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CO2 methanation is a chemical process that involves the conversion of carbon dioxide
(CO2) and hydrogen (H2) gases into methane (CH4) and water (H2O) [1–3]. This reaction
plays a crucial role in carbon capture and utilization strategies, as it allows the recycling
of CO2 emissions into valuable methane, which can be used as a clean energy source or
feedstock for various industries.

Catalytic CO2 methanation requires catalysts to facilitate the reaction at reasonable tem-
peratures and pressures. Common catalysts include nickel (Ni) [4–15], cobalt (Co) [16–19],
ruthenium (Ru) [4,6,20–25], and others [26,27] supported on high-surface-area materi-
als like Al2O3, ZrO2, CeO2, or SiO2. Common reactor types for the CO2 methanation
process include fixed bed [28–34], monolith [35–39], fluidized bed [5,32,40–46], and micro-
structured [47–50]. Despite numerous studies on catalytic CO2 methanation, reactors and
processes design tasks are still limited in the current stage of process development. This
Special Issue focuses on reactors and processes of catalytic CO2 methanation, including
(a) catalyst development, (b) reactor design, (c) process integrations, and (d) modeling and
simulation approaches.

The significant publications featured in this Special Issue on CO2 methanation reactors
and processes include:

a. Soon Woong Chang et al. from Korea studied the deactivation and regeneration
method for Ni catalyst by H2S poisoning [4]: Catalyst poisoning is a prevalent concern
in industrial applications. This research reveals that the reaction activity of the Ni-Ce-
Zr catalyst significantly diminishes at 220 ◦C due to the toxic impact of H2S. The study
introduces a novel approach to counteract this effect by employing H2 treatment for
the generation of the Ni-Ce-Zr catalyst. Consequently, this paper provides valuable
insights into the fundamentals of catalyst poisoning and offers a viable generation
method for the CO2 methanation process.

b. Son Ich Ngo et al. from Korea studied the physics-informed neural network for
instant prediction of fixed-bed reactor performance [28]: Neural networks generally
have advantages in instant predictions with high accuracy. Physics-informed neural
networks (PINN) offer an additional advantage by incorporating governing equations
within the network, enhancing extrapolation capabilities beyond sampled data. In
this study, PINN was applied to the design of fixed-bed reactors for catalytic CO2
methanation. Remarkably, even with training data covering only one sixth of the
reactor length range, the forward PINN achieved an impressive 88.1% extrapolation
prediction accuracy for the entire reactor length range. Moreover, the inverse PINN
successfully revealed hidden reactor design parameters using only a few experimental
data points. Notably, this study garnered the highest number of citations and views
within this Special Issue.

c. Frances Sastre et al. from TNO in Eindhoven studied the Plasmonic Ru nanorod
catalyst for sunlight-powered process [21]: At an intensity of 12.5 suns, the CO2
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conversion rate surpassed 97%, displaying complete CH4 selectivity and maintaining
a steady production rate of 261.9 mmol/g/h for a minimum of 12 h. Notably, the
CH4 production rate exhibited an exponential rise with increasing light intensity.
In a separate set of experiments conducted under 14.4 suns and a consistent bed
temperature of approximately 204 ◦C, different flow rates were examined.

d. Daria Burova et al. from Belgium and The Netherlands made a comparison of chem-
ical reduction in RuCl3 and thermal decomposition of Ru3(CO)12 [20]: This study
discovered that the two preparation methods yielded different particle sizes. Surpris-
ingly, despite the variation in particle sizes, the catalysts exhibited similar activity and
selectivity in the sunlight-powered process, achieving rates of 0.14–0.63 mol/g/h and
>99%, respectively.

e. Byungwook Hwang et al. from Korea studied Fluidized-bed reactor design for Ni-
based catalyst [5]: This study concentrated on reactor design rather than catalyst and
process development. The fluidized-bed reactor, renowned for its exceptional heat
and mass transfer capabilities, effectively mitigates the high endothermic Sabatier
reaction’s hot-spot temperatures. Nevertheless, the designs of both the reactor and
the process are relatively complex due to the intricate interplay of gas hydrodynamics
and solid catalyst pellets. Remarkably, in this reactor, the temperature rise is only
approximately 11 ◦C for achieving an around 90% CO2 conversion. Additionally, the
study identified the reaction kinetics parameters for the Ni/Al2O3 catalyst.

f. Javier Herguido et al. from Zaragoza (Spain) presented an study about Ni-, Ni-Fe-,
and Ru-based catalyst for biogas upgrading [6]: Multiple homemade catalyst types
were evaluated for CO2 methanation within the temperature range of 250 ◦C to 400 ◦C,
maintaining a constant flow rate of 30,000 mL/g/h. Among them, the Ru (3.7 wt%)-
based catalyst demonstrated outstanding performance, exhibiting turnover frequency
(TOF) values of up to 5.1 min−1. This figure was notably six times higher than that
achieved with the Ni (10.3 wt%) catalyst and three times higher than that of the Ni–Fe
(7.4–2.1 wt%) catalysts.

The design of CO2 methanation reactors and processes necessitates a deep under-
standing of catalyst preparation, reaction kinetics mechanisms, reaction engineering, and
reactor modeling. The Special Issue on “Catalytic CO2 Methanation Reactors and Processes”
gathers several articles studying different aspects as catalyst preparation, effect of feed
composition, different reactor types, durability, regeneration, etc. Therefore, the issue
significantly contributes to advances in the power-to-gas concept, enabling energy storage
for renewable energies.
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