The Acquisition of Primary Amines from Alcohols through Reductive Amination over Heterogeneous Catalysts
Abstract
:1. Introduction
2. Mechanism of the Reductive Amination of Alcohols
3. The Role of Heterogeneous Catalysts in the Reductive Amination of Alcohols
3.1. Monometallic Catalysts
3.1.1. Ni-Based Catalysts
3.1.2. Co-Based Catalysts
3.1.3. Cu/Fe-Based Catalysts
3.1.4. Noble Metal-Based Catalysts
3.2. Bimetallic/Multimetallic Catalysts
- Due to the addition of a second metal, the metals will interact with each other and have different electronic and chemical properties from the corresponding single metals, thus showing better catalytic activity, selectivity, and stability.
- The addition of a second metal component can promote the reduction of the first metal precursor and improve the dispersion of metal particles on the support, strengthening the dehydrogenation site, thereby facilitating better catalytic activity and higher product selectivity.
- The addition of a second metal can enable the formation of a highly dispersed bimetallic alloy on the nanostructure scale. The synergistic effect of a bimetallic alloy is as follows: the introduction of the second metal affects the electron cloud density of the first metal, which is beneficial to the in situ reduction of the first metal, thereby improving catalyst activity.
- The introduction of a second metal component can inhibit the competitive adsorption of NH3 at the main metal catalytic sites, and more main metal catalytic sites can be used to catalyze the dehydrogenation reaction of alcohol, thus improving the dehydrogenation activity of the catalyst.
3.2.1. Ni-Based Catalysts
3.2.2. Co-Based Catalysts
3.2.3. Cu/Fe-Based Catalysts
3.2.4. Noble Metal-Based Catalysts
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, C.; Wang, H.; Du, H.; Peng, J.; Cai, Y.; Guo, S.; Zhang, J.; Samart, C.; Ding, M. Ru/HZSM-5 as an efficient and recyclable catalyst for reductive amination of furfural to furfurylamine. Mol. Catal. 2020, 482, 110755. [Google Scholar] [CrossRef]
- Irrgang, T.; Kempe, R. 3d-Metal catalyzed N- and C-alkylation reactions via borrowing hydrogen or hydrogen autotransfer. Chem. Rev. 2019, 119, 2524–2549. [Google Scholar] [CrossRef] [PubMed]
- Kar, A.K.; Chauhan, A.; Srivastava, R. A CoPd nanoalloy embedded N-doped porous carbon catalyst for the selective reduction and reductive amination of levulinic acid using formic acid in water. Sustain. Energ. Fuels 2023, 7, 1855–1869. [Google Scholar] [CrossRef]
- Liu, Y.X.; Zhou, K.; Lu, M.; Wang, L.C.; Wei, Z.J.; Li, X.N. Acidic/basic oxides-supported cobalt catalysts for one-pot synthesis of isophorone diamine from hydroamination of isophorone nitrile. Ind. Eng. Chem. Res. 2015, 54, 9124–9132. [Google Scholar] [CrossRef]
- Saini, M.K.; Kumar, S.; Li, H.; Babu, S.A.; Saravanamurugan, S. Advances in the catalytic reductive amination of furfural to furfural amine: The momentous role of active metal sites. ChemSusChem 2022, 15, e202200107. [Google Scholar] [CrossRef]
- Wan, Y.; Lee, J.M. Recent advances in reductive upgrading of 5-hydroxymethylfurfural via heterogeneous thermocatalysis. ChemSusChem 2022, 15, e202102041. [Google Scholar] [CrossRef]
- Wei, Z.J.; Liu, H.Y.; Zhou, K.; Shu, H.M.; Liu, Y.X. Supported Co/activated carbon catalysts for the one-pot synthesis of isophorone diamine from hydroamination of isophorone nitrile. React. Kinet. Mech. Catal. 2019, 127, 931–943. [Google Scholar] [CrossRef]
- Xiao, Y.; Lim, C.W.; Chang, J.; Yuan, Q.; Wang, L.; Yan, N. Electrocatalytic amino acid synthesis from biomass-derivable keto acids over ball milled carbon nanotubes. Green Chem. 2023, 25, 3117–3126. [Google Scholar] [CrossRef]
- Zou, H.; Chen, J. Efficient and selective approach to biomass-based amine by reductive amination of furfural using Ru catalyst. Appl. Catal. B-Environ. 2022, 309, 121262. [Google Scholar] [CrossRef]
- Froidevaux, V.; Negrell, C.; Caillol, S.; Pascault, J.P.; Boutevin, B. Biobased amines: From synthesis to polymers; present and future. Chem. Rev. 2016, 116, 14181–14224. [Google Scholar] [CrossRef]
- Pelckmans, M.; Renders, T.; Van de Vyver, S.; Sels, B.F. Bio-based amines through sustainable heterogeneous catalysis. Green Chem. 2017, 19, 5303–5331. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Li, X.; Liu, H.; Wang, A.; Xia, C.; Chen, J.; Huang, Z. Efficient synthesis of pharmaceutical intermediates from biomass-derived aldehydes and ketones over robust NixAl nanocatalysts. ACS Sustain. Chem. Eng. 2022, 10, 5526–5537. [Google Scholar] [CrossRef]
- Laval, S.; Dayoub, W.; Favre-Reguillon, A.; Berthod, M.; Demonchaux, P.; Mignani, G.; Lemaire, M. A mild and efficient method for the reduction of nitriles. Tetrahedron Lett. 2009, 50, 7005–7007. [Google Scholar] [CrossRef]
- Willis, M.C. Palladium-catalyzed coupling of ammonia and hydroxide with aryl halides: The direct synthesis of primary anilines and phenols. Angew. Chem. Int. Ed. 2007, 46, 3402–3404. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.Y.; Kung, Y.H.; Hsiao, V.K.; Chu, C.C. Reduction of nitroaromatics by gold nanoparticles on porous silicon fabricated using metal-assisted chemical etching. Nanomaterials 2023, 13, 1805. [Google Scholar] [CrossRef]
- Poulose, A.C.; Zoppellaro, G.; Konidakis, I.; Serpetzoglou, E.; Stratakis, E.; Tomanec, O.; Beller, M.; Bakandritsos, A.; Zboril, R. Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst. Nat. Nanotechnol. 2022, 17, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.P.; Han, P.; Wang, Y.Z.; Wang, S.; Yan, N. Insight into the roles of ammonia during direct alcohol amination over supported Ru catalysts. J. Catal. 2021, 399, 121–131. [Google Scholar] [CrossRef]
- Patil, S.; Bedre, A.; Gade, V.; Jopale, M.; Bhagat, R.; Pise, A. One-pot protocol for the reductive amination of aldehydes using thiamine hydrochloride as a green catalyst under solvent-free condition. Synth. Commun. 2023, 53, 1545–1558. [Google Scholar] [CrossRef]
- Patil, S.M.; Bedre, A.V.; Gade, V.B.; Jopale, M.K. Metal-free, an effective and one-pot protocol for the reductive amination of aldehydes using glycerol as a green solvent. J. Chem. Sci. 2023, 135, 50. [Google Scholar] [CrossRef]
- Sun, R.; Ma, S.S.; Zhang, Z.H.; Zhang, Y.Q.; Xu, B.H. Ruthenium-catalyzed reductive amination of ketones with nitroarenes and nitriles. Org. Biomol. Chem. 2023, 21, 1450–1456. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, J.; Duan, X.; Zhang, C.; Zhang, J. Continuous reductive amination to synthesize primary amines with high selectivity in flow. J. Catal. 2023, 420, 89–98. [Google Scholar] [CrossRef]
- Zheng, B.X.; Xu, J.; Song, J.L.; Wu, H.H.; Mei, X.L.; Zhang, K.L.; Han, W.Y.; Wu, W.; He, M.Y.; Han, B.X. Nanoparticles and single atoms of cobalt synergistically enabled low-temperature reductive amination of carbonyl compounds. Chem. Sci. 2022, 13, 9047–9055. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Xie, R.; Xiao, M.; Guo, D.; Cai, Z.; Kang, S.; Xu, Y.; Wei, J. Direct amination of biomass-based furfuryl alcohol and 5-(aminomethyl)-2-furanmethanol with NH3 over hydrotalcite-derived nickel catalysts via the hydrogen-borrowing strategy. ChemCatChem 2021, 13, 2074–2085. [Google Scholar] [CrossRef]
- Kobayashi, H.; Ohta, H.; Fukuoka, A. Conversion of lignocellulose into renewable chemicals by heterogeneous catalysis. Catal. Sci. Technol. 2012, 2, 869–883. [Google Scholar] [CrossRef]
- Kumar, A.; Daw, P.; Milstein, D. Homogeneous catalysis for sustainable energy: Hydrogen and methanol economies, fuels from biomass, and related topics. Chem. Rev. 2022, 122, 385–441. [Google Scholar] [CrossRef]
- Likhar, P.R.; Arundhathi, R.; Kantam, M.L.; Prathima, P.S. Amination of alcohols catalyzed by copper-aluminium hydrotalcite: A green synthesis of amines. Eur. J. Org. Chem. 2009, 2009, 5383–5389. [Google Scholar] [CrossRef]
- Veefkind, V.A.; Lercher, J.A. Zeolite catalysts for the selective synthesis of mono- and diethylamines. J. Catal. 1998, 180, 258–269. [Google Scholar] [CrossRef]
- Klyuev, M.V.; Khidekel, M.L. Catalytic amination of alcohols, aldehydes, and ketones. Russ. Chem. Rev. 1980, 49, 28–53. [Google Scholar] [CrossRef]
- Niu, F.; Wang, Q.; Yan, Z.; Kusema, B.T.; Khodakov, A.Y.; Ordomsky, V.V. Highly efficient and selective N-alkylation of amines with alcohols catalyzed by in situ rehydrated titanium hydroxide. ACS Catal. 2020, 10, 3404–3414. [Google Scholar] [CrossRef]
- Sabatier, P.; Reid, E.E. Catalysis in Organic Chemistry; D. Van Nostrand Company: New York, NY, USA, 1922; Volume 72, pp. 33–38. [Google Scholar]
- Cai, X.; Ke, Y.; Wang, B.; Zeng, Y.; Chen, L.; Li, Y.; Bai, G.; Yan, X. Efficient catalytic amination of diols to diamines over Cu/ZnO/gamma-Al2O3. Mol. Catal. 2021, 508, 111608. [Google Scholar] [CrossRef]
- Jeon, H.Y.; Shin, C.H.; Jung, H.J.; Hong, S.B. Catalytic evaluation of small-pore molecular sieves with different framework topologies for the synthesis of methylamines. Appl. Catal. A-Gen. 2006, 305, 70–78. [Google Scholar] [CrossRef]
- Maeda, N.; Meemken, F.; Hungerbuhler, K.; Baiker, A. Selectivity-controlling factors in catalytic methanol amination studied by isotopically modulated excitation IR spectroscopy. ACS Catal. 2013, 3, 219–223. [Google Scholar] [CrossRef]
- Bai, X.; Aiolfi, F.; Cettolin, M.; Piarulli, U.; Dal Corso, A.; Pignataro, L.; Gennari, C. Hydrogen-borrowing amination of secondary alcohols promoted by a (cyclopentadienone)iron complex. Synthesis 2019, 51, 3545–3555. [Google Scholar] [CrossRef]
- Das, K.; Shibuya, R.; Nakahara, Y.; Germain, N.; Ohshima, T.; Mashima, K. Platinum-catalyzed direct amination of allylic alcohols with aqueous ammonia: Selective synthesis of primary allylamines. Angew. Chem. Int. Ed. 2012, 51, 150–154. [Google Scholar] [CrossRef]
- Imm, S.; Bahn, S.; Neubert, L.; Neumann, H.; Beller, M. An efficient and general synthesis of primary amines by ruthenium-catalyzed amination of secondary alcohols with ammonia. Angew. Chem. Int. Ed. 2010, 49, 8126–8129. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.J.; Ng, T.W.; Zhao, Y. Iron-catalyzed amination of alcohols assisted by Lewis acid. Chem. Commun. 2015, 51, 11907–11910. [Google Scholar] [CrossRef]
- Wei, Y.; You, K.; Xu, W.; Ou, X.; Zhao, F.; Chen, Z.; Yan, D.; Zhang, X.; Luo, H. Highly efficient reductive amination of ethanol to ethylamines over non-noble metallic NiCu/MgAlO catalyst. Ind. Eng. Chem. Res. 2023, 62, 4947–4954. [Google Scholar] [CrossRef]
- Chen, X.; Liu, D.; Yang, C.; Shi, L.; Li, F. Hexaazatrinaphthalene-based covalent triazine framework-supported Rhodium(III) complex: A recyclable heterogeneous catalyst for the reductive Amination of ketones to primary amines. Inorg. Chem. 2023, 62, 9360–9368. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Wu, Y.; Wang, H.; Peng, J.; Li, Y.; Samart, C.; Ding, M. Facile and efficient synthesis of primary amines via reductive amination over a Ni/Al2O3 Catalyst. ACS Sustain. Chem. Eng. 2021, 9, 7318–7327. [Google Scholar] [CrossRef]
- Raut, A.B.; Shende, V.S.; Sasaki, T.; Bhanage, B.M. Reductive amination of levulinic acid to N-substituted pyrrolidones over RuCl3 metal ion anchored in ionic liquid immobilized on graphene oxide. J. Catal. 2020, 383, 206–214. [Google Scholar] [CrossRef]
- Zhuang, X.; Liu, J.; Zhong, S.; Ma, L. Selective catalysis for the reductive amination of furfural toward furfurylamine by graphene-co-shelled cobalt nanoparticles. Green Chem. 2022, 24, 271–284. [Google Scholar] [CrossRef]
- Gallardo-Donaire, J.; Ernst, M.; Trapp, O.; Schaub, T. Direct synthesis of primary amines via Ruthenium-catalysed amination of ketones with ammonia and hydrogen. Adv. Synth. Catal. 2016, 358, 358–363. [Google Scholar] [CrossRef]
- Ghosh, T.; Ernst, M.; Hashmi, A.S.K.; Schaub, T. Ruthenium catalyzed direct asymmetric reductive amination of simple aliphatic ketones using ammonium Iodide and hydrogen. Eur. J. Org. Chem. 2020, 2020, 4796–4800. [Google Scholar] [CrossRef]
- Komanoya, T.; Kinemura, T.; Kita, Y.; Kamata, K.; Hara, M. Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds. J. Am. Chem. Soc. 2017, 139, 11493–11499. [Google Scholar] [CrossRef]
- Pan, J.S.; Zhang, R.; Ma, S.S.; Han, L.J.; Xu, B.H. Easily synthesized Ru catalyst efficiently converts carbonyl compounds and ammonia into primary amines. Chemistryselect 2020, 5, 10933–10938. [Google Scholar] [CrossRef]
- Senthamarai, T.; Murugesan, K.; Schneidewind, J.; Kalevaru, N.V.; Baumann, W.; Neumann, H.; Kamer, P.C.J.; Beller, M.; Jagadeesh, R.V. Simple ruthenium-catalyzed reductive amination enables the synthesis of a broad range of primary amines. Nature Commun. 2018, 9, 4123. [Google Scholar] [CrossRef]
- Polishchuk, I.; Sklyaruk, J.; Lebedev, Y.; Rueping, M. Air stable Iridium catalysts for direct reductive amination of ketones. Chemistry-A European Journal 2021, 27, 5919–5922. [Google Scholar] [CrossRef]
- Tanaka, K.; Miki, T.; Murata, K.; Yamaguchi, A.; Kayaki, Y.; Kuwata, S.; Ikariya, T.; Watanabe, M. Reductive amination of ketonic compounds catalyzed by Cp* Ir (III) complexes bearing a picolinamidato ligand. J. Org. Chem. 2019, 84, 10962–10977. [Google Scholar] [CrossRef] [PubMed]
- Dobereiner, G.E.; Crabtree, R.H. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem. Rev. 2010, 110, 681–703. [Google Scholar] [CrossRef]
- Guillena, G.; Ramon, D.J.; Yus, M. Hydrogen autotransfer in the N-alkylation of amines and related compounds using alcohols and amines as electrophiles. Chem. Rev. 2010, 110, 1611–1641. [Google Scholar] [CrossRef]
- Guillena, G.; Ramon, D.J.; Yus, M. Alcohols as electrophiles in C-C bond-forming reactions: The hydrogen autotransfer process. Angew. Chem. Int. Ed. 2007, 46, 2358–2364. [Google Scholar] [CrossRef]
- Klinkenberg, J.L.; Hartwig, J.F. Catalytic organometallic reactions of ammonia. Angew. Chem. Int. Ed. 2011, 50, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Kon, K.; Touchy, A.S.; Shimizu, K.; Ueda, W. Selective synthesis of primary amines by reductive amination of ketones with ammonia over supported Pt catalysts. ChemCatChem 2015, 7, 921–924. [Google Scholar] [CrossRef]
- Shimizu, K.; Kon, K.; Onodera, W.; Yamazaki, H.; Kondo, J.N. Heterogeneous Ni catalyst for direct synthesis of primary amines from alcohols and ammonia. ACS Catal. 2013, 3, 112–117. [Google Scholar] [CrossRef]
- Baiker, A.; Kijenski, J. Catalytic synthesis of higher aliphatic amines from the corresponding alcohols. Catal. Rev. Sci. Eng. 1985, 27, 653–697. [Google Scholar] [CrossRef]
- Schwoegler, E.J.; Adkins, H. Preparation of certain amines. J. Am. Chem. Soc. 1939, 61, 3499–3502. [Google Scholar] [CrossRef]
- Baiker, A.; Caprez, W.; Holstein, W.L. Catalytic amination of aliphatic alcohols in the gas and liquid phases: Kinetics and reaction pathway. Ind. Eng. Chem. Res. Dev. 1983, 22, 217–225. [Google Scholar] [CrossRef]
- Fang, L.; Yan, Z.; Wu, J.; Bugaev, A.; Lamberti, C.; Pera-Titus, M. Highly selective Ru/HBEA catalyst for the direct amination of fatty alcohols with ammonia. Appl. Catal. B-Environ. 2021, 286, 119942. [Google Scholar] [CrossRef]
- Gao, X.; Sahsah, D.; Heyden, A.; Bond, J.Q. Analysis of thermodynamics, kinetics, and reaction pathways in the amination of secondary alcohols over Ru/SiO2. J. Catal. 2023, 424, 74–91. [Google Scholar] [CrossRef]
- Ke, Z.; Wang, Y.; Zhao, Y.; Tang, M.; Zeng, W.; Wang, Y.; Chang, X.; Han, B.; Liu, Z. Ionic liquid hydrogen-bonding promoted alcohols amination over Cobalt catalyst via dihydrogen autotransfer mechanism. ChemSusChem 2023, 16, e202300513. [Google Scholar] [CrossRef]
- Wang, T.; Ibañez, J.; Wang, K.; Fang, L.; Sabbe, M.; Michel, C.; Paul, S.; Pera-Titus, M.; Sautet, P. Rational design of selective metal catalysts for alcohol amination with ammonia. Nat. Catal. 2019, 2, 773–779. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, H.Y.; Shu, H.M.; Xiao, S.W.; Guo, D.C.; Liu, Y.X.; Wei, Z.J.; Li, X.N. A comprehensive study on the reductive amination of 5-hydroxymethylfurfural into 2,5-bisaminomethylfuran over raney Ni through DFT calculations. ChemCatChem 2019, 11, 2649–2656. [Google Scholar] [CrossRef]
- Li, P.; Huang, H.; Wang, Z.; Hong, Z.; Xu, Y.; Zhao, Y. Reductive amination of n-hexanol to n-hexylamine over Ni-Ce/gamma-Al2O3 catalysts. Front. Chem. Sci. Eng. 2023, 17, 82–92. [Google Scholar] [CrossRef]
- Liu, X.; Chen, W.; Zou, J.; Ye, L.; Yuan, Y. Liquid-phase amination of phenol to aniline over the Pd/MgO catalyst without external hydrogen addition. ACS Sustain. Chem. Eng. 2022, 10, 6988–6998. [Google Scholar] [CrossRef]
- Ortega, M.; Gómez, D.; Manrique, R.; Reyes, G.; García-Sánchez, J.T.; Medrano, V.G.B.; Jiménez, R.; Arteaga-Pérez, L.E. Reductive amination of phenol over Pd-based catalysts: Elucidating the role of the support and metal nanoparticle size. React. Chem. Eng. 2023, 8, 47–63. [Google Scholar] [CrossRef]
- Ruiz, D.; Aho, A.; Maki-Arvela, P.; Kumar, N.; Oliva, H.; Murzin, D.Y. Direct amination of dodecanol over noble and transition metal supported silica catalysts. Ind. Eng. Chem. Res. 2017, 56, 12879–12888. [Google Scholar] [CrossRef]
- Yue, C.J.; Di, K.; Gu, L.P.; Zhang, Z.W.; Ding, L.L. Selective amination of 1,2-propanediol over Co/La3O4 catalyst prepared by liquid-phase reduction. Mol. Catal. 2019, 477, 110539. [Google Scholar] [CrossRef]
- Shimizu, K.I.; Kanno, S.; Kon, K.; Siddiki, S.H.; Tanaka, H.; Sakata, Y. N-alkylation of ammonia and amines with alcohols catalyzed by Ni-loaded CaSiO3. Catal. Today 2014, 232, 134–138. [Google Scholar] [CrossRef]
- Cho, J.H.; Park, J.H.; Chang, T.S.; Kim, J.E.; Shin, C.H. Reductive amination of 2-propanol to monoisopropylamine over Ni/γ-Al2O3 catalysts. Catal. Lett. 2013, 143, 1319–1327. [Google Scholar] [CrossRef]
- Cho, J.H.; Park, J.H.; Chang, T.S.; Seo, G.; Shin, C.H. Reductive amination of 2-propanol to monoisopropylamine over Co/γ-Al2O3 catalysts. Appl. Catal. A-Gen. 2012, 417–418, 313–319. [Google Scholar] [CrossRef]
- Wang, T.; Yan, Z.; Michel, C.; Pera-Titus, M.; Sautet, P. Trends and control in the nitridation of transition-metal surfaces. ACS Catal. 2018, 8, 63–68. [Google Scholar] [CrossRef]
- Gunanathan, C.; Milstein, D. Selective synthesis of primary amines directly from alcohols and ammonia. Angew. Chem. 2008, 47, 8661–8664. [Google Scholar] [CrossRef]
- Pridmore, S.J.; Slatford, P.A.; Daniel, A.; Whittlesey, M.K.; Williams, J.M.J. Ruthenium-catalysed conversion of 1,4-alkynediols into pyrroles. Tetrahedron Lett. 2007, 48, 5115–5120. [Google Scholar] [CrossRef]
- Carreira, E.; Defieber, C.; Ariger, M.; Moriel, P. Iridium-catalyzed synthesis of primary allylic amines from allylic alcohols. Synfacts 2007, 2007, 0731. [Google Scholar] [CrossRef]
- Prades, A.; Corberan, R.; Poyatos, M.; Peris, E. [IrCl2Cp*(NHC)] complexes as highly versatile efficient catalysts for the cross-coupling of alcohols and amines. Chemistry 2008, 14, 11474–11479. [Google Scholar] [CrossRef]
- Cui, X.; Dai, X.; Deng, Y.; Shi, F. Development of a general non-noble metal catalyst for the benign amination of alcohols with amines and ammonia. Chem. Eur. J. 2013, 19, 3665–3675. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.J.; Williams, J.M. Chemistry. The give and take of alcohol activation. Science 2010, 329, 635–636. [Google Scholar] [CrossRef] [PubMed]
- Bassili, V.A.; Baiker, A. Catalytic amination of 1-methoxy-2-propanol over silica supported nickel: Study of the influence of the reaction parameters. Appl. Catal. 1990, 65, 293–308. [Google Scholar] [CrossRef]
- Fischer, A.; Mallat, T.; Baiker, A. Nickel-catalyzed amination of 1,3-propanediols differently substituted at C2-position: Influence of reactant structure on diamine production. J. Mol. Catal. A Chem. 1999, 149, 197–204. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wang, X.; Qiu, J.R.; Chen, W.K.; Fu, X.; Ye, L.M.; Yuan, Y.Z. Selective amination of phenol to cyclohexylamine over metal-acid bifunctional catalysts derived from nickel phyllosilicates. ChemCatChem 2023, 15, e202300306. [Google Scholar] [CrossRef]
- Park, J.H.; Hong, E.; An, S.H.; Lim, D.H.; Shin, C.H. Reductive amination of ethanol to ethylamines over Ni/Al2O3 catalysts. Korean J. Chem. Eng. 2017, 34, 2610–2618. [Google Scholar] [CrossRef]
- Cho, J.H.; An, S.H.; Chang, T.S.; Shin, C.H. Effect of an alumina phase on the reductive amination of 2-propanol to monoisopropylamine over Ni/Al2O3. Catal. Lett. 2016, 146, 811–819. [Google Scholar] [CrossRef]
- Zamlynny, V.; Kubelkova, L.; Baburek, E.; Jiratova, K.; Novakova, J. Amination of cyclohexanol over metallosilicate-based materials. Appl. Catal. A-Gen. 1998, 169, 119–125. [Google Scholar] [CrossRef]
- Sewell, G.; Oconnor, C.; Vansteen, E. Reductive amination of ethanol with silica-supported cobalt and nickel catalysts. Appl. Catal. A-Gen. 1995, 125, 99–112. [Google Scholar] [CrossRef]
- Sewell, G.S.; OConnor, C.T.; Vansteen, E. Effect of activation procedure and support on the reductive amination of ethanol using supported cobalt catalysts. J. Catal. 1997, 167, 513–521. [Google Scholar] [CrossRef]
- Lei, X.C.; Gu, G.D.; Hu, Y.F.; Wang, H.S.; Zhang, Z.X.; Wang, S. Structural requirements for chemoselective ammonolysis of ethylene glycol to ethanolamine over supported cobalt catalysts. Catalysts 2021, 11, 736. [Google Scholar] [CrossRef]
- Chary, K.V.; Seela, K.K.; Naresh, D.; Ramakanth, P. Characterization and reductive amination of cyclohexanol and cyclohexanone over Cu/ZrO2 catalysts. Catal. Commun. 2008, 9, 75–81. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Feng, C.; Qiu, C.; Wen, Y.; Zhao, J. Amination of ethanol to acetonitrile over Ni-doped Co/γ-Al2O3 catalyst. Catal. Commun. 2009, 10, 1454–1458. [Google Scholar] [CrossRef]
- Kliger, G.A.; Shuikin, A.N.; Glebov, L.S.; Mikaya, A.I.; Loktev, S.M.; Zaikin, V.G. Mechanism of the hydroamination of alcohols and carbonyl compounds on a fused iron catalyst. Bull. Acad. Sci. USSR Div. Chem. Sci. 1990, 39, 1750–1753. [Google Scholar] [CrossRef]
- Li, A.Y.; Dumaresq, N.; Segalla, A.; Braidy, N.; Moores, A. Plasma-made (Ni0.5Cu0.5)Fe2O4 nanoparticles for alcohol amination under microwave heating. ChemCatChem 2019, 11, 3959–3972. [Google Scholar] [CrossRef]
- Niemeier, J.; Engel, R.V.; Rose, M. Is water a suitable solvent for the catalytic amination of alcohols? Green Chem. 2017, 19, 2839–2845. [Google Scholar] [CrossRef]
- Becker, J.; Niederer, J.P.; Keller, M.; Holderich, W.F. Amination of cyclohexanone and cyclohexanol/cyclohexanone in the presence of ammonia and hydrogen using copper or a group VIII metal supported on a carrier as the catalyst. Appl. Catal. A-Gen. 2000, 197, 229–238. [Google Scholar] [CrossRef]
- Hong, E.; Bang, S.; Cho, J.H.; Jung, K.D.; Shin, C.H. Reductive amination of isopropanol to monoisopropylamine over Ni-Fe/γ-Al2O3 catalysts: Synergetic effect of Ni-Fe alloy formation. Appl. Catal. A-Gen. 2017, 542, 146–153. [Google Scholar] [CrossRef]
- Fischer, A.; Mallat, T.; Baiker, A. Continuous amination of propanediols in supercritical ammonia. Angew. Chem. Int. Ed. 1999, 38, 351–354. [Google Scholar] [CrossRef]
- Fischer, A.; Mallat, T.; Baiker, A. Synthesis of 1,4-diaminocyclohexane in supercritical ammonia. J. Catal. 1999, 182, 289–291. [Google Scholar] [CrossRef]
- Fischer, A.; Maciejewski, M.; Bürgi, T.; Mallat, T.; Baiker, A. Cobalt-catalyzed amination of 1, 3-propanediol: Effects of catalyst promotion and use of supercritical ammonia as solvent and reactant. J. Catal. 1999, 183, 373–383. [Google Scholar] [CrossRef]
- Jenzer, G.; Mallat, T.; Baiker, A. Cobalt-catalyzed amination of 1,3-cyclohexanediol and 2,4-pentanediol in supercritical ammonia. Catal. Lett. 1999, 61, 111–114. [Google Scholar] [CrossRef]
- Zhao, G.; Yu, L.; Yan, X.; Li, Y.; Wang, D.; Chen, L. The role of iron in the selective amination of 1,2-butanediol to 2-amino-1-butanol over Co–Ba–Fe/γ-Al2O3. React. Kinet. Mech. Catal. 2010, 100, 449–457. [Google Scholar] [CrossRef]
- Wei, Y.; Ni, W.; Zhang, C.; You, K.; Zhao, F.; Chen, Z.; Ai, Q.; Luo, H.a. Highly dispersed and stable hydrotalcite-derived NiCu/MgAlO alloy catalyst for efficient amination of cyclohexanol to cyclohexylamine in the vapor phase. ACS Sustain. Chem. Eng. 2022, 10, 13367–13379. [Google Scholar] [CrossRef]
- Takanashi, T.; Nakagawa, Y.; Tomishige, K. Amination of alcohols with ammonia in water over Rh in catalyst. Chem. Lett. 2014, 43, 822–824. [Google Scholar] [CrossRef]
- Takanashi, T.; Tamura, M.; Nakagawa, Y.; Tomishige, K. Structure of catalytically active Rh-In bimetallic phase for amination of alcohols. RSC Adv. 2014, 4, 28664–28672. [Google Scholar] [CrossRef]
- Dumon, A.S.; Wang, T.; Ibanez, J.; Tomer, A.; Yan, Z.; Wischert, R.; Sautet, P.; Pera-Titus, M.; Michel, C. Direct n-octanol amination by ammonia on supported Ni and Pd catalysts: Activity is enhanced by “spectator” ammonia adsorbates. Catal. Sci. Technol. 2018, 8, 611–621. [Google Scholar] [CrossRef]
- Wei, Z.J.; Liu, Y.X.; Thushara, D.; Ren, Q.L. Entrainer-intensified vacuum reactive distillation process for the separation of 5-hydroxylmethylfurfural from the dehydration of carbohydrates catalyzed by a metal salt-ionic liquid. Green Chem. 2012, 14, 1220–1226. [Google Scholar] [CrossRef]
- Wei, Z.J.; Xia, S.W.; Chen, M.T.; Lu, M.; Liu, Y.X. Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over a Cu-acetonitrile complex. New J. Chem. 2019, 43, 7600–7605. [Google Scholar] [CrossRef]
- Liu, Y.X.; Zhou, K.; Shu, H.M.; Liu, H.Y.; Lou, J.T.; Guo, D.C.; Wei, Z.J.; Li, X.N. Switchable synthesis of furfurylamine and tetrahydrofurfurylamine from furfuryl alcohol over RANEY® nickel. Catal. Sci. Technol. 2017, 7, 4129–4135. [Google Scholar] [CrossRef]
- Sagar, G.V.; Rao, P.V.; Srikanth, C.S.; Chary, K.V. Dispersion and reactivity of copper catalysts supported on Al2O3-ZrO2. J. Phys. Chem. B 2006, 110, 13881–13888. [Google Scholar] [CrossRef]
- Liu, Y.X.; Zhou, K.; Lu, M.; Wang, L.C.; Wei, Z.J. Synthesis of isophorone diamine and its reaction condition optimization. J. Chem. Eng. Chin. Univ. 2015, 29, 616–620. [Google Scholar]
- Zhou, K.; Liu, Y.X.; Lu, M.; Wei, Z.J. Activated carbon supported cobalt for one-pot synthesis of isophorone diamine from hydroamination of isophorone nitrile. In Proceedings of the 16th ICC, Beijing, China, 3–8 July 2016. [Google Scholar]
- Ruiz, D.; Aho, A.; Saloranta, T.; Eranen, K.; Warna, J.; Leino, R.; Murzin, D.Y. Direct amination of dodecanol with NH3 over heterogeneous catalysts Catalyst screening and kinetic modelling. Chem. Eng. J. 2017, 307, 739–749. [Google Scholar] [CrossRef]
- He, L.; Huang, Y.; Liu, X.Y.; Li, L.; Wang, A.; Wang, X.; Mou, C.Y.; Zhang, T. Structural and catalytic properties of supported Ni–Ir alloy catalysts for H2 generation via hydrous hydrazine decomposition. Appl. Catal. B-Environ. 2014, 147, 779–788. [Google Scholar] [CrossRef]
- Zhou, K. Catalyst design and catalytic reaction in the synthesis of diamines by reductive amination of carbonyl and hydroxyl. Ph.D. Dissertation, Zhejiang University of Technology, Hangzhou, China, 2017. [Google Scholar]
- Ma, L.; Yan, L.; Lu, A.H.; Ding, Y.J. Effect of Re promoter on the structure and catalytic performance of Ni-Re/Al2O3 catalysts for the reductive amination of monoethanolamine. RSC Adv. 2018, 8, 8152–8163. [Google Scholar] [CrossRef]
- Ma, L.; Sun, K.J.; Luo, M.; Yan, L.; Jiang, Z.; Lu, A.H.; Ding, Y.J. Role of ReOx species in Ni-Re/Al2O3 catalyst for amination of monoethanolamine. J. Phys. Chem. C 2018, 122, 23011–23025. [Google Scholar] [CrossRef]
- Chang, H.Y.; Lai, G.H.; Lin, C.Y.; Lee, C.Y.; Chia, C.C.; Hwang, C.L.; Chang, H.M.; Tsai, D.H. Reductive amination of polypropylene glycol using Ni-CeO2@Al2O3 with high activity, selectivity and stability. Catal. Commun. 2019, 127, 15–19. [Google Scholar] [CrossRef]
- Chang, H.Y.; Lai, G.H.; Tsai, D.H. Aerosol route synthesis of Ni-CeO2-Al2O3 hybrid nanoparticle cluster for catalysis of reductive amination of polypropylene glycol. Adv. Powder Technol. 2019, 30, 2293–2298. [Google Scholar] [CrossRef]
- Tong, T.; Guo, W.J.; Liu, X.H.; Guo, Y.; Pao, C.W.; Chen, J.L.; Hu, Y.F.; Wang, Y.Q. Dual functions of CoOx decoration in PtCo/CeO2 catalysts for the hydrogen-borrowing amination of alcohols to primary amines. J. Catal. 2019, 378, 392–401. [Google Scholar] [CrossRef]
- Ball, M.R.; Wesley, T.S.; Rivera-Dones, K.R.; Huber, G.W.; Dumesic, J.A. Amination of 1-hexanol on bimetallic AuPd/TiO2 catalysts. Green Chem. 2018, 20, 4695–4709. [Google Scholar] [CrossRef]
- Gao, F.; Yan, R.; Shu, Y.; Cao, Q.; Zhang, L. Strategies for the application of metal–organic frameworks in catalytic reactions. RSC Adv. 2022, 12, 10114–10125. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.R.; Jiang, Z.Y.; Hou, S.L.; Hu, H.S.; Li, J.; Zhao, B. A strong-acid-resistant [Th6] cluster-based framework for effectively and size-selectively catalyzing reductive amination of aldehydes with N, N-dimethylformamide. Angew. Chem. Int. Ed. 2023, 62, e202301764. [Google Scholar] [CrossRef]
Catalyst | Reaction | Solvent a | a/s b | Pressure (MPa) | NH3/H2 d | T (°C) | t (h) | WHSV (h−1) | Yield (%) | Select. (%) | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
NH3 c | H2 | |||||||||||
58 wt% Ni/SiO2 | - | 8.0 | - | - | 4.00 | 190 | - | 40.50 | 58.0 | 82.9 | [79] | |
56 wt% Ni/SiO2 | - | 60.0 | scNH3 | - | 30.00 | 210 | - | 9.37 | 58.0 | 77.0 | [80] | |
Ni/SiO2-AE | toluene | - | 0.3 | 0.4 | 0.75 | 160 | 2 | 71.7 | 76.9 | 86.0 | [81] | |
17 wt% Ni/γ-Al2O3 | - | 4.0 | 0.012 | 0.018 | 0.67 | 170 | - | 4.29 | 62.1 | 69.0 | [70] | |
10 wt% Ni/γ-Al2O3 | - | 3.0 | 0.009 | 0.018 | 0.50 | 190 | - | 0.55 | 28.4 | 35.0 | [82] | |
5 wt% Ni/γ-Al2O3 | o-xylene | 2.2 | 0.400 | - | - | 160 | - | - | 81.0 | 97.6 | [55] | |
17 wt% Ni/η-Al2O3 | - | 4.0 | 0.012 | 0.018 | 0.67 | 160 | - | 4.30 | 59.9 | 77.2 | [83] | |
10 wt% Ni/CaSiO3 | o-xylene | 2.2 | 0.400 | - | - | 160 | - | - | 86.0 | 90.5 | [69] | |
24.3 wt% Ni/HZSM-5 | - | 2.0 | 0.040 | 0.040 | 1.00 | 170 | - | 25.00 | 61.2 | 68.0 | [84] | |
10 wt% Co/SiO2 | - | 2.0 | - | - | 5.00 | 180 | - | 0.25 | 30.2 | 56.0 | [85] | |
9 wt% Co/SiO2 | - | 2.0 | 0.007 | 0.030 | 0.23 | 180 | - | 1.00 | 32.8 | 49.5 | [86] | |
23 wt% Co/γ-Al2O3 | - | 4.0 | 0.036 | 0.024 | 0.67 | 210 | - | 4.29 | 79.2 | 90.0 | [71] | |
5wt% Co/γ-Al2O3 | tetrahydrofuran | 8.5 | 0.6 | 3 | 0.2 | 180 | - | - | 14.7 | 73.6 | [87] | |
5 wt% Co/La3O4 | - | - | NH3·H2O | - | - | 160 | 6 | - | 68.6 | 89.4 | [68] | |
3.5 wt% Cu/ZrO2 | - | 5.0 | - | - | 1.00 | 250 | - | 1.80 | 42.8 | 63.0 | [88] | |
19.8 wt% Cu/γ-Al2O3 | - | 200.0 | - | - | - | 420 | - | - | 25.4 | 26.2 | [89] | |
Fe | - | 3.0–10.0 | - | 3.00–5.00 | 230–250 | - | - | 35.0 | - | [90] | ||
5 wt% Ru/C | - | - | 0.400 | 0.200 | 2.00 | 150 | 20 | - | 83.8 | 84.6 | [91] | |
5 wt% Ru/Al2O3 | tert-butanol | - | scNH3 | 1.000 | 15.00 | 220 | 4.5 | - | 38.4 | 38.4 | [92] | |
5.3 wt% Ru/C | - | 11.0 | NH3·H2O | 1.000 | - | 170 | 6 | - | 45.0 | - | [92] | |
1Ru/TiO2 | - | - | 0.0135 | 0.0985 | - | 200 | - | - | 60.0 | 85.0 | [17] | |
5 wt% Ru/HBEA(25)_4 | - | 15.0 | - | 0.5 | - | 180 | 120 | - | 87.0 | 92.0 | [59] | |
0.25 wt% Pt/γ-Al2O3 | - | 20.0 | - | - | 1.00 | 200 | - | 0.50 | 52.6 | 82.6 | [93] | |
0.6 wt % Pd/MgO | toluene | - | 0.4 | - | - | 200 | 10 | - | 72.0 | 80.0 | [65] | |
17 wt% Ni-Fe/Al2O3 | - | 8.0 | 0.024 | 0.012 | 2.00 | 150 | - | - | 79.3 | 83.0 | [94] | |
NiCuFeOx | xylene | 40.0 | 1.000 | - | - | 150 | - | - | 77.0 | - | [77] | |
Ni-Ce/γ-Al2O3 | - | 11 | 0.1 | - | 1.22 | 200 | - | 0.132 | - | - | [64] | |
NiCu/MgAlO | - | 5 | 0.1 | - | 0.76 | 200 | 6 | - | 97.6 | 98.9 | [38] | |
Ni2Al-600 | tetrahydrofuran | - | 0.4 | - | - | 180 | 36 | - | 84.1 | 84.1 | [23] | |
95 wt%Co-5 wt% Fe | - | 40.0 | scNH3 | - | 30.00 | 195 | - | 6.92 | 32.8 | 36.0 | [95] | |
95 wt%Co-5 wt% Fe | - | 60.0 | scNH3 | - | 30.00 | 185 | - | 1.63 | 54.0 | 93.1 | [96] | |
95 wt%Co-5 wt% Fe | - | 60.0 | scNH3 | - | 30.00 | 195 | - | 4.57 | 40.9 | 43.0 | [97] | |
95 wt%Co-5 wt% Fe | - | 60.0 | scNH3 | - | 30.00 | 170 | - | 20.90 | 26.3 | 47.0 | [98] | |
Co98.5Ag1.5/γ-Al2O3 | tetrahydrofuran | 8.5 | 0.6 | 3 | 0.2 | 180 | - | - | 14.5 | 72.7 | [87] | |
Co-Ba-Fe/γ-Al2O3 | toluene | - | - | 5.000 | - | 165 | - | - | 53.4 | 73.3 | [99] | |
Ni-0.3Fe/Al2O3 | - | 8 | 0.024 | 0.012 | 2 | 150 | 0.5 | - | 79.3 | 83.0 | [94] | |
NiCu/MgAlO | - | 12 | - | - | - | 170 | 18 | 0.30 | 94.1 | 95.5 | [100] | |
10 wt% Rh-In(1:1)/C | - | 10.0 | NH3·H2O | 5.000 | - | 180 | 24 | - | 9.5 | 89.0 | [101] | |
30 wt% Rh-In(1:1)/C | - | 10.0 | NH3·H2O | 5.000 | - | 180 | 24 | - | 90.0 | 90.0 | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Wei, Y.; Cheng, Y.; Xiao, S.; Chen, M.; Wei, Z. The Acquisition of Primary Amines from Alcohols through Reductive Amination over Heterogeneous Catalysts. Catalysts 2023, 13, 1350. https://doi.org/10.3390/catal13101350
Huang H, Wei Y, Cheng Y, Xiao S, Chen M, Wei Z. The Acquisition of Primary Amines from Alcohols through Reductive Amination over Heterogeneous Catalysts. Catalysts. 2023; 13(10):1350. https://doi.org/10.3390/catal13101350
Chicago/Turabian StyleHuang, Hao, Yuejun Wei, Yuran Cheng, Shuwen Xiao, Mingchih Chen, and Zuojun Wei. 2023. "The Acquisition of Primary Amines from Alcohols through Reductive Amination over Heterogeneous Catalysts" Catalysts 13, no. 10: 1350. https://doi.org/10.3390/catal13101350
APA StyleHuang, H., Wei, Y., Cheng, Y., Xiao, S., Chen, M., & Wei, Z. (2023). The Acquisition of Primary Amines from Alcohols through Reductive Amination over Heterogeneous Catalysts. Catalysts, 13(10), 1350. https://doi.org/10.3390/catal13101350