.

Ketone Structure b Yield a (%) ee a (%)
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3. Experimental
3.1. Chemicals

1-chloro-2-heptanone, (R)-1-chloro-2-heptanol, and (S)-1-chloro-2-heptanol (HPLC
purity, >98%) were synthesized and supplied by InnoChem Co., Ltd., Beijing, China. Sub-
strate 1-chloro-2-heptanone was characterized by 1H and 13C NMR (see Figures S1 and S2).
1H NMR (400 MHz, DMSO-d6) δ 4.38 (s, 2H), 2.56 (t, J = 7.4 Hz, 2H), 1.64–1.48 (m, 2H),
1.28 (ddd, J = 14.8, 13.2, 7.2 Hz, 4H), 0.89 (t, J = 7.0 Hz, 3H); 13C NMR (101 MHz, DMSO-d6)
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δ 201.96 (s), 48.94 (s), 39.33 (s), 31.23 (s), 23.19 (s), 22.43 (s), 13.87 (s). The other chemicals
used in this study are of analytical grade.

3.2. Screening of the Microorganisms and Cultural Conditions

Microbes were screened from various soil samples collected from Zhejiang Province
(Hangzhou, China) based on their efficiency in converting 1-chloro-2-heptanone to (S)-1-
chloro-2-heptanol. Microorganisms were isolated based on the substrate-oriented screen-
ing strategy, using an enrichment medium supplemented with 3 g L−1 of 1-chloro-2-
heptanone as the sole source of carbon. The enrichment medium contained (g L−1):
1-chloro-2-heptanone 3.0, (NH4)2SO4 5.0, KH2PO4 4.0, and NaCl 2.5, pH 6.0. The en-
richment cultured liquid was diluted appropriately, and then plated over the screening
medium plates. Screening medium plates were prepared with an enrichment medium
supplemented with 15 g L−1 of agar. Single colonies were picked and cultured. The cells
were collected after centrifugation and evaluated for the efficiency in asymmetric reduction
of 1-chloro-2-heptanone.

The protocol for strain B-36 cultivation was as follows: strain B-36 was inoculated
overnight at 30 ◦C and 200 rpm in a flask containing 100 mL of potato dextrose agar (PDA).
Subsequently, 10% (v/v) of the seeding culture was removed into a 150 mL (fermentation
medium)/500 mL flask and further cultured for 24 h at 30 ◦C and 200 rpm. The fermentation
medium was composed of (g L−1): glucose 17.0, peptone 25.5, CaCl2 5.0, and (NH4)2SO4
15.5, pH 6.5. Finally, the culture medium was removed by centrifugation (12,000× g, 4 ◦C,
10 min), the mycelia were washed with normal saline, and harvested by centrifugation
(12,000× g, 4 ◦C, 10 min).

3.3. Sequence Analysis of the Strain B-36

The genomic DNA of strain B-36 was extracted with a fungi genomic DNA extraction
kit (SK8259). The ITS genes were amplified by PCR with the universal primer ITS1: (5′-
TCCGTAGGTGAACCTGCGG-3′) and ITS4: (5′-TCCTCCGCTTAT TGATATGC-3′). The
thermal profile of PCR was as follows: 4 min at 94 ◦C, 30 cycles of 45 s at 94 ◦C, 45 s at
55 ◦C, and 1 min at 72 ◦C, and extension at 72 ◦C for 10 min. The PCR products were
purified and verified. The sequence alignment was determined from the GenBank database
(NCBI) using the BLAST tool. A phylogenetic tree was established based on the neighbor-
joining method using MEGA software 7.0.

3.4. Asymmetric Bioreduction Process

The reaction system is composed of 50 g L−1 (dry cell weight; DCW) mycelia (biocata-
lysts), 15% (v/v) of isopropanol (co-substrate), K2HPO4-KH2PO4 (100 mM, pH 6.0), and
75 mM 1-chloro-2-heptanone (substrate). The reaction mixture was agitated at 30 ◦C and
200 rpm. The biomass was removed by centrifugation. The substrate and product in the
reaction mixture were extracted by ethyl acetate thrice. The ethyl acetate layer was dried
by using anhydrous MgSO4 and analyzed by GC.

The preparative scale bioreduction system (1.5 L working volume) is composed of
50 g L−1 (DCW) mycelia, 15% (v/v) of isopropanol, K2HPO4-KH2PO4 (100 mM, pH 6.0),
and 75 mM 1-chloro-2-heptanone, with reaction for 20 h at 800 rpm and 30 ◦C.

3.5. Analytical Methods

The reaction mixtures were analyzed by GC-7890A, and CP-Chirasil-Dex CB column
(25 m × 0.25 mm × 0.25 µm, df = 0.25) was used to determine the chirality of reduced
alcohols. Dodecane was employed as an internal standard. The procedure was set up
as follows: carrier gas: N2; flow rate: 1.0 mL/min; inlet temperature: 250 ◦C; detector
temperature: 250 ◦C; injection volume: 1 µL; and split ratio: 15:1. The column temperature
was as follows: 100 ◦C for 2 min, increasing the temperature to 200 ◦C at a rate of 4 ◦C/min.
The peak time of substrate 1-chloro-2-heptanone was 4.328 min; (R)-1-chloro-2-heptanol
and (S)-1-chloro-2-heptanol were 8.531 and 8.793 min, respectively.
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The yield and ee value were calculated as follows:

yield (%) =
CP
CS
× 100 % (1)

CP: the final molar concentration of the product;
CS: the initial molar concentration of the substrate.

ee (%) =
CS − CR
CS + CR

× 100 % (2)

CS: the molar concentrations of (S)-1-chloro-2-heptanol;
CR: the molar concentrations of (R)-1-chloro-2-heptanol.

4. Conclusions

Curvularia hominis B-36, a new fungus, was screened and characterized by molecular
biological identification. This is the first report about Curvularia hominis B-36 that can reduce
1-chloro-2-heptanone to (S)-1-chloro-2-heptanol with excellent yield (97.2%) and ee value
(99.9%); it has applied for a patent (CN111925949B). The optimal reaction conditions were
determined to be K2HPO4-KH2PO4 (100 mM, pH 6.0), 50 g L−1 resting cells (DCW), and
15% (v/v) IPA as co-substrate, 200 rpm, 30 ◦C, 20 h. A search about biocatalytic 1-chloro-2-
heptanone to (S)-1-chloro-2-heptanol in SciFinder® (CAS) with one hit was documented.
Absidia-repens-mediated bioreduction attained 14 % yield and 60% ee [33], which was much
lower than that of newly isolated Curvularia hominis B-36. Furthermore, Curvularia hominis
B-36 could asymmetrically reduce a variety of aliphatic and aromatic ketones, possessing
excellent enantioselectivity. In conclusion, Curvularia hominis B-36 is a brilliant biocatalyst
and has the potential to synthesize various pharmaceutical chiral intermediates.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal13010052/s1, Figure S1: 1H NMR of substrate 1-chloro-2-heptanone, Figure S2: 13C
NMR of substrate 1-chloro-2-heptanone, Figure S3: 1H NMR of product (S)-1-chloro-2-heptanol,
Figure S4: 13C NMR of product (S)-1-chloro-2-heptanol, Figure S5: 1H NMR of (S)-butan-2-ol, Figure
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