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Abstract: The development of semiconductor photocatalysts has recently witnessed notable momen-
tum in the photocatalytic degradation of organic pollutants. ZnO is one of the most widely used
photocatalysts; however, its activity is limited by the inefficient absorption of visible light and the fast
electron–hole recombination. The incorporation of another metal or semiconductor with ZnO boosts
its performance. In this present study, a heterostructured ZnO-Bi2O3 composite was synthesized via
a simple co-precipitation method and was investigated for the UV-driven photocatalytic degradation
of the Reactive Orange 16 (RO16), a model textile dye. The successful fabrication of ZnO-Bi2O3

microstructures with crystalline nature was characterized using X-ray diffraction (XRD), Fourier
transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive
X-ray (EDX). The discoloration of the dye solution was quantified using UV–Vis spectroscopy to
determine the photocatalytic efficiency. The photocatalytic activity results demonstrated that the
photodegradation at ZnO-Bi2O3 heterojunction was more efficient and 300 and 33% faster than indi-
vidual Bi2O3 and ZnO catalysts, respectively, an effect that is indicative of a synergistic effect. In the
presence of ZnO-Bi2O3 particles, the UV light-driven activity for RO16 degradation was twice as high
as in its absence. The influence of adding the oxidant H2O2 on the UV-induced photocatalytic degra-
dation was investigated and the results revealed a two-time increase in the photocatalytic activity of
ZnO-Bi2O3 compared to UV irradiation alone, which could be ascribed to a summative degradative
effect between UV and H2O2. Hence, this approach holds the potential for environmentally friendly
wastewater treatment.

Keywords: orange 16 dye; photocatalysis; ZnO; Bi2O3; hydrogen peroxide; degradation kinetics

1. Introduction

The textile industry is known for its extensive use of dyes in the manufacturing
process and thus releases a large amount of wastewater containing toxic chemicals into
water bodies [1]. These textile dyes are often non-biodegradable and can cause threats
to aquatic ecosystems and human health [2]. For instance, the inhalation of dye particles
can cause severe respiratory problems. In addition, when untreated dye effluents and
other carcinogenic substances are discharged into water resources, they can contaminate
drinking water sources, jeopardizing the health and well-being of communities that depend
on them [3,4]. The metal complex-containing dyes can release toxic heavy metals into
watercourses, posing a detrimental risk to the environment and humans. Among other
textile dyes, reactive dyes are highly soluble in water, rendering their removal through
conventional methods difficult [5].
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It is essential to develop efficient treatment strategies. A range of conventional treat-
ments has been investigated for the decolorization of textile effluents, including chemical ox-
idation [6], biodegradation, adsorption, and electrochemical degradation. These approaches
have their advantages and disadvantages. For instance, although the physico-chemical
methods are successful, they encounter issues with the generated sludge disposal, the
formation of toxic byproducts, the high cost of operation, chemicals, and electricity [7,8]. A
drawback of biodegradation is the need for a suitable environment for the microorganisms
to thrive as well as the difficulty of upscaling [9]. In contrast, photodegradation provides
a sustainable efficient alternative to degrading dyes under light irradiation into colorless,
less hazardous waste that can be released without compromising their physicochemical
properties [1,10].

Semiconductor photocatalysts are used for this photocatalytic degradation process.
Among others, TiO2 and ZnO are widely used as photocatalysts [11–14]. The advantages of
photocatalysis for dye discoloration include high efficiency, no need for hazardous chemi-
cals, being environmentally benign, being relatively cost-effective, and versatility [10,15].
However, photocatalysis has some limitations, such as the need for a light source and the
possible deactivation of the photocatalyst over time. Furthermore, variables like the type
of dye that is degraded, and the specific conditions of the treatment process can affect
how effective photocatalysis is. Additionally, the effectiveness of photocatalysis can vary
depending on factors such as the chemical composition and structure of the dye being
degraded. To address these limitations, it is essential to carefully assess the specific situation
and goals when choosing a method for dye degradation.

ZnO is recognized as an outstanding semiconductor in photocatalysis [16]. ZnO is
an n-type semiconductor [17] with a large band gap of about 3.2 eV [15]. It is a non-toxic,
cost-effective, and thermally and chemically stable material with simplicity of manufacture.
For example, ZnO nanoparticles (NPs) were synthesized using an extract of Punica granatum
plant and were able to degrade textile orange 16 reactive dye with an overall efficiency of
93% [16]. However, the photo-efficiency of ZnO is often limited by the inefficient absorption
of visible light as well as the fast electron–hole recombination [15,18]. A promising strategy
to improve ZnO photocatalytic performance is the formation of a heterojunction with other
metallic or oxide semiconductors such as Bi2O3. This approach has proven to be effective
in extending the spectral response of the hybrid system and favors charge separation, thus
boosting the photocatalytic activity and stability [19,20].

Generally, improving the photocatalytic activity via synergistically combining two dif-
ferent metals or semiconductors has been reported as an efficient strategy [21]. For instance,
Wang et al. [22] demonstrated the high efficiency of Ni-Pd/Fe3O4 yolk-shelled nanospheres
for the catalytic reduction of N-containing dyes. These magnetic nanocomposites, with uni-
formly dispersed Ni and Pd, exhibit excellent recyclability and enhanced catalytic activity
for various dyes compared to single metal counterparts (Ni/Fe3O4 and Pd/Fe3O4). The
Au@CoP metal–semiconductor hybrid also showed improved photocatalysis performances
for rhodamine 6G dye [23]. Such summative positive effect was also observed for the hybrid
photocatalyst containing ZnO and β-cyclodextrin (β-CD) particles, and this composite
exhibited 100% removal efficiency for ceftriaxone [24]. In this regard, integrating two oxide
semiconductors to obtain optimum energy levels in the heterojunction that match the redox
potentials of the involved radical generation reactions would be beneficial.

In this context, Bi2O3 is a p-type semiconductor [17] with a bandgap in the range
of 2.1 to 3.1 eV [25,26]. Bi2O3 can possibly generate active radicals such as superoxide
(O2
−) from water that could initiate dye oxidation processes. A few studies reported the

synthesis of heterostructures of ZnO-Bi2O3 for improved photocatalytic activity against
dyes. For example, ZnO with 6.8–18.9 wt% α- Bi2O3 nanostructures was reported, and this
heterostructure demonstrated a higher discoloration rate of acid black under UV irradiation
as compared to the respective single oxides [19]. Wang et al. [27] showed that a 5% molar
ratio of the ZnO/α-Bi2O3 nanomaterial, prepared by a solid-state reaction, has the best
photo-discoloration ability under sunlight for Rhodamine B, which was attributed to the
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effective separation of charge carriers. OH radicals were revealed as the main active species
for the discoloration of this dye over this ZnO/α- Bi2O3. A synergistic effect in ZnO/Bi2O3
heterostructure was reported as a reason for the improved photodegradation performance
for indigo carmine dye compared to individual ZnO and Bi2O3 [20]. During the photo-
oxidation process, powerful oxidative radicals such as •OH, H2O2, and O2

−• are produced
from oxygen reduction and water splitting [28] and can oxidize dye molecules into lower
molecular weight molecules (e.g., tiny inorganic compounds or minor aldehydes), CO2,
and water [29]. Moreover, in the presence of H2O2, UV radiation can be very effective in
oxidizing dyes as UV (200–280 nm) causes H2O2 breakdown, generating •OH radicals that
can efficiently degrade reactive dyes [30].

Motivated by some of the leading studies mentioned above, this work reports on
the facile synthesis of a ZnO-Bi2O3 hybrid composite via a co-precipitation method. The
synthesized material was characterized using the SEM, EDX, XRD, and FTIR methods.
The photocatalytic performance of the prepared ZnO-Bi2O3 catalyst was evaluated for
the Reactive Orange 16 (RO16) dye, as a model dye, under UV irradiation. Furthermore,
the influence of the addition of H2O2 as a radical source on the dye degradation rate
was assessed and the results manifested an improved degradation efficiency when UV
irradiation was combined with H2O2 compared to only UV exposure. The kinetics of
degradation was also determined. Based on the band gap energy and redox potentials of
possibly involved reactions, a proposed mechanism of photocatalysis and degradation via
the ZnO-Bi2O3 hybrid was discussed.

2. Results and Discussion
2.1. Structural and Morphological Characterization of the ZnO-Bi2O3 Heterojunction
2.1.1. Crystalline Structure Using XRD Analysis

The as-synthesized ZnO-Bi2O3 particles were systematically characterized using var-
ious techniques. The crystalline structure of the synthesized particles was determined
using powder X-ray diffraction (XRD). Figure 1 compares the experimental XRD pattern of
ZnO-Bi2O3 with the standard patterns of ZnO and Bi2O3. The XRD pattern of ZnO-Bi2O3
exhibited distinct Bragg reflections that were assigned to the crystal planes of both ZnO
and Bi2O3. Specifically, the ZnO peaks were observed at 2θ values of 31.9◦, 35.2◦, 38.2◦,
47.3◦, 56.8◦, 63.1◦, 66.6◦, 68.1◦ and 69.3◦ corresponding to the (100), (002), (101), (102),
(110), (103), (200), (112) and (201) crystal planes, respectively [29]. The pattern is closest
to the hexagonal structural of ZnO with space group P63mc (186) according to the PDF
card No. 36–1451 [15]. The Bi2O3 peaks were observed at 2θ of 26.1◦, 31.9◦, 32.7◦, 33.7◦,
41.2◦, 46.9◦, 54.3◦, 55.3◦, 58.8◦, and 66.6◦ corresponding to the (210), (002), (220), (102),
(212), (400), (203), (421), (412), (004), and (421) crystal planes, respectively, which match the
tetragonal structure of Bi2O3 with space group P-421c (114) (PDF card No. 27-0050) [31].
No diffraction peaks of impurities were present in the pattern. The above XRD reflections
proved the presence of both ZnO and Bi2O3 in the prepared heterostructure ZnO-Bi2O3
in the study. In addition, the XRD peaks are sharp, suggesting the highly nanocrystalline
nature of the ZnO-Bi2O3 crystallites. In addition, the crystallite size was calculated using
the Debye–Scherrer equation as follows [32]:

D =
K λ

β cosθ
(1)

where D is the nanoparticle crystalline diameter, K represents the Scherrer constant and
equals 0.9, λ is the X-ray wavelength (1.54 Å for copper K-α), and β denotes the full width
at half maximum (FWHM). An average crystallite particle size of the ZnO-Bi2O3 particles
of 29.6 ± 7.1 nm was obtained from the analysis of the main reflections.
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Figure 1. XRD patterns of the Zn-Bi2O3 sample as well as the standard PDF cards of ZnO and Bi2O3.

2.1.2. SEM Analysis

SEM analysis was conducted to investigate the morphological characteristics and
surface topography of the ZnO-Bi2O3 heterostructured composite. SEM images of ZnO-
Bi2O3 at two different magnifications are depicted in Figure 2a,b. SEM images revealed the
formation microstructure with nanoparticles/aggregates of irregular shape. These images
illustrate the formation of porous ZnO-Bi2O3 particles with a size in the range of 1–25 µm
that comprise smaller particles grown on bigger ones. Further, the elemental analysis was
performed using energy-dispersive X-ray (EDX) spectrometry, as presented in Figure 2c.
The EDX spectrum results confirmed the presence of Zn, Bi, and O elements in the sample.
The appearance of a smaller signal for Bi could be attributed to the expected small content of
Bi (nominally 10 mol%) in the composite, and since EDX generally probes a few µm depth of
the sample, a smaller amount of Bi in the probed volume would result in a relatively smaller
signal. For our application, namely the degradation of dyes, the porous structure provides a
high surface area, thus enhancing the contact between the composite material and the target
dye. Hence, this increased surface area would facilitate the adsorption and photocatalytic
degradation of RO16 dye. The porous nature of the particles further promotes mass transfer
and diffusion of the target dye, facilitating enhanced photocatalytic degradation. Thus,
the composite’s unique properties, combining the photocatalytic activity of ZnO with the
high surface area and catalytic capabilities of Bi2O3, are expected to improve degradation
efficiency compared to individual components, thus creating a synergistic effect.

2.1.3. FTIR Spectroscopy

The FTIR analysis (Figure 3) of the ZnO-Bi2O3 photocatalyst reveals characteristic
peaks that provide valuable insights into its chemical composition and functional groups.
For example, the stretching vibration of Zn–O bonds was identified by a peak at 530 cm−1,
indicating the presence of ZnO in the composite [33]. Additionally, the peaks at 587 cm−1

and 840 cm−1 were assigned to the stretching vibrations of Bi–O–Bi bonds, confirming
the incorporation of Bi2O3 into the composite structure [34]. These results are consistent
with previous studies that have reported similar peak positions for Zn–O and Bi–O–Bi
stretching vibrations in ZnO-Bi2O3 composites [33,34]. The peak at around 1405 cm−1 is
often associated with the stretching vibration of the Zn–O bond. This peak represents the
presence of ZnO in the composite and indicates the bonding between zinc and oxygen
atoms [33]. On the other hand, the peak at 1500 cm−1 could be attributed to several possible
vibrational modes in Bi2O3. For example, it might be related to the bending vibration
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of the O–Bi–O bond or could arise from the stretching vibrations of the Bi–OH bond or
the Bi–O–Bi bond [35]. The broad peak observed at 3400 cm−1 can be attributed to the
stretching vibrations of OH bonds [36], indicating the presence of surface hydroxyl groups
or adsorbed water molecules on the composite surface [37]. This finding infers the potential
involvement of surface hydroxyl groups in the photocatalytic activity and the adsorption
properties of the ZnO-Bi2O3 photocatalyst.
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2.2. Evaluation of the Photocatalytic Activity of ZnO-Bi2O3

To evaluate the photocatalytic degradation and the band gap of the RO16 dye, the
optical properties of this dye were initially investigated by recording the UV–Vis spectrum
of a 100 ppm dye solution to identify the wavelength of maximum absorption (λmax).
Figure 4a shows the obtained spectrum, which exhibits a characteristic single strong
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absorption peak at a wavelength of 488 nm. Accordingly, during the photolytic and
photocatalytic studies, the change in absorbance was measured at the λmax of 488 nm to
assess the degradation of the dye under different experimental conditions. Since the band
gap of the ZnO-Bi2O3 semiconductor is key to understanding the underlying photocatalytic
mechanism in this catalyst, the band gap energy (Eg) was determined using Tauc’s equation,
as follows [38]:

(αhν)1/n = B
(
hν− Eg

)n (2)

where α is the molar extinction coefficient, h the Plank’s constant, ν represents the photon’s
frequency, B is a constant, and n depends on the type of the electron transition. The factor
n = 1/2 and 2 for the direct and indirect band gaps, respectively [15]. The linearity of the
plot and the absence of concave turning point between two linear segments in the plot of
(αhν)2 versus hν is characteristic of a direct band gap. The Eg was determined from the
x-axis intercept of the tangent of the linear part of the plot of (αhν)2 versus hν, as shown
in Figure 4b. The band gap energy for ZnO-Bi2O3 was found to be 3.13 eV, agreeing with
literature values. This band gap of the heterojunction ZnO-Bi2O3 lies between the band
gap energy of individual ZnO (3.3 eV) and Bi2O3 (1.8–2.7 eV), in agreement with previous
reports [20,31]. These data indicate that the band gap of ZnO can be modified via the
addition of Bi2O3.
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In this section, we evaluate the degradation of RO16 dye using the ZnO-Bi2O3 pho-
tocatalyst under UV radiation, both with and without the addition of hydrogen peroxide
as an oxidizing agent. First, the photolysis experiments were evaluated and then the
photocatalysis measurements in the presence of ZnO-Bi2O3 were assessed. To evaluate
the degradation efficiency, the change in absorbance at 490 nm over time before and after
each treatment was calculated. UV radiation has proven to be an effective method for the
degradation of many dyes. Therefore, RO16 solutions were subjected to UV radiation alone
or with the addition of H2O2 and in the presence of a catalyst combined with H2O2. The
studied UV exposure durations ranged from 20 to 100 min. The results provided valuable
insights into the effectiveness of the different treatment combinations and exposure times
in degrading RO16 dye. These findings thus contribute to the understanding of UV-based
degradation methods for the treatment of organic dye contaminants, specifically in the
context of RO16 dye solutions.

2.2.1. Effect of Sole UV Irradiation on the Photolytic Degradation of RO16 Dye

In principle, the duration of UV irradiation directly influences the degradation extent
of aqueous dye solutions. A longer exposure time to UV radiation leads to a higher
percentage of dye degradation, indicating a direct relationship between exposure time and
degradation efficiency [30]. In this context, it is desired to have a photocatalytic system with



Catalysts 2023, 13, 1328 7 of 16

a higher degradation rate. In the case of RO16, the initiation step of the degradation process
involves the generation of hydroxyl radicals (•OH), which trigger the conversion of dye
molecules to their excited state. This process results in the degradation of the chromophoric
groups of the RO16 by breaking the N-N double bond. Consequently, the dye molecules
repeatedly transition to the excited state, and the hydroxyl radicals continuously attack
the dye molecules, leading to their degradation. Based on this proposed mechanism, it is
expected that a longer exposure period to UV radiation promotes the degradation of the
dye molecules [39]. The absorbance of various concentrations (100, 150, and 200 ppm) of
RO16 dye solution at 490 nm was recorded before UV irradiation (0 min) and at different
UV light exposure times (20, 40, 60, 80, and 100 min), as presented in Figure 5a. It was
noticed that in the absence of UV irradiation, the absorbance of the dye solution did not
decrease, indicating that the dye adsorption on the photocatalyst surface is negligible. As
shown in Figure 5a, one can observe a monotonic decrease in the absorbance of the dye
solution over time. Consequently, the degradation percentage increased with time but
reached only 18% after 100 min for 200 ppm dye (Figure 5b). A similar trend in degradation
percentage was obtained for all dye concentrations but with a higher absolute degradation
% for higher concentrations.
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Figure 5. (a) Measured absorbance and (b) degradation percentage of RO16 solution versus time for
various concentrations of the dye without the photocatalyst and under UV irradiation only.

2.2.2. Effect of H2O2 Addition on the Degradation of RO16 under UV Irradiation

Further, the effect of adding 0.5 mL H2O2 on the decolorization rate of RO16 was
investigated. The decomposition percentage of RO16 was slightly enhanced when H2O2
was present in the dye solution, reaching 22.5% after 100 min for the 200 ppm dye, as
shown in Figure 6b. The enhancement was observed for all dye concentrations. It has been
reported that H2O2 is able to absorb UV light and generate •OH via its photolysis [40].
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The development of more •OH would promote the attack on the aromatic ring of
RO16 and increase its decomposition rate. Moreover, species of HO2

• can be generated
from the scavenging of •OH radicals by H2O2. In the presence of H2O2 and UV light, the
following chain reactions occur, generating highly reactive radicals [41]:

Initiation:
H2O2 + OH• → H2O + HO2

• (3)

Propagation:
H2O + HO2

• → H2O2 (4)

Termination:
OH• + OH• → H2O2 (5)

HO2
• + HO2

• → O2 + H2O2 (6)

OH• + HO2
• → H2O + O2 (7)

2.2.3. Evaluating the Photocatalytic Activity of ZnO, Bi2O3, and ZnO-Bi2O3

To explore whether a synergistic effect in the synthesized ZnO-Bi2O3 heterojunction
prevails, the photocatalytic activity of ZnO-Bi2O3 to RO16 dye was compared with individ-
ual ZnO and Bi2O3 samples, as shown in Figure 7a. Notably, under UV irradiation, Bi2O3
alone showed a small degradation efficiency (10%) after 100 min, whilst ZnO exhibited rel-
atively larger degradation efficiency (27%). This observation aligns with the pH-dependent
photocatalytic activity of Bi2O3. The limited discoloration effect of Bi2O3 is most likely
because Bi2O3 exhibits the optimal decolorization performance in acidic solutions and not
at neutral pH values, aligning with previous studies [42]. On the other hand, the ZnO-Bi2O3
composite outperformed both Bi2O3 and ZnO with degradation % of 29%, indicating a
synergistic effect between the two components in their mixture. This result agrees with
previous reports [20]. Furthermore, the degradation kinetics were studied by plotting
ln(Co/C) against time (t) for the three different photocatalysts. As displayed in Figure 7b,
the data analysis of all samples revealed a linear dependence with correlation coefficients
R2 of 0.997, 0.994, and 0.968, respectively. This adequate linearity demonstrates first-order
reaction kinetics for the degradation of the dye RO16, according to the following equation:

ln
(

C0

C

)
= kt (8)

where C0 represents the initial concentration of RO16, C is the concentration at time t,
and k is the reaction rate constant. The obtained rate constants were 0.001, 0.003, and
0.004 min−1 for Bi2O3, ZnO, and ZnO-Bi2O3, respectively, as depicted in Figure 7b. This
result demonstrates that the ZnO-Bi2O3 heterojunction was 300% and 33% faster than Bi2O3
and ZnO, respectively; an effect that is indicative of a synergistic interaction between ZnO
and Bi2O3. These results suggest the ZnO-Bi2O3 composite’s potential for efficient dye
degradation, and therefore, the composite was further investigated in this study.
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2.2.4. Effect of RO16 Dye Concentration on the Activity of the ZnO-Bi2O3 Photocatalyst
under UV Irradiation

To study this effect, aqueous solutions of RO16 dye with various concentrations
were irradiated with UV light for different durations in the presence of 0.2 g of the ZnO-
Bi2O3 catalyst. Figure 8 shows the recorded absorbance and the respective decolorization
percentages. In the presence of ZnO-Bi2O3, the dye degradation was increased to 28.4%
compared to 18% without a catalyst after 100 min of illumination (Figure 8b). This confirms
the effectiveness of this photocatalyst in the decolorization of RO16. It is well established
that the photocatalytic processes utilizing UV irradiated semiconductors offer a promising
approach for the degradation of various organic compounds rather than just photolysis,
resulting in the formation of CO2, H2O, and associated mineral acids [43]. As discussed
below in Figure 9, when photons from UV light with energy equal to or greater than
the band gap energy of the semiconductor strike the semiconductor particles, electrons
in the conduction band and holes in the valence band are generated. These holes can
oxidize water to OH•, while the electrons can be consumed by reducible species, such as
O2, in the solution, generating O2

−• [28]. The •OH, a highly reactive oxidizing reagent,
is commonly responsible for the decomposition of most organic pollutants. In the case
of heterostructures like ZnO-Bi2O3, the improved photocatalytic performance could be
attributed to the extension of the absorption range to the visible light and the reduced
recombination rate of the photoinduced electron–hole pairs in the semiconductor Bi2O3
with the introduction of ZnO into the heterostructure [44,45].

2.2.5. Effect of H2O2 on the Degradation Rate under UV Irradiation at ZnO-Bi2O3

To investigate whether a synergistic effect between UV irradiation and H2O2 in the
presence of ZnO-Bi2O3 could boost the decolorization percentage, the absorbance was
measured for this system, as displayed in Figure 9a. Figure 9b shows an increased degra-
dation to 48.5% after 200 min, which is significantly higher compared to the individual
components. Although the absolute degradation efficiency values did not reach 100% in
the studied time, the focus of this study was to understand the synergistic effect created by
combining ZnO with Bi2O3 and exploring the role of the H2O2 oxidant in the improvement
of the photodegradation performance. This synergistic effect was attributed to an increased
surface area, facilitating effective reactant absorption and enhanced electron–hole genera-
tion due to UV light absorption. The combination of these factors led to a more efficient
degradation of the dye, highlighting the promising potential of this approach for effective
pollutant removal in wastewater treatment applications.
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2.2.6. Comparison of the Degradation Performance and Kinetics for RO16 under Different
Reaction Conditions

Figure 10a compares the degradation percentage for a 100 ppm aqueous solution of
RO16 dye under the different studied conditions. The UV light irradiation alone without
H2O2 or the photocatalyst resulted in a degradation of only 17.8% after 100 min, indicating
minimal photo-induced self-sensitized photolysis of RO16. On the other hand, the addition
of the oxidant H2O2 to the dye solution improved the degradation percentage from 17.8%
to 22.5%, still in the absence of the photocatalyst. The addition of the ZnO-Bi2O3 catalyst to
the dye solution during UV irradiation without H2O2 further boosted the degradation to
28.4%. Interestingly, the most significant enhancement occurred when both the ZnO-Bi2O3
photocatalyst and H2O2 were present, achieving 48.5% degradation. The enhancement
effect of H2O2 was much more obvious in the presence of the photocatalyst than in its
absence. This could be attributed to the larger surface area of the catalyst available for more
H2O2 and UV adsorption and thus for more generated active radicals and, accordingly,
more degradation. These findings demonstrate the role of the synergistic effect between
UV irradiation, the ZnO-Bi2O3 catalyst, and H2O2 in enhancing RO16 dye decolorization,
rendering this approach promising in wastewater treatment and pollution remediation.
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Figure 10. Comparison of the degradation efficiency (a) and the corresponding degradation kinetics
(b) for RO16 dye using UV irradiation alone or UV + ZnO-Bi2O3 catalyst with and without the
addition of H2O2.

Further, the rate constants of RO16 degradation for the different studied cases were
determined, as depicted in Figure 10b. The fitting of the data revealed a straight line with
correlation coefficients R2 in the range of 0.989 to 0.999, evidencing first-order reaction
kinetics, according to Equation 8. As presented in Table 1, the obtained rate constants (k)
varied with experimental conditions as follows: the highest for the combined UV radiation+
ZnO-Bi2O3 catalyst + H2O2 (0.008 min−1); followed by UV radiation + ZnO-Bi2O3 catalyst
without H2O2 (0.004 min−1); then UV radiation with H2O2 (0.003 min−1); and the lowest
for UV radiation alone (0.002 min−1). The results show that the addition of H2O2 doubled
the degradation rate under UV irradiation. The presence of the ZnO-Bi2O3 photocatalyst
led to at least a two-fold higher degradation efficiency than its absence, indicating the
effect of the photocatalyst on the process. Hence, by combining UV, ZnO-Bi2O3, and H2O2,
the highest performance was achieved due to a possible synergistic effect between the
individual factors.

Table 1. Rate constant values for the degradation of RO16 dye using UV radiation, H2O2, and the
photocatalyst ZnO-Bi2O3 under different conditions.

UV
without H2O2

UV
with H2O2

ZnO-Bi2O3 +UV
without H2O2

ZnO-Bi2O3 +
UV with H2O2

k (min−1) 0.002 0.003 0.004 0.008
R2 0.989 0.999 0.997 0.998

2.2.7. Proposed Mechanism of Photocatalytic Activity at ZnO-Bi2O3

In photocatalytic applications, the interface between ZnO and Bi2O3 plays a pivotal
role in facilitating charge transfer processes and electron–hole pair separation when ex-
posed to UV light as well as the H2O2 oxidant. A general proposed mechanism of the
photocatalysis at ZnO-Bi2O3 is presented in Figure 11. The given energy values of band
gaps of individual materials as well as the valence band (VB) and the conduction band
(CB) in Figure 11 were sourced from the literature [15,20,46,47]. When the photocatalyst
is UV-irradiated, electron–hole pairs are created in the system. Importantly, the relative
energy levels at the interface of this system enable the efficient transfer of electrons from the
CB of Bi2O3 to that of ZnO, while holes migrate from the VB of ZnO to Bi2O3, as shown in
Figure 11. This charge transfer phenomenon predominantly occurs in the vicinity of Bi2O3,
thus effectively mitigating recombination events and optimizing charge separation [20].
The redox potentials of expected reactions in (V) and their corresponding values on the
absolute voltage scale (AVS) in (eV) are also displayed in Figure 11. Upon UV light illumi-
nation, both ZnO and Bi2O3 generate electron–hole pairs. The ZnO-Bi2O3 interface acts
as a platform for the spatial separation of these photogenerated carriers. Subsequently,
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the separated electrons and holes are harnessed to initiate reactions with adsorbed oxygen
species on the photocatalyst surface, yielding reactive oxygen species (ROS). Namely, the
potential energy of holes in the valence band (3.07 V) of ZnO is sufficiently positive to drive
the oxidation of water, producing hydroxyl radicals (•OH) as follows [46]:

H2O + h+ → •OH + H+ Eo = 2.31 V (9)
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Furthermore, electrons residing in the conduction band of ZnO or Bi2O3 can oxidize
dissolved oxygen, generating superoxide radicals (O2

•−) as follows [46,48]:

O2 + e− → O2
•− Eo = −0.14 V (10)

The redox potential of this oxidation process (−0.14 V) matches the energy of the CB of
Bi2O3 (−0.13 V). The produced superoxide may directly contribute to degradation processes
of the dye or further promote hydroxyl radical formation [20]. Moreover, the addition of
H2O2 as an oxidizing agent to the reaction solution could also contribute to the production
of •OH and O2

•− radicals, as discussed above [46]. The produced ROS radicals react with
the dye, degrading it. It was reported that O2

•− are the primary radicals for different dye
degradation [27]. The synergy of these pathways for •OH and O2

•− production would
contribute to a swift degradation reaction rate and high levels of degradation, highlighting
the potential of ZnO-Bi2O3 heterojunctions in advanced photocatalytic applications.

3. Materials and Methods
3.1. Chemicals

Potassium dichromate (K2Cr2O7), acetic acid, zinc chloride (ZnCl2), bismuth nitrate
pentahydrate (Bi(NO3)3·5H2O), sodium hydroxide, and hydrogen peroxide were of an-
alytical grade. RO16 dye was purchased from Sigma-Aldrich (St. Louis, MO, USA). All
chemicals were used without further purification. All solutions were prepared in distilled
water.

3.2. Synthesis of ZnO-Bi2O3 Particles

To synthesize the ZnO-Bi2O3 composite catalyst with 10 mol% Bi2O3, a simple pre-
viously reported chemical co-precipitation method was conducted with slight modifica-
tion [49]. First, 0.09 M ZnCl2 and 0.01 M (Bi(NO3)3·5H2O) solutions were prepared. Both
solutions were mixed and heated under constant stirring to attain 80 ◦C. Then, 2 mL of
acetic acid was added to the heated solution and subsequently, 1M NaOH was added drop-
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wise with vigorous stirring until pH 7 was obtained and precipitation started to occur. The
solution was further stirred at 80 ◦C for one hour. Afterward, the solution was cooled down
and the precipitate was collected, washed, and dried. Finally, the precipitate was calcined
in a furnace at 400 ◦C for 2 h, yielding ZnO-Bi2O3 microparticles. This procedure has been
reported to yield about 9:1 weight ratio of ZnO:Bi2O3 in the formed heterostructure [49].

3.3. Characterization of ZnO-Bi2O3 Particles

Fourier transform infrared (FTIR) spectra of the as-prepared photo-catalyst were deter-
mined using a FTIR spectrophotometer (Bruker Tensor 27) in the range of 400–4000 cm−1.
Powder X-ray diffraction (XRD) analysis was carried out to determine the crystallinity
and crystalline structure of the synthesized material. XRD patterns of the synthesized
powder were recorded on a Rigaku D/Max-IIIA diffractometer (Rigaku Co., Tokyo, Japan)
with copper Kα radiation of a wavelength of 1.54051 Å. To study the morphology of the
samples, scanning electron microscope (SEM) analysis was carried out using an JEOL LEO
44i instrument, which was operated at 10 kV. EDX analysis was conducted on a Nova
NanoSEM 450 equipped with EDX instrument operating at 25 kV. For UV–Vis analysis, a
twin beam spectrophotometer (Rayleigh-UV2601) was used.

3.4. Photocatalytic Degradation Measurements

Initially, the maximum absorbance wavelength (λmax) of the RO16 dye was determined
by recording UV–Vis spectra for 100 ppm solution. The samples were scanned in the range
of 200–800 nm. The photolytic and photocatalytic activity of RO16 in aqueous solution
under UV light were investigated. The photolytic measurements were conducted via the
irradiation of the RO16 solution using a UV lamp with 144 watt intensity and a wavelength
of 244 nm. The UV absorbance values of a portion of the solution were recorded until
100 min with a time interval of 20 min. Three concentrations of the dye aqueous solution
were studied.

For the photocatalytic activity measurements, the ZnO-Bi2O3 catalyst (0.2 g) was
added to the dye solution and the solution was investigated under the same conditions
for comparison. All experiments were performed in Pyrex glass batch reactors (50 mL
solution) under constant magnetic stirring. After irradiation with UV light, 0.5 mL of the
dye solution was withdrawn at 0 (before irradiation), 20, 40, 60, 80 and 100 min and their
absorbance at a wavelength of 490 nm were measured using a UV–Vis spectrophotometer.
In addition, the effect of hydrogen peroxide on the degradation rate of RO16 was studied,
where 0.5 mL H2O2 was added to the dye solution and the absorbance was measured under
the same conditions. The degradation efficiency in % of the dye was calculated using the
following equation.

% Degradation =
A0 − A

A0
× 100 =

C0 − C
C0

× 100 (11)

where A0 and A are the absorbance of the dye solution before and after the UV irradiation
of the dye solution for time t, respectively. C0 and C represent the respective concentrations
of the dye before and after the irradiation of the dye solution, respectively.

4. Conclusions

The textile industry releases hazardous chemicals, including carcinogenic reactive
dyes, contributing to water pollution. Conventional degradation methods such as chemical
oxidation and biodegradation have limitations in addressing this issue effectively. Photo-
catalysis using semiconductors provides an efficient alternative. In this study, ZnO-Bi2O3
composite clusters were successfully synthesized using a facile co-precipitation method and
were then investigated as photocatalysts for the photocatalytic degradation of reactive Or-
ange 16 (RO16) dye, a model textile azo dye. The presence of the ZnO-Bi2O3 photocatalyst
in the solution doubled the decolorization rate of RO16 compared to UV irradiation alone.
The degradation rate via the ZnO-Bi2O3 heterojunction was more efficient and around 300
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and 33% faster than individual Bi2O3 and ZnO catalysts, respectively. Furthermore, the
addition of the oxidant H2O2 with UV irradiation amplified the degradation rate up to two
times compared to only UV light, leading to a significant improvement in the oxidation
and remediation of RO16. The positive effect of H2O2 could be ascribed to the generation
of more oxygen radicals that effectively decomposed the dye, where H2O2 could be de-
composed to •OH or react with produced •OH, forming HO2

• radicals. The degradation
process followed first-order reaction kinetics with a rate constant of 0.008 min−1 in the case
of ZnO-Bi2O3 + UV + H2O2. Hence, the present study reveals the impact of combining UV
radiation, H2O2, and the ZnO-Bi2O3 catalyst to achieve a synergistic effect and improved
photocatalytic performance. This innovative approach holds promise for combating water
pollution caused by textile industry dyes.
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