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Abstract: Ceria-based oxides have been extensively involved in a wide range of catalytic applications
due to their intriguing properties, related mostly to their superior redox features in conjunction with
peculiar metal-support interaction phenomena. Most importantly, the fine-tuning of key interre-
lated factors, such as the size, morphology and electronic state of the catalyst’s counterparts, can
exert a profound influence on the intrinsic characteristics and interfacial reactivity with pronounced
implications in catalysis. The present review, while also elaborating our recent efforts in the field,
aims to provide key fundamental and practical aspects in relation to the rational design and func-
tionalization strategies of ceria-based catalysts, exemplified by the CO2 hydrogenation processes,
namely, CO2 methanation and reverse water–gas shift (rWGS) reactions. Firstly, a description of the
most prominent catalytically relevant features of cerium oxide is provided, focusing on reducibility
and metal-support interaction phenomena, followed by a brief overview of the current status of
ceria-based catalysts for various energy and environmental applications. Then, the main implications
of fine-tuning engineering via either appropriate synthesis routes or aliovalent doping on key activity
descriptors are thoroughly discussed and exemplified by state-of-the-art ceria-based catalysts for
CO2 hydrogenation. It is clearly revealed that highly active and cost-efficient ceria-based catalytic
materials can be obtained on the grounds of the proposed functionalization strategy, with comparable
or even superior reactivity to that of noble metal catalysts for both the studied reactions. In a nutshell,
it can be postulated that the dedicated fabrication of CeO2-based systems with augmented redox
capabilities and, thus, oxygen vacancies abundance can greatly enhance the activation of gas-phase
CO2 towards CO or CH4. Besides, the morphology-engineering of CeO2-based catalysts can notably
affect the CO2 hydrogenation performance, by means of an optimum metal-ceria interphase based
on the exposed facets, whereas doping and promotion strategies can effectively shift the reaction
pathway towards the selective production of either CO or CH4. The conclusions derived from the
present work can provide design and fine-tuning principles for cost-efficient, highly active and
earth-abundant metal oxide systems, not only for the CO2 hydrogenation process but for various
other energy and environmental applications.

Keywords: CO2 hydrogenation; CeO2-based catalysts; size/shape/electronic functionalization;
rational design; metal-support interactions; reverse water–gas shift; methanation reactions

1. Introduction

Cerium oxide, symbolized as CeO2 and also known as ceria, has attracted a lot
of scientific attention in the last decades, having been established by now as a widely
used material due to its intriguing properties pertaining to a wide array of technological
applications [1,2], as seen in Figure 1. Besides its well-established role in the field of catalysis,
CeO2 exhibits, for instance, superior polishing properties compared to the conventional
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anhydrous ferric oxide particles and is thus extensively used as a polishing agent for
glasses (mirrors, plates, ophthalmic lenses and precision optics) [3]. Ceria is also able to
prevent glass solarization and discoloration, mainly by preventing the formation of Fe2+ [4].
Moreover, it has been shown that the addition of CeO2 nanoparticles into automotive
fuels can significantly contribute to the mitigation of particle emissions. Notably, CeO2
nanoparticles have been recently shown to be promising materials in the fields of sensor
technology [5] as well as biomedicine and pharmaceutics via their beneficial effect on
biological systems on the protection against oxidative stress and other unfavorable factors,
as antioxidants in biological systems, in regenerative medicine as spinal healing agents and
UV light sorbents [6]. Moreover, ceria is widely used in electrochemical applications as
electrolyte material in solid-oxide fuel cells (SOFCs) due to its high ionic conductivity [7,8].
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Naturally occurring cerium is a mixture of four isotopes, with cerium-140 and sec-
ondarily cerium-142 being by far the most common, as seen by the relative abundance of
each of the following isotopes: 140Ce (88.5%), 142Ce (11.0%), 138Ce (0.3%), 136Ce (0.2%) [10].
Cerium is found in various minerals (i.e., in carbonates, silicates, phosphates and oxides),
the most common being monazite, bastnaesite, cerite and allanite (also known as orthite).
Monazite, which is a cerium phosphate containing thorium and other light rare earth
metals, is the principal source of cerium. Its most important deposits are located in the
United States, Australia, Brazil, India and South Africa. Bastnaesite, a rare earth fluoro-
carbonate, is the second most used source and its major reserves are situated in Southern
California. Cerite, which is a calcium-iron-rare earth silicate, is widely found in the United
States, Sweden, Germany, Greenland, Madagascar, Russia and Scandinavia [11,12]. The
commercial production of cerium is realized by electrolysis of fused chlorides or molten
cerium oxide or by reduction of the fused fluoride with Ca. Cerium oxide is produced by
heating bastnaesite and subsequently treating it with HCl [13].

As for its physicochemical properties, elemental cerium is the most abundant of the
rare earth metals (its mass fraction is approximately 0.0046% of the Earth’s crust) and
belongs to the lanthanide series in the periodic table (atomic number 58), being the most
reactive element among them. It has an atomic mass of 140.12, and its atomic radius is
1.81 Å (Figure 2). Based on known reserves, it is almost as abundant as zinc and more
abundant than tin or lead [2]. Cerium, as a typical 4f metal, is characterized by a variable
electronic configuration in which the energy of the inner 4f orbital is nearly the same as
that of the 6s orbital, allowing variable occupancy of both. The stable oxidation states of
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cerium are Ce3+ and Ce4+, presenting in the two respective oxides named cerium dioxide
or ceria (CeO2) and cerium sesquioxide (Ce2O3). The 4+ oxidation state of cerium is
considered more stable due to the fact that its electronic structure is identical to a noble-gas
configuration (i.e., [Xe] 4f0) compared to the electronic configuration [Xe] 4f1 for Ce3+ [14].
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In this regard, a recent soar in the market and, in turn, the recently developed technol-
ogy of ceria nanoparticle production have boosted their production (Figure 3). For instance,
it is forecasted that the global CeO2 market will almost triple, from 218.8 million USD in
2017 to 630.2 million USD in 2022, due to both increasing demand and government invest-
ments in many industrial applications [2]. At the same time, the general trend regarding the
price of CeO2 in the global market is a steadily decreasing one, projected to reach a value of
ca. USD 3300 per metric ton in the year 2025 and is notably different from the one for most of
the other rare earth elements, being cheaper than e.g., lanthanum oxide. With the eventual
scope of an environmentally friendly process, the aim is to prepare fewer toxic materials in
a sustainable and cost-effective manner. So far, ceria-based materials have shown adequate
performance with regard to their sustainability, regeneration (mostly via thermal reduction)
and, finally, reusability [15]. Additionally, from a geopolitical perspective, cerium and,
in turn, cerium-based materials can be considered as markedly exploitable, with a high
potential in the short-to-medium term and thus deserving even more research attention,
from lab- to industrial-scale works.

Despite the use of ceria in a wide range of technological fields, the most common
application of ceria remains its use as a component in heterogeneous catalytic systems.
Indeed, CeO2 is more or less a platform component in a variety of state-of-the-art catalytic
composites for various environmentally relevant reactions involving, among others, CO2
hydrogenation to value-added products [16–21]. At the same time, intensified research
attention is constantly attracted toward the further optimization of ceria-based catalysts.
This is due to the intriguing characteristics and augmented tunability of the surface chem-
istry, structure and electronic properties of ceria, which, in turn, offer a wide margin for the
design of optimal catalysts, depending on the application [14,22]. Therefore, the fine-tuning
of CeO2-based catalysts through a rational design methodology employing both theoretical
and experimental studies exploring the underlying phenomena that govern their catalytic
behavior can potentially lead to highly active and cost-effective materials that can be scaled
up for widespread use.
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In light of the above, the present review aims to provide key fundamental and practical
aspects in relation to the rational design and surface-structure functionalization of ceria-
based catalysts, also considering our recent efforts in the field. Firstly, a description of the
most prominent catalytically relevant features of cerium oxide is provided, focused on
reducibility and metal-support interaction phenomena, followed by a brief overview of the
current status of ceria-based catalysts for various energy and environmental applications
(e.g., three-way catalysis, catalytic combustion processes, water–gas shift and preferential
oxidation of CO). Next, key fundamental aspects of fine-tuning engineering strategies
are elaborated, with particular emphasis on the size, shape and electronic engineering of
CeO2-based oxides at the nanoscale through appropriate synthesis and modification routes.
Lastly, the aforementioned discussion is exemplified by the implications of fine-tuning
approaches on the key features and catalytic performance of state-of-the-art CeO2-based
materials for CO2 hydrogenation to CO or CH4.

2. Catalytic Features of CeO2-Based Materials

The scientific interest regarding ceria-containing catalysts, either as active phase,
support or as a promoter, has skyrocketed in the last decades, providing along the way
a very good level of accumulated fundamental knowledge of their catalytic behavior
and intrinsic properties, documented by the great number of seminal reviews and books
published from 2010, summarized recently by Huang et al. [19]. The oxide of cerium
has by now been established as an incredibly unique compound, predominantly due to
its versatile chemical structure, in addition to its abundance and cost-effectiveness, even
though it contains a rare earth metal. Specifically, CeO2 can be thought of as a very good
case study for the understanding of complex catalytic phenomena, as it is associated
with all of the following intriguing characteristics pertaining to the field of heterogeneous
catalysis [23];

• Complex electronic structure;
• Oxygen transport ability;
• Enhanced reducibility;
• Marked size- and shape-sensitivity;
• Combination of acid/base and redox chemistry;
• Facile chemistry modification via doping/promotion.

The above features can be better comprehended by considering the general scheme
of reactivity pillars pioneeringly proposed by Grasselli [24] and further discussed in the
context of CeO2-based catalysts by Capdevila-Cortada et al. [23]. Indeed, as is the case in
any heterogeneous catalytic system, the total (or apparent) activity of a ceria-based catalyst



Catalysts 2023, 13, 275 5 of 50

is practically never solely ascribed to an individual property but is rather a synergistic
combination of a plethora of descriptors. This is schematically shown in Figure 4.
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Most importantly, in the case of ceria-based oxides consisting of two or more single
oxides at a specific composition, completely different features—reflected in the catalytic
efficiency—can be obtained, arising mainly from the synergistic interactions between the
different counterparts. These synergistic interactions, thoroughly discussed in several
relevant articles [25–31], can notably affect the physical-chemical characteristics of parent
oxides through geometric/electronic interactions, offering, in addition, interfacial sites of
unique reactivity. In view of this fact, the modulation of various parameters, involving
mainly the size, shape and electronic state of parent oxides, can put forward a profound
impact on the interfacial area and metal-support interactions with direct implications in
catalysis (Figure 4).

Collectively, it can be reasoned that the detailed roles of CeO2-based materials in
a specific reaction are typically complicated, and they need to be meticulously studied
in order to further optimize their activity on a large scale. In any case, the two most
prominent categories of catalytic features of ceria-based catalysts, i.e., redox properties and
metal-support interactions, are elaborated next.

2.1. Redox Properties and Oxygen Storage Capacity

Typically, ceria adopts a fluorite-type, face-centered cubic (FCC) lattice crystal structure
(CaF2, FCC, space group Fm3m) with an average lattice constant equal to 5.41134 Å. In
the unit cell of the FCC structure, each cerium atom is attached to eight oxygen atoms (the
coordination number, CN, of cerium atoms is equal to 8), whereas the CN value for an
oxygen atom is 4 (Figure 5). The overall crystal structure can be thus regarded either as a
combination of CeO8 cubes or, equivalently, as a reconstruction of several OCe4 tetrahedra.
As for the fully reduced sesquioxide, Ce2O3, its stable form is hexagonal, in the space group
P3−mL. In this structure, Ce cations are coordinated into seven O anions, with four of the
oxygen anions being closer than the other three [14]. Arising from its rather unique electron
configuration ([Xe] 4f15d16s2) and upon exposure to reducing conditions (e.g., reaction with
H2 or CO), it is easier for cerium atoms to transition reversibly between the two states of
Ce4+ and Ce3+, while upon exposure to an oxidizing atmosphere (e.g., reaction with H2O
or CO2), the reduced oxide takes up oxygen, restoring the fully stoichiometric phase of
CeO2 [32]. Albeit reduction typically requires high temperatures, re-oxidation is a rapid
process and can also occur at ambient conditions [16].
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In essence, the interchangeability of the two Ce oxidation states refers to the creation of
a non-stoichiometric cerium oxide phase, denoted as CeO2−x, where x is a number between
0 and 0.5, representing the reduction degree of cerium and is a measure of the deviation
from the stoichiometric CeO2 (Equation (1)). As a result of charge balance, Ce3+ formation
is accompanied by the creation of oxygen vacancies both on the surface and in the bulk.
During this reversible process, the atoms of Ce and O maintain the CaF2 FCC arrangement,
at least for typical values of x < 0.25 that are observed in catalytic applications, despite
the symmetry changes due to oxygen vacancies formation. Notably, since the size of a
Ce3+ cation is larger than Ce4+, the generation of an oxygen vacancy would induce lattice
distortion, affecting the corresponding charge distribution on the surface or in the bulk [34].
The crystal structure of defective CeO2−x is known as the most energetically favorable
for the arrangement of oxygen vacancies. Moreover, the two electrons associated with a
missing oxygen atom upon the formation of an oxygen vacancy fully localize on two Ce4+

sites, forming a tetrahedron around the vacancy site, as shown in another equation with the
use of the Kröger–Vink notation (Equation (2)). In this expression, CeCe and Ce′Ce stand
for either a Ce4+ or Ce3+ cation on a Ce lattice site, respectively, Oo denotes an O2− anion
on an O lattice site and Vo

′ ′ represents a neutral oxygen vacancy site [35].

2CeO2 ↔ 2CeO2−x + xO2(g), 0 ≤ x ≤ 0.5 (1)

2Oo + 4CeCe ↔ O2 + 2Vo” + 4Ce′Ce (2)

The defects induced by oxygen vacancy and Ce3+ formation in CeO2−x can improve
gas-phase oxygen adsorption and activation as well as oxygen self-diffusion in its lattice,
significantly contributing to a high performance in redox processes and catalytic reactions.
Moreover, structural defects such as oxygen vacancies resulting from the substitution of
other valence elements are intricately linked to oxygen ion diffusion, having a key role in
determining the reactivity of cerium-based oxides for thermal catalysis and electrochemical
purposes. In fact, the catalytic performance of CeO2-based catalysts in numerous reactions
relies to a great extent on its redox properties and oxygen storage capacity; in other
words, the catalytic behavior is highly dependent on the effectiveness and degree of
interchangeability between the Ce3+ ↔ Ce4+ redox cycles. In turn, the ability of ceria
nanoparticles to shift between the different oxidation states is largely determined by the
Ce3+/Ce4+ ratio and oxygen vacancy concentration [36].
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In light of the above, it has been established from early works that partially reduced
CeO2−x is associated with significantly different surface properties than fully oxidized
CeO2. In particular, the associated changes in the coordination number (CN) of Ce and in
its oxidation state lead to higher affinity and stability for the adsorption of reactant gaseous
molecules, in essence, facilitating the selective formation of products containing more or
less oxygen compared to the reactants, accordingly [14]. In other words, the transition
between Ce3+ ↔ Ce4+ is suggestive of the capability of ceria to switch between the release
and storage of oxygen from and in its lattice. This surface property is commonly referred
to in the scientific literature as oxygen storage capacity or OSC, which can be used to
quantitatively or semi-quantitatively evaluate the capability of ceria-based catalysts in
releasing and storing oxygen, a very helpful descriptor in redox chemical reactions. It
becomes evident that OSC is augmented in elevated temperatures due to the increased
mobility of oxygen moieties induced by the provision of thermal energy. The oxygen storage
capacity of ceria at a given temperature can be further divided into total and dynamic OSC,
the former referring to the thermodynamically allowed amount of transferable oxygen and
the latter to labile oxygen moieties, i.e., surface oxygen species and oxygen vacancies [37].
In practical terms, however, dynamic OSC is a more relevant indicator of catalytic activity
in redox reactions [38,39].

Generally, a material with high OSC values, such as CeO2, is associated with the
following properties: (i) the redox cycle between the oxidized and reduced forms is energet-
ically favored or, equivalently, the vacancy formation energy is low; (ii) the vacancies (and
as a consequence the O atoms) are highly mobile and can thus easily migrate between the
surface and the bulk and deep inside the bulk; (iii) facile transformation between the crystal
structures of the oxidized (CeO2) and reduced (Ce2O3) forms or, at least, a facile alignment
of the vacancies through defect lines [23]. The OSC has been instrumental to understand
ceria chemistry in many oxidation reactions, be it as a standalone catalyst or support [17].
Supported metals greatly promote the OSC of ceria by directly participating through
metal/metal oxide redox cycles and activating oxygen species of the support [40]. In this
sense, a summary of the analytical techniques that can be used for the characterization of
structural defects in CeO2−x can be found in the recent review by Xu et al. [22].

2.2. Strong Metal-Support Interactions (SMSI)

Along with the key role of redox properties, the indispensable role of metal-support
interactions on the catalytic performance of supported systems has been well documented.
Ever since the first report on the so-called SMSI (strong metal-support interaction) effect by
Tauster in 1978 [41], its implications in heterogeneous catalysis have been widely examined
in various works. Essentially, the original description of the SMSI effect can be summarized
by the following features [42]:

• It is practically associated with reducible supporting materials;
• It is induced by high-temperature reduction procedures, typically above 500 ◦C;
• The chemical properties of the dispersed metal nanoparticles are heavily disturbed

by strong inhibition of its chemisorption properties and/or significant changes in
catalytic behavior;

• It is reversible, which means that upon re-oxidation at a temperature higher than ca.
500 ◦C, followed by mild reduction, the conventional behavior of the supported metal
phase may revert to its starting behavior in terms of catalytic activity.

In the general category of a catalytic composite consisting of a metal active phase
supported on a metallic oxide, the interactions between the two phases have a pivotal role
and exert a strong impact on the performance of heterogeneous catalysts in any reaction.
Specific sites at the metal-support interface can provide remarkably high reactivity, and the
optimization of the metal-support interfacial phenomena is crucial in the development of
selective and active catalytic materials. For typically reducible oxide supports such as TiO2,
CeO2 or Nb2O5, these interactions can have different origins. For example, encapsulation of
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the dispersed metal nanoparticles by a layer of the supporting oxide via several processes
such as reduction, oxidation or reactant adsorption is referred to as an SMSI. Moreover,
at high reduction temperatures, the chemisorption ability of metal particles is reduced or
even vanished due to the support-induced decorating effects [42]. Besides, charge transfer
to or from the metal nanoparticles, the restructuring of metallic nanoparticles induced
by the presence of the support and formation of specific metal-support interfaces can
also contribute to these phenomena. Whereas SMSI are often associated with a decrease
in the active metal surface area, this effect is largely counterbalanced by the peculiar
properties arising in the vicinity of the metal and the support that increase the catalytic
performance [43].

However, it is now widely accepted that many mechanisms may occur exactly because
of metal-support interactions (MSIs), and they cannot be fully elucidated by simply con-
sidering the SMSI effect. These mechanisms involve primarily the electronic interactions
between the support and the metal active phase, the unique activity of interfacial sites and
a variety of geometric effects involving the alteration of the structure of metal sites via
their interaction with the supporting material [44,45]. Thus, in the seminal work by Camp-
bell [46], the term EMSI (electronic metal-support interactions) was introduced in order to
holistically describe the origin of the outstanding catalytic activity in some materials, which
stems directly from the contact between highly dispersed metal nanoparticles and reducible
oxides such as CeO2. In the concept of EMSI, the alteration of the chemical properties of
metal sites can be thought of as the outcome of perturbations in their electronic properties
via bonding interaction with the highly reducible ceria or any other oxide, for that matter.

Particularly, ceria-based catalysts differ from other widely used supports since, on
top of decoration or alloying effects, electronic phenomena also contribute to the SMSIs.
Moreover, in conjunction with their reducible nature, metal/ceria catalysts were included
among the candidate systems exhibiting strong metal/support interaction effects from as
early as the 1980s [47,48]. Although the abovementioned EMSI concept has been mainly
adopted for the interpretation of the interactions in noble metal phases supported on
ceria, recent studies have established that the same phenomena are demonstrated for
3D transition metal catalysts as well, particularly Ni/CeO2 [49] and Cu/CeO2 [30,50]. It
should be emphasized, however, although the terms SMSI and EMSI are usually used to
denote the pronounced synergistic interactions that lead to enhanced catalytic performance,
this is not always the case, as the overall activity is dependent on the nature and local
geometry of catalytic sites, as well as on the reaction environment and is therefore not
entirely analogous with the extent of metal-support interactions. In any case, the fine-
tuning and control of MSIs is the key factor in regulating the interfacial sites and their local
surface chemistry. To this end, the strengthening or weakening of MSIs can be used as a
regulating tool for interfacial reactivity, which, in turn, can determine the bonding and,
eventually, the activation of the reactant molecules [51–53]. In this regard, MSIs tuning
strategies by means of advanced synthetic, compositional and promotional means have
received particular attention in heterogeneous catalysis. In light of these, in the section
below indicative applications of CeO2-based catalysts are discussed from the viewpoint of
the aforementioned redox and interfacial properties. The key role of fine-tuning strategies
is clearly revealed, which is elaborated on in the upcoming section.

3. Applications of CeO2-Based Catalysts

On the basis of the unique surface properties of CeO2, a plethora of ceria-based cata-
lysts have been explored and developed recently in several chemical reactions (Figure 6).
For metal oxide catalysts with CeO2 as the supporting material, the active phases (pre-
dominantly transition metals) can be highly dispersed on the surface. Because of its
excellent redox ability, high OSC, appropriate surface acidity and augmented Ce4+/Ce3+ in-
terchangeability, ceria can exert a strong interaction with the active phase, thus affecting the
performance of catalysts via the abovementioned metal-support interactions. Nonetheless,
even though ceria has been widely applied as a catalyst constituent, herein, an overview
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of the most significant and essentially environmentally relevant applications of ceria-
containing heterogeneous catalytic materials are elaborated from the viewpoint of redox
and interfacial properties.
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3.1. Three-Way Catalysis

The first application of ceria as a catalyst was as an oxygen storage component in three-
way catalytic converters (TWCs) used for the treatment of exhaust gases in automobiles.
Undoubtedly, the utilization of CeO2 as a key component in TWCs remains its most impor-
tant technological application and has stimulated an increased research effort in this area.
In order to improve the TWCs performance by maintaining the control of the gas mixture
composition around the stoichiometric ratio, the introduction of a component that could act
as an oxygen buffer during the excursion of the air-to-fuel ratio in the lean and rich compo-
sition side was necessary [54,55]. Thus, given the already discussed Ce3+↔ Ce4+ transition
in ceria, this material enables the simultaneous provision of oxygen in the rich part of the
oxidation cycle of the unburned species by being reduced (Equations (3)–(5)) while storing
oxygen under lean conditions and reverting to CeO2 (Equations (6)–(8)). Furthermore, the
OSC ability directly affects the activity in both CO oxidation [56] and WGS [57]. In addition
to OSC, the presence of ceria induces an enhancement of the dispersion of the noble metal
particles and the formation of active sites at their interface [26,58].

CeO2 + xCO→ CeO2−x + xCO2 (3)

CeO2 + CxHy → CeO2−(2x+0.5y) + xCO2 + 0.5yH2O (4)

CeO2 + xH2 → CeO2−x + xH2O (5)

CeO2−x + xNO→ CeO2 + 0.5xN2 (6)

CeO2−x + xH2O→ CeO2 + xH2 (7)

CeO2−x + 0.5xO2 → CeO2 (8)

A further enhanced low-temperature oxygen availability and higher resistance to
high-temperature excursion can be obtained through doping of ceria. In particular, the
replacement of some of the Ce ions in its CaF2-type structure introduces a lattice strain
that weakens Ce-O bonds, decreases the oxygen vacancy formation energy and modifies
oxygen ion diffusion [59]. Several isovalent and aliovalent elements have been used, though
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zirconium-doped ceria materials represent the optimum solution in terms of facile solid
solution formation in a wide range of compositions, high redox capacity and thermal
stability. Essentially, the introduction of the smaller and non-reducible Zr4+ cation into
CeO2 causes a shrinkage of the FCC cell and renders unfavorable the zirconium eightfold
fluorite-type coordination. The induced lattice strain can be minimized with more facile
oxygen vacancy formation, allowing Zr to adopt a sevenfold coordination [17]. Moreover,
the presence of ZrO2 has been shown to modify the oxygen sub-lattice in CeO2-ZrO2 by
introducing structural defects and increasing lattice oxygen mobility and reducibility, even
at moderate temperatures [60,61].

One of the major challenges in the use of CeO2 in TWCs is that it should withstand
the elevated temperatures (even higher than 1000 ◦C) to which the catalyst is sometimes
exposed. At this elevated temperature, extensive sintering and, concomitantly, a rapid
decrease in the surface area take place. This, in turn, inhibits OSC and reducibility; there-
fore, the development of more thermally stable CeO2 formulations has attracted a lot of
research interest. Furthermore, since pollutant emissions in engines equipped with catalytic
converters mainly occur during warm-up, it was essential to improve the catalytic activity
at temperatures lower than 300 ◦C, also taking into account the fact that OSC of ceria under
real conditions is limited by the presence of water and carbon dioxide [62]. In addition, the
reduction or, ideally, the elimination of noble metals (NMs) use in TWCs is among the most
important challenges in the area of catalysis, given the scarcity and, in turn, high price asso-
ciated with NMs. In this direction, the combination of CeO2 with earth-abundant oxides
under the guidance of the rational design and fine-tuning approach can lead to unique
catalyst formulations with the desired cost and efficiency [63]. Moreover, the washcoat
composition, the metal loading, the use of rare earth and alkali/alkaline promoters, and the
size/shape engineering of catalyst counterparts are some of the most commonly considered
strategies for the rational design of TWCs [64–69]. Collectively, the recent advances in the
field of TWCs have been summarized in various review papers [70–72].

3.2. Catalytic Combustion/Oxidation Processes

The predominant reasons for the use of catalysts in combustion reactions are mainly
linked with the removal and control of pollutants from exhaust flue gases, such as volatile
organic compounds (VOCs), CO and soot [73]. In contrast to conventional combustion, cat-
alytically assisted combustion can be defined as a complete oxidation reaction promoted at
the surface of a catalyst and thus it is a flameless process. As is the case in any catalytically
driven reaction, the selection of the catalytic material is important, with ceria-based mate-
rials, in particular, being one of the most promising and studied materials in combustion
applications due to their unique features.

3.2.1. Soot Oxidation

Carbon particulates (commonly called soot) are one of the main pollutants emitted
by diesel engines, along with CO, NOx and unburned hydrocarbons, and their adverse
effects on human health have showcased the need for strict regulatory measures regarding
the allowable emissions. However, NOx and soot emissions cannot be reduced solely
through engine modifications; thus, in order to fulfill the legal emission limits, flue gas-
after-treatment technologies have been introduced in recent years. The use of particulate
filters and deNOx catalysts is a promising approach, following the basic concept of TWCs
for gasoline engines. In general, soot abatement in diesel exhaust conditions commonly
consists of a two-step technology. The first step is the mechanical filtration of carbonaceous
particles from the gas phase using a diesel particulate filter. The second step is the actual
burning of soot particles inside the filter. This way, the undesired back pressure in the filter
due to the accumulation of particulates is avoided [74,75]. Some of the drawbacks include
complex filter regeneration and limited soot-catalyst contact efficiency, while the catalyst is
additionally required to exert activity and stability over a wide temperature range.
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In the early 1990s, ceria-based catalysts were developed for diesel engines [76], and
since then, several ceria-based formulations have been investigated in the reaction of soot
oxidation, as summarized in Refs. [77,78]. The redox and oxygen storage properties of
ceria are the key characteristics that render CeO2 a very active material in the reaction
of soot combustion, as they promote the production of active oxygen species that are
essential for the low-temperature oxidation and, in turn, decrease the energy needs for filter
regeneration. A plethora of works have investigated these oxygen species with the aim of
elucidating the underlying reaction mechanism. It is generally assumed that oxygen species
in the form of superoxides (O2−) originate from the interaction between the gaseous oxygen
and surface oxygen vacancies of CeO2−x, essentially enabling the carbon oxidation path.
Ceria reduction (with the formation of oxygen vacancies) and CO2 formation is promoted
at the C-CeO2 interface, where carbon acts as the reductant. In an oxygen-free atmosphere,
ceria reduction cannot proceed further, owing to the limitation induced by the C-CeO2
contact and by the number of available surface/lattice oxygen species. However, in the
presence of gas-phase oxygen, reduced ceria reacts with O2, yielding O2

2− and O2− species
that migrate to the carbon surface and efficiently form CO2, with significantly less energy
demand. In this way, a modified interface in the vicinity between soot and the surface of
ceria is established, and the reaction cycle can be repeated indefinitely [40]. Soot oxidation
in diesel automotive catalysis is a rather challenging multiphase reaction that is governed
by the contact between the carbon particulates and the catalyst [79].

Several classes of materials were investigated with the aim of enhancing active oxygen
species formation (and thereby the OSC) and increasing the C-CeO2 contact [80]. Bare
ceria is not sufficiently active for low-temperature oxidation and is not adequately stable at
elevated temperatures, an issue that has been addressed with different strategies, such as
alkali promotion and doping of ceria with other rare earth, transition or noble metals, the
manipulation of the crystal shape and size at the nanoscale and the synthesis of ordered
frameworks with advanced morphologies for an improved accommodation of the carbon
particulates in the catalytic composite [78,81–85]. For instance, CO and soot oxidation
activity was found to be strongly affected by the morphology of ceria nanoparticles, which
directly affects the formation of oxygen vacancies, as shown in Figure 7 [85,86]. Simi-
larly, Aneggi et al. [81] have indicated the surface-dependency of soot oxidation with the
nanoshaped materials, i.e., ceria nanocubes exposing (100) crystal planes and nanorods
with (100), (110) and partly (111) crystal facets, affecting the soot oxidation activity in a
positive manner as compared to polycrystalline ceria dominated by (111) planes.
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In addition, ceria-based nanostructured catalysts doped with La and Nd were hy-
drothermally synthesized and investigated in soot combustion [87]. As depicted in Figure 8,
the temperature required for the oxidation of soot is connected to particle size reduction.
The equimolar Ce-La sample exhibited the optimum soot oxidation performance in loose
contact by decreasing the temperature required for soot oxidation by ~80 ◦C due to its high
intrinsic activity, optimal structure and high abundance in capping oxygen species and
surface acid sites [87].
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3.2.2. VOCs Combustion

Volatile organic compounds (VOCs) are organic compounds with boiling points in
the range of 50–260 ◦C and are widely considered important atmospheric pollutants.
Sources of atmospheric VOCs are either indoor activities, i.e., from household products
such as office supplies, insulating materials, cleaning products and pressed woods or
outdoor activities, most industrial processes and transport applications. The mitigation of
VOC emissions has received particular attention over the past decades, considering their
involvement in photochemical smog, depletion of atmospheric ozone and production of
tropospheric ozone [88]. In the scope of VOC emissions mitigation, the following three
main techniques have been applied: physical adsorption, thermal incineration and catalytic
combustion. However, the latter is one of the most effective and economically feasible
VOCs abatement strategies.

Although noble metal (NMs) catalysts, such as Pd and Pt, are among the most active
materials for VOCs abatement, their high cost and sensitivity to poisoning hinder their
widespread application. On the other hand, transition metal oxides (TMOs) exhibit ade-
quate activity and chemical stability toward VOCs oxidation. More importantly, mixed
metal oxides, such as CuO/CeO2 or Co3O4/CeO2, demonstrate superior reactivity as
compared to single counterparts. The latter is mainly ascribed to the peculiar synergistic
interactions between metal oxides, which are accounted for the increased metal dispersion
and improved reducibility, both considered crucial parameters for VOCs oxidation follow-
ing a Mars–van Krevelen mechanism [89–93]. In this regard, several strategies involving,
among others, aliovalent doping and surface/structural promotion have been adopted to
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improve the OSC and, in turn, VOCs oxidation [89–93]. Importantly, close relationships
between the reducibility and lattice oxygen abundance with VOCs oxidation performance
have been disclosed, revealing the pivotal role of these parameters as activity descriptors
(Figure 9).
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3.2.3. CO Oxidation

Carbon monoxide is mainly produced by automobile exhausts and incomplete com-
bustion processes of fuels and solid wastes and has become one of the major air pollutants,
along with its detrimental effects on human and animal health. A small exposure to carbon
monoxide can be fatal, owing to its high affinity towards the replacement of oxygen and
binding into hemoglobin in blood cells. The catalytic oxidation of CO to CO2 is an effective
and simple technology for mitigating the CO content in the air and has attracted great atten-
tion due to the low associated energy consumption and its thermodynamic favorability at
low temperatures, generally lower than 300 ◦C [94]. The reaction of CO oxidation reaction
is one of the most extensively studied reactions in the field of heterogeneous catalysis and
is often considered a probe reaction for other oxidation processes due to its well-established
reaction mechanism and overall underlying characteristics.

Typical catalytically active noble metals, such as Ag, Au, Pd and Pt, have been regarded
as effective catalysts for low-temperature CO oxidation as well. However, among the
recently developed catalysts, ceria-based catalysts are one of the most active non-noble
metal catalysts due to their superior oxygen mobility and oxygen vacancy concentration.
The superior oxygen mobility by the high redox capability of ceria is largely beneficial
for the catalytic activity in CO oxidation using an active metal. Metal ions can provide
abundant CO chemisorption sites, and CeO2 provides the necessary oxygen vacancies in
the metal-ceria interface, where adsorbed CO can be oxidized by the activated oxygen
species [95]. Besides, the unique redox pair Ce4+/Ce3+ induces strong interaction with the
active phase, leading to a synergistic effect that improves the reducibility of the metallic
phase as well [17].

In view of the above, the combination of ceria with earth-abundant metals can lead
to cost-effective ceria-based mixed oxides with enhanced reducibility and catalytic ac-
tivity, arising mainly from metal-ceria interactions. However, the surface/structural fea-
tures of both the metal entity and ceria carrier (e.g., size and shape of each phase) can
notably affect the interfacial phenomena, which then can be reflected in the catalytic
performance [30,45,96–98]. The latter triggers unique opportunities for the rational design
of highly active metal oxides by following a general optimization approach involving the
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modulation of various interrelated factors, such as the size and morphology of parent
oxides [29,96,98,99]. In addition, surface promotion (mainly by an alkali or alkaline earth
metal) can be employed as an additional tool to fine-tune the local surface chemistry of
mixed oxides [29,100,101].

The effect of ceria’s structure and shape functionalization on the CO oxidation perfor-
mance was clearly documented by two pioneering studies, which revealed the significance
of morphology-dependent catalysis [102,103]. In particular, Zhou et al. [102] demonstrated
the high CO oxidation reactivity of single-crystalline ceria nanorods in comparison to their
counterparts of irregular morphology, while in the work by Aneggi et al. [103], a correlation
between the exposed crystal planes and the specific reaction rate in polycrystalline ceria
samples was disclosed. In light of the above aspects, highly active NMs-free composites
have been recently developed, with similar or even superior reactivity to that of typical
noble metal oxidation catalysts [29,99]. For instance, the combination of copper oxide with
CeO2 of rod-like morphology (CuOx/CeO2-NR) has been led to extremely active catalysts,
offering complete elimination of CO at ca. 150 ◦C [104]. By means of various in situ and ex
situ characterization tools, a close correlation between the catalytic activity and key activity
descriptors, i.e., i) oxygen storage capacity and ii) abundance in oxygen vacancies, was
disclosed (Figure 10).
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Besides the key role of ceria morphology, numerous other synthesis/promotional
parameters can be adjusted to further enhance the catalytic performance. In this regard,
we recently revealed the key role of the synthesis procedure [105] and metal oxide compo-
sition [106] on the CO oxidation performance of CeO2-based mixed oxides. Interestingly,
independent of the fine-tuning approach followed, a perfect relationship between the
catalytic activity and OSC was disclosed (Figure 11). These findings may be generalized
and pave the way for the rational design of highly active and cost-efficient composites for
various combustion and oxidation processes, given the prominence of the role of oxygen
species mobility in any reaction involving the activation of gas-phase O2.
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3.2.4. Water Gas-Shift (WGS) and Preferential Oxidation of CO (CO-PROX)

Industrial processes such as Fischer–Tropsch (F-T) or methanol synthesis require well-
defined mixtures of H2/CO/CO2 ratios for their optimum operation. For this reason, after
being produced, usually, by reforming or gasification reactions, the molar ratio H2/CO in
the generated syngas mixture should be adjusted to the desired value to fit the selected
downstream process. Moreover, the CO content in hydrogen streams must be sometimes
kept at very low values, even below 10 ppm, in order to be used for ammonia synthesis,
hydrogenation reactions or as possible fuel feedstock in proton exchange membrane fuel
cells (PEMFCs) to avoid the poisoning of the employed catalysts. The most promising
process to achieve both of these requirements is a combination of the forward water gas
shift reaction (WGS) (Equation (9)) and the preferential oxidation of residual CO (CO-
PROX) in the presence of excess H2 using O2 or air as the oxidant [107]. Moreover, since
the operating temperature of low- and high-temperature PEMFCs is 80–250 ◦C, this is the
optimum temperature window for the intermediate CO-PROX step, as well.

CO + H2O↔ CO2 + H2, ∆H298K = −41.1 kJ/mol (9)

The WGS reaction is a mildly exothermic reaction that usually takes place in the
following two consecutive stages: a high-temperature step, operating between 300 and
450 ◦C and a low-temperature stage between 200 and 300 ◦C. The former is commonly
catalyzed by a Fe2O3-Cr2O3 catalyst, while the latter usually involves a Cu/ZnO catalytic
system to reach equilibrium conversions. Moreover, CO oxidation in the final PROX step
requires the development of highly selective catalysts, able to promote the removal of
CO without consuming H2 [40]. Various studies have shown that CeO2-based catalysts
supporting 3D transition metals such as Ni, Cu and Fe are highly active materials for
the WGS and CO-PROX reactions, thanks to their increased redox and oxygen mobility
properties, which can be further improved by doping of appropriate materials such as La,
Pr or Zr in the ceria lattice [16].

Two reaction mechanisms have been proposed for CeO2-based catalysts under WGS or
CO PROX conditions, the formate and redox route. In the former mechanism, the reaction
involves the formation of OH groups on Ce ions, which then react with adsorbed CO to
form formate species and product generation is eventually realized by the decomposition
of formates. As for the active metal phase, its role lies in the affinity for the adsorption of
CO and the promotion of the cleavage of the C-H bond in the formate entities. Concerning
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the redox route, reactive oxygen atoms are transferred from ceria to the metal nanoparticles,
thus generating surface oxygen vacancies. Active oxygen then reacts with metal-bound
adsorbed CO producing CO2, while H2O or O2 produces hydrogen by restoring the surface
oxide anions [108,109]. Irrespective of the dominant reaction pathway, the key role of
redox properties and metal-support interactions has been well documented [110–113].
Hence, particular efforts have been lately devoted to the rational design of CeO2-based
oxides for WGS by fine-tuning the local surface structure and metal-ceria interactions by
means of the aforementioned optimization strategies. In this perspective, the key role of
ceria morphology on redox properties and metal-support interactions was disclosed over
various CeO2-based transition metals [114–116]. For instance, the addition of CuO over
ceria carriers of different morphology (nanorods (NR), nanocubes (NC), nanopolyhedra
(NP)) affects the reducibility to a different extent, following the order NR > NP > NC [114].
This, in turn, results in the formation of Cu+ species through the redox equilibrium Cu2+ +
Ce3+ ↔ Cu+ + Ce4+, which are considered highly active for CO adsorption and consequent
activation. Hence, the superior WGS activity and stability of CuOx/CeO2 nanorods have
been accordingly attributed to their abundance in oxygen vacancies and highly active
monovalent copper species. Elsewhere, copper–ceria nanoparticles of different morphology
(octahedral or spheres) exhibited the highest copper dispersion and the strongest copper–
ceria interaction, resulting in the optimum CO conversion performance [115,116].

Thus, considering the above aspects, it can be certainly stated that CeO2-based mixed
oxides could serve as a highly versatile materials platform in numerous energy and envi-
ronmental applications, replacing or at least reducing the use of rare and expensive NMs.
However, a rational design approach is required in order to fine-tune the intrinsic and
interfacial features and, in turn, the catalytic properties.

4. Structure/Surface Engineering of CeO2 Nanoparticles
4.1. Fine-Tuning of Metal Oxides

In this section, the underlying mechanism of key engineering parameters, such as
size, shape and electronic state, is shortly discussed to gain insight into their particular
effect on the intrinsic characteristics and interfacial interactions. As previously men-
tioned, the adjustment of these specific parameters can notably modify the local sur-
face chemistry and metal-support interactions with great implications in the catalytic
performance [30,45,52,117–122].

In particular, the synergy between the different counterparts of mixed metal oxides
(MMOs) can give rise to specific features (e.g., enhanced reducibility, oxygen vacancy
formation, abundance in structural defects, etc.), as various interrelated phenomena are at
work as follows: (i) electronic perturbations arising from metal-support interactions, (ii) im-
proved reducibility and oxygen exchange kinetics through oxygen vacancy formation, (iii)
formation of interfacial sites of high intrinsic activity. For instance, the size and shape engi-
neering of the catalysts’ counterparts at the nanoscale can affect various physicochemical
properties of the mixed metal oxides, such as the surface area, the coordination environ-
ment, the redox properties or the formation of structural defects and oxygen vacancies.
In a similar manner, aliovalent doping with surface or structural promoters can alter the
electronic environment or the composition of the catalyst leading to different redox and
structural features. These fine-tuning engineering strategies are separately discussed below.

However, it ought to be mentioned that there is an interrelationship among the afore-
mentioned factors governing catalytic activity and for this reason, each parameter should
be studied in relation to the others in order for concrete and reliable conclusions to be
drawn. In this regard, the reader refers to some comprehensive reviews focusing on the
general framework for catalyst optimization through size, shape, electronic engineering,
employment of specific pretreatment protocols and the use of surface/structural promoters
on ceria-based catalysts [29,99,117,120,121,123].
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4.2. Size Effects

The modification of particle size can affect the surface area, the electronic/coordination
environment and the formation of structural defects. By decreasing the Mos particle size
down to the nanometer scale, a distinct effect in activity is observed, which is derived
from the so-called “size effects”. This size-reactivity dependency is the outcome of dif-
ferent contributions, including quantum size or confinement effects, interparticle inter-
actions, electronic effects and the presence of atoms of low coordination number on the
surface [29,30,96,124–126]. By reducing the particle size to a few nanometers, the surface-to-
volume ratio is significantly increased, leading to abundant surface sites. More importantly,
the interfacial electronic and geometric interactions are strongly affected by particle size
modifications [96,125]. For instance, Pt/CeO2 catalysts, including Pt nanoparticles of ca.
4.0 nm, exhibited the optimum WGS activity (Figure 12), as compared to Pt single atoms
and Pt sub-nanoclusters (ca. 0.8 nm) [26].
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The strong size dependence behavior of Run/CeO2(111) (n = 1, 2, 4, 7) catalysts was
recently shown through density functional theory (DFT) calculations in the dry reforming
of methane [127]. DFT studies revealed that the CH4 and CO2 activation processes are
size-dependent, with Ru coverages of around 0.1–0.2 monolayer (Ru2 and Ru4 models)
exhibiting the best performance. The Ru2 and Ru4 models facilitated the activation of CO2
due to their weak Pauli repulsion and strong CO adsorption ability [127].

Interestingly, particle size-induced modifications greatly affect the surface structure
and, in turn, the local surface reactivity [128]. For instance, taking into consideration the
particle shape modeling for a truncated cuboctahedron, the (111) and (100) facets, corner
and edge sites are significantly changed for sizes below ca. 3 nm [128]. In particular,
the close-packed (111) planes account for almost 80% of the surface atoms for particle
sizes larger than 10 nm (Figure 13), with direct implications on the local geometry and
reactivity [128]. Elsewhere, the importance of support size in the nanoscale was highlighted
during the preferential oxidation of CO (CO-PROX) over copper–ceria catalysts [129,130].
The optimal catalytic performance was linked to highly dispersed copper sites interacting
strongly with ceria nanoparticles of specific size.
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4.3. Shape Effects

Nanoscale engineering of the geometric (i.e., size and shape) and crystallographic (i.e.,
exposed facets) properties of individual particles is extremely important in the scope of
modifying the surface chemistry characteristics of metal oxide catalysts in a controlled
manner. In particular, the precise control of the particle morphology enables the selective
exposure of specific crystallographic planes, which is associated with important impli-
cations in the reactant’s adsorption/activation affinity. Moreover, the control of support
morphology can notably influence the anchoring of active metal sites and, thus, the extent
of metal-support interactions, offering an additional modulating tool [25,31,99,131–136].
This desirable surface coordination of catalytically active atoms or domains substantially
alters the catalytic activity, selectivity and stability and is known as morphology depen-
dence. To this end, the development of advanced synthesis and characterization techniques
as well as the successful combination of theoretical simulations with experimental studies,
have led to a rapid increase in rationally designed heterogeneous catalysts attaining the
desired surface and morphological characteristics [57,137,138].

Thermodynamically, the most stable crystallographic orientations of ceria are the
planes indexed as (100), (110) and (111) since the (211) surface, although reported as a
relatively stable surface, undergoes facile reconstruction into stepped (111) (Figure 14).
Surfaces with higher indices are inherently less stable and are more prone to reconstruction;
therefore, the majority of works have focused on the three low-index surfaces [85]. In
particular, the (111) surface is terminated by threefold-coordinated O atoms and sevenfold
coordinated Ce atoms, (110) is terminated by a CeO2 plane with threefold O and sixfold
Ce atoms and (100) terminates by twofold-coordinated oxygen atoms [139]. In large,
experimental and theoretical studies have shown that the (100) and (110) planes are more
reactive than the (111) plane and that surfaces dominated by (100) and (110) planes enhance
lattice oxygen migration from bulk to surface, an effect generally restricted in the case of
(111)-dominated surfaces [140]. This general finding provides insights into enhancing the
OSC of ceria-based materials by fine-tuning the shape of CeO2 nanoparticles in order to
selectively expose more reactive (110) and (100) facets.
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It is known that crystal morphology equilibrium depends on both kinetic and ther-
modynamic processes that are established during the process of particle growth, since
the most stable surfaces will be formed thermodynamically, resulting more often than not
in a specific shape. So, the synthesis of particles with different crystal planes associated
with higher surface energy takes place via the kinetic control of nucleation and crystal
growth rate in different directions. This can be controlled by several parameters such as
pressure, temperature, pH, solvent and characteristics of precursors [141]. Indeed, the
major advanced synthetic routes include hydrothermal and/or solvothermal synthesis,
aqueous-phase precipitation and the electrochemical reduction of cerium salts. However,
the alkali-assisted hydrothermal process appears to be the most effective and widely em-
ployed, driven by several advantages such as the short reaction time, simple precursor
requirements, homogeneous morphology and development of nanoparticles with a variety
of well-defined shapes, such as wires, polyhedra, rods, spheres and cubes. Typically, salts
of either Ce3+ or Ce4+ are employed as parent materials since the former is critical in the
anisotropic growth of ceria nanocrystals and the latter favors the formation of spherical
particles [22,99,142–144].

Ergo, nanostructured catalytic materials preferentially exposing specific crystal planes
possess unique features related to size as well as shape effects [85,125,140,143,145–147]. In
particular, ceria shape effects on the catalytic activity constitute an extensively investigated
topic in heterogeneous catalysis, including our research efforts in the field [29,35,85,98,99,
104,114,132,143,145,146,148–152]. Surface reconstruction through nanofaceting of specific
crystal planes can affect ceria’s intrinsic properties and, consequently, its catalytic activity
and stability [153].

Most prominently, the facet-dependent catalytic activity of ceria nanocatalysts has
been demonstrated in the probe reaction of CO oxidation [104,154] and the WGS reac-
tion [155–157]. Generally, particles of nanorod morphology, exposing (110) and (100) facets,
demonstrate the highest activity, followed by nanocubes exposing (100) facets and, lastly,
octahedral ((111) and (001) facets)), with the turnover frequency values following the order;
(110) > (100) > (111). The outstanding performance of nanorods stems largely from the
increased exposure of the more reactive (110) and (100) facets, which also possess higher
amounts of oxygen vacancies. This is ascribed to the finding that the energy formation of
oxygen vacancies in CeO2 nanoparticles is indeed facet-dependent and decreases in the
following order: rods ~ cubes > polyhedra [143,158].
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In this regard, ceria nanoparticles of well-defined morphology (i.e., rods, polyhe-
dra, cubes) were successfully synthesized through the hydrothermal method by our re-
search group, with the rod-shaped catalysts exhibiting high reducibility and oxygen kinet-
ics [99,104,132,148,150,152]. Moreover, the length of ceria nanorods was found to increase
with the increasing temperature of hydrothermal treatment, also affecting the concentration
of oxygen vacancies [159]. In addition, a dependency was found between the exposed
facets and the metal-support interaction during various reactions over CeO2-based transi-
tion metals, such as CO2 methanation [160–162] and dry reforming of methane [163,164].
For instance, nickel crystallites of ~1 nm dispersed on ceria nanorods mainly exposing
(111) crystal planes exhibited remarkable activity and stability for DRM as compared to
nanocubes and nanospheres, a behavior that was ascribed to the high dispersion of Ni, the
improved reducibility and CO2 binding strength [164].

Interestingly, similar morphology-dependent effects can be obtained by adjusting
not only the shape of the support but also of metal phase. In this regard, a DFT study
was performed in order to gain insight into the influence of various Cu surfaces (Cu(211),
Cu(100), Cu(111)) on the WGS activity and mechanism, with the coordination number
(CN) of the Cu active site being in the range of 7–9 [165]. The Cu(211) surface showed the
highest stability and superior WGS performance with the d-band center values following
the following sequence: Cu(211) > Cu(100) > Cu(111), showing a decrease in the d-band
center values with increasing coordination number [165]. The increase in the d-band centers
results in an increase in the adsorption strength of CO and H2O adsorbates, corroborating
the d-band center theory [165].

Lastly, considering the paramount importance of MSIs in metal/ceria catalysts, the sur-
face terminations of ceria nanoparticles are crucial in the stabilization of the nanoparticles
of the active metallic phase. Moreover, the size, morphology and electronic environment
of metal nanoparticles can be markedly affected in a ceria facet-dependent manner. Typi-
cally, rod-like ceria nanoparticles tend to stabilize metal atoms and clusters, whereas CeO2
nanocubes favor the formation of larger metal crystallites. Besides, on top of the effect of
metal loading and the preferential location of metal nanoparticles over different ceria crystal
planes, the electronic state of the deposited metal nanoparticles is also facet-dependent, as
it strongly depends on the reducibility and oxygen vacancy abundance of ceria. This results
in highly reduced particles anchored over CeO2(100) compared to the slightly oxidized
metal nanoparticles in the vicinity of CeO2(111) [85,143].

4.4. Surface and Structural Promotion

As described above, the local surface chemistry of metal oxides can be finely tuned
through size and shape engineering. However, doping via the addition of low amounts
of a specific metal phase can serve as an additional modulating strategy. In specific, the
catalytic performance of metal oxides can be altered through the use of promoters, which
can be divided into the following two main categories: electronic and structural. Electronic
promoters, referring mostly to alkali metals, induce changes in the work function of the
catalytic surface, thus modifying its chemisorptive properties. Structural promoters include
mainly aliovalent doping of the catalytic support for the enhancement of its structural
properties, providing, in turn, indirect implications on the surface chemistry of active
metal sites.

In view of the above discussion, we have shown that the deN2O performance of
CuO/CeO2 mixed oxides can be optimized through the co-adjustment of textural/structural
properties (though co-precipitation method) and alkali promotion (Cs addition), as depicted
in Figure 15, demonstrating the effectiveness of the proposed fine-tuning approaches [166].
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Figure 15. Optimization of deN2O performance of CuO/CeO2 mixed oxides by co-adjusting synthesis
parameters (co-precipitation method) and electronic state (alkali addition). For comparison, the
corresponding performance of CuO supported on commercial ceria is included. Reaction conditions:
0.1% N2O balanced with He; WHSV = 90,000 mL g−1 h−1. Adapted from Ref. [166]. Copyright©
2018, Royal Society of Chemistry.

Elsewhere, the effect of the nNaOH/nCe ratio was studied over ceria catalysts prepared
with liquid nitrogen (LN-CeO2) [167]. As shown in Figure 16, a linear correlation was
found between the sodium content and the oxygen vacancy concentration in LN-CeO2
samples [167].
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Moreover, methane activation was examined through density functional theory by
doping ceria (111) with alkaline earth metals [168]. In specific, a linear relationship was
observed between the active oxygen vacancies’ formation energy and the dissociated
species’ adsorption energy (Figure 17), revealing that the dissociative adsorption of methane
is promoted by the favorable oxygen vacancy formation [168].
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Figure 17. The correlation between the adsorption energy of the dissociation products and the
formation energy of the active oxygen vacancy on the bare and doped (111) surfaces of CeO2, where
CH3* is the surface-adsorbed CH3 species). Adapted from Ref. [168]. Copyright© 2016, Royal Society
of Chemistry.

In addition, the oxidation of CO was studied over ceria doped with 20 at.% transition
metals (TM = Cu, Co, Mn, Fe, Ni, Zr, Zn) prepared through microwave-assisted sol-gel
synthesis [169]. The adsorption strength of CO was found to follow the following trend:
Cu > Co > Mn > Zn > CeO2 on the basis of DFT calculations, while the same order was
revealed for the descriptor α that illustrates the lattice oxygen participation in CO oxidation
(Figure 18), with the Cu-doped sample exhibiting abundance in labile lattice oxygen [169].
In a similar manner, Ga-doped nickel-ceria catalysts exhibited high activity and stability in
the DRM reaction, as gallium addition offered an ample amount of oxygen species in the
catalytic surface that enable the suppression of carbon deposition and preserve the catalytic
activity [170].

Catalysts 2023, 13, x FOR PEER REVIEW 23 of 51 
 

 

synthesis [169]. The adsorption strength of CO was found to follow the following trend: 

Cu > Co > Mn > Zn > CeO2 on the basis of DFT calculations, while the same order was 

revealed for the descriptor α that illustrates the lattice oxygen participation in CO oxida-

tion (Figure 18), with the Cu-doped sample exhibiting abundance in labile lattice oxygen 

[169]. In a similar manner, Ga-doped nickel-ceria catalysts exhibited high activity and sta-

bility in the DRM reaction, as gallium addition offered an ample amount of oxygen species 

in the catalytic surface that enable the suppression of carbon deposition and preserve the 

catalytic activity [170]. 

 

Figure 18. (a) Adsorption energy of CO as a function of TM (the clean surface of undoped ceria is 

also given), (b) Ratio (α) of the amount of C16O (mmol g−1) consumed to the 18O (μmol g−1) exchanged 

after 20 min in CO oxidation on the same doped-ceria catalysts. Adapted from Ref. [169]. Copy-

right©  2021, American Chemical Society. Notice to readers: Further permissions related to the ma-

terial excerpt should be directed to the ACS. 

In light of the above aspects, it can be inferred that highly efficient catalysts can be 

obtained by co-adjusting the structural and surface characteristics of ceria-based binary 

oxides. The latter can be accomplished through the use of appropriate synthesis and dop-

ing routes toward modulating the intrinsic characteristics of the individual counterparts 

and metal-oxide interactions. Similar conclusions can be drawn for numerous other binary 

oxides and metal-supported catalysts, providing design principles for the development of 

cost-efficient catalyst formulations for various energy and environmental applications, as 

exemplified below by the reaction of CO2 hydrogenation. 

5. Implications in CO2 Hydrogenation Reactions 

In this section, the role of adjusting key activity descriptors of ceria-based materials 

is exemplified by their application in ambient-pressure CO2 hydrogenation towards CO 

and CH4, a very important reaction within the general scheme of carbon capture and uti-

lization (CCU) [171–173]. Among the different supports that have already been presented 

for this reaction, ceria and CeO2-based mixed oxides have been extensively studied over 

the past years, exploiting the intriguing and unique catalytically relevant properties of 

ceria-based systems and especially metal/ceria composites, in line with the aforemen-

tioned discussion. Indeed, the combination of an active metal phase with ceria as the sup-

porting oxide has been demonstrated to be one of the most effective catalytic strategies 

for low-temperature reduction of CO2 via H2 [20,21]. Since the main scope of the present 

work revolves around CO2 hydrogenation at atmospheric pressure for the production of 

CH4 and CO, the recent progress in ceria-based heterogeneous catalysts for the formation 

of other CO2 hydrogenation products (e.g., methanol) is not discussed here, as a compre-

hensive summary can be found in relevant literature reviews. Besides, the analysis of the 

specific characteristics and activity-property correlations of CeO2-based materials for CO 

and CH4 generation from CO2 and H2 presented next are largely valid for the thermocat-

alytic CO2 hydrogenation reaction towards other products as well. 

Figure 18. (a) Adsorption energy of CO as a function of TM (the clean surface of undoped ceria is also
given), (b) Ratio (α) of the amount of C16O (mmol g−1) consumed to the 18O (µmol g−1) exchanged
after 20 min in CO oxidation on the same doped-ceria catalysts. Adapted from Ref. [169]. Copyright©
2021, American Chemical Society. Notice to readers: Further permissions related to the material
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In light of the above aspects, it can be inferred that highly efficient catalysts can be
obtained by co-adjusting the structural and surface characteristics of ceria-based binary
oxides. The latter can be accomplished through the use of appropriate synthesis and doping
routes toward modulating the intrinsic characteristics of the individual counterparts and
metal-oxide interactions. Similar conclusions can be drawn for numerous other binary
oxides and metal-supported catalysts, providing design principles for the development of
cost-efficient catalyst formulations for various energy and environmental applications, as
exemplified below by the reaction of CO2 hydrogenation.

5. Implications in CO2 Hydrogenation Reactions

In this section, the role of adjusting key activity descriptors of ceria-based materials is
exemplified by their application in ambient-pressure CO2 hydrogenation towards CO and
CH4, a very important reaction within the general scheme of carbon capture and utilization
(CCU) [171–173]. Among the different supports that have already been presented for
this reaction, ceria and CeO2-based mixed oxides have been extensively studied over the
past years, exploiting the intriguing and unique catalytically relevant properties of ceria-
based systems and especially metal/ceria composites, in line with the aforementioned
discussion. Indeed, the combination of an active metal phase with ceria as the supporting
oxide has been demonstrated to be one of the most effective catalytic strategies for low-
temperature reduction of CO2 via H2 [20,21]. Since the main scope of the present work
revolves around CO2 hydrogenation at atmospheric pressure for the production of CH4 and
CO, the recent progress in ceria-based heterogeneous catalysts for the formation of other
CO2 hydrogenation products (e.g., methanol) is not discussed here, as a comprehensive
summary can be found in relevant literature reviews. Besides, the analysis of the specific
characteristics and activity-property correlations of CeO2-based materials for CO and CH4
generation from CO2 and H2 presented next are largely valid for the thermocatalytic CO2
hydrogenation reaction towards other products as well.

5.1. CeO2-Based Catalysts for the rWGS Reaction

The conversion of carbon dioxide via the reverse water–gas shift reaction (rWGS,
Equation (10)) produces a gas mixture consisting primarily of CO and H2, most often
referred to as syngas. The importance of this reaction lies in the fact that CO is a highly
reactive C-containing molecule (especially compared to CO2, see Figure 19) that can be
employed in a plethora of downstream processes for the production of carbonaceous added-
value fuels and chemicals, depending on the H2/CO ratio [173,174]. Indeed, as shown in
Figure 20, CO is an extremely versatile organic building block compound, and its employ-
ment (along with hydrogen) as chemical and fuel feedstock highlights the significance of
the rWGS reaction within the context of valorizing CO2 emissions in a CCU scheme [175].
From a thermodynamical standpoint, the rWGS reaction is an equilibrium reaction favored
at higher temperatures (usually above 500 ◦C) due to its mild endothermicity, as well
as at high H2/CO2 ratios (practically higher than the stoichiometric value of 1) in order
to provide enough chemical energy to counterbalance the chemical inertness of the CO2
molecule [176,177].

CO2 + H2 ↔ CO + H2O, ∆H298K = +41.1 kJ/mol (10)

Although the forward WGS reaction is a widely established and essentially fully
optimized process for the adjustment of the H2/CO ratio in many industrial processes,
the same does not apply as of yet to the reverse reaction. Therefore, deep knowledge of
the rWGS reaction mechanistics is required in order to provide insights into the rational
design of effective and robust heterogeneous catalytic systems. In this way, given its
potentially important role outside the lab-scale environment, the design and scaling up of
efficiently integrated and intensified rWGS-based processes is expected to be of paramount
importance in the near future [174].
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So far, various catalytic systems for the rWGS reaction based on both noble metals and
transition metals on different oxide supports have been studied in the literature, although
the observed reaction mechanism is largely catalyst-dependent, albeit two main routes are
reported, namely, the dissociative or associative routes (Figure 21). Specifically, the one
route (i.e., Path A) refers, on the one hand, to the activation of gas-phase CO2, followed by
the direct cleavage of the C-O bond in reactive *CO2 species, which eventually generates
*CO and *O. On the other side, gaseous H2 is dissociated on the metal center producing
active H adatoms that migrate through a spillover mechanism in the vicinity of the *CO
entities, eventually generating loosely bound carbonyl species that are desorbed from
the catalytic surface as gaseous carbon monoxide. This route is also commonly referred
to as the redox mechanism/pathway. Alternatively, the production of CO from CO2
and H2 can occur associatively through the intermediate formation of formate species
(i.e., Path B). Through this mechanism, gaseous CO2 is firstly hydrogenated to formate
entities that enable the cleavage of the C-O bond, while H2 activation proceeds in the
same manner as in the case of the dissociative mechanism. In practice, the associatively
catalyzed rWGS reaction requires the presence of a material containing two functional
groups that collectively enable the activation of gas-phase H2 as well as the scission of the
carbon-oxygen bond [174,177].
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Practically, the activity of a catalyst in the rWGS reaction is an unavoidably multi-
variable phenomenon, accounting for contributions from the hydrogenation ability of
the employed active metal(s) phase, the reducibility (equivalently, the oxygen vacancy
concentration) of the metal oxide support(s), the extent of metal-support interactions, the
dispersion of the metallic phase, etc. In any case, however, a rather dominant feature is
the adsorption/desorption affinity of the metal/support interface towards CO-like entities,
*CO. Indeed, weak *CO binding generally results in facile desorption of carbonyl moieties
and thus augmented gas-phase CO generation. On the other hand, stronger *CO binding
in the catalytic surface is conducive to complete hydrogenation towards gaseous CH4,
effectively reducing CO selectivity [174,177]. Recently, a categorization of various rWGS
catalysts based on their CO adsorption affinity was reviewed by Bahmanpour et al. [179].

From the above discussion, it is evident that ceria-based catalysts are excellent candi-
date materials for the rWGS reaction since they are associated with a multitude of properties
that can enhance CO generation [123]. More specifically, the redox properties of cerium
oxide have been shown to be indeed very advantageous for attaining high rWGS perfor-
mance for many ceria-based catalysts, especially at temperatures higher than 500 ◦C. In
this regard, the reaction over a ceria-based catalyst generally proceeds through a redox
process that includes two steps, i.e., the reduction of CeO2 by H2 and the formation of
a surface oxygen vacancy and the regeneration of the vacancy via its oxidation by CO2
(Equations (5) and (3)) at over 300 ◦C [34,180]. In particular, concerning the behavior of
ceria under a CO2/H2 mixture, the oxidation of CeO2−x by CO2 (or, equivalently, the
reduction of CO2 by CeO2−x) is thermodynamically feasible even without external heat
provision or under low CO2 partial pressure [181,182]. Although there are some studies
reporting on adequate rWGS performance of bare CeO2 [183–185], its role as supporting
material in a metal/ceria combination is far more prominent, as indicated by the high
number of literary works examining these catalytic materials for the specific reaction. In
general, the majority of works concerning the rWGS performance of ceria-based catalysts
explore the addition of either Pt, Ru and Pd noble metals or late 3d-transition metals, i.e.,
Ni, Cu, Co and Fe as the active phase [20,21].

Furthermore, CeO2 holds a key role in rWGS systems via tuning effects, one aspect of
which is the metal-induced adjustment of the redox capabilities of ceria via the formation of
oxygen vacancies, a critical parameter for the activation of gas-phase CO2. In the presence
of metal phase sites, this process may be greatly facilitated due to their increased H2
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dissociation ability, which leads to active hydrogen adatoms that can migrate to ceria
sites via the so-called spillover effect and lead to more oxygen vacancies, i.e., higher
reduction degree. The above has been demonstrated in a variety of experimental works,
such as [186–188]. In addition to hydrogen spillover, the incorporated metal has been shown
to improve CO2 adsorption and lower the energy barrier for CO generation via formate
species [187,189]. Moreover, the higher metal dispersion induced by ceria is particularly
relevant in determining the product distribution under CO2 hydrogenation mixtures, as it
has been demonstrated that large metal particles tend to favor CH4 production, whereas
highly dispersed metallic nanoparticles are selective towards CO [190,191]. Furthermore,
CeO2 can be an effective promoting material for other oxide-based rWGS catalysts, such
as In2O3 or Ga2O3 [192,193], by increasing the availability of surface intermediate species
such as bicarbonates. The supporting effect of CeO2 in the rWGS reaction is even more
pronounced when considering the peculiar SMSI phenomena in ceria-based systems, as
stated above. Via metal-support interactions, cerium oxide is able to largely modify the
electronic properties of the supported metallic phase and also affect the adsorption capacity
and binding strength of the main intermediate species [194]. Elsewhere, Goguet et al. [195]
have demonstrated that the rWGS reaction over Pt/CeO2 proceeds mainly via the formation
of surface carbonyls from carbonate species and the rapid reoxidation of ceria from CO2,
boosted by the high oxygen vacancy concentration of CeO2 (Figure 22).
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As in the case of the WGS reaction, the density of oxygen vacancies for various
ceria-based systems has been shown to be a strong descriptor for high rWGS catalytic
performance. Specifically, an inverse CeO2/CuOx catalyst enhanced the formation of
both mono- and di-valent copper ions, which were postulated to enhance the catalytic
performance due to their ability to form surface oxygen vacancies [196]. Elsewhere [197],
the high activity of a Cu/CeO2 hollow sphere catalyst was attributed to the high oxygen
vacancy density, whereas inferior performance was attained by other Cu/CeO2 catalysts
characterized by a lower density of vacancies (Figure 23), a finding also demonstrated
in a study examining Cu/CeO2−δ, showing that Cu0 and oxygen vacancies were the
active sites [198]. Moreover, in the work by Li et al. [199], it was demonstrated by means
of NAP-XPS that metallic copper and partially reduced CeO2 associated with increased
oxygen vacancies are the active sites for the CO2-to-CO transformation over Cu/CeO2−x,
suggesting strong interaction between Cu and partially reduced ceria entities.
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Moreover, the redox properties and, in turn, the rWGS performance of CeO2-based
catalysts can be significantly enhanced by means of morphology/facet fine-tuning of ceria
nanoparticles. Such CeO2 nanoparticles have been studied in a variety of works, providing
insights regarding the investigation of the facet dependency of the rWGS catalytic per-
formance of ceria. It has been demonstrated that nanopolyhedral CeO2 particles exhibit
the lowest catalytic activity, whereas either nanorods [200] or nanocubes [183] or even
both [184] were shown to be the most active, in general agreement with theoretical results
demonstrating a lower formation energy barrier for oxygen vacancies for (100) and (110)
surfaces. In a similar manner, we recently showed the increased rWGS activity of copper cat-
alysts supported on ceria nanorods (NR) compared to the nanocubes (NC), mostly ascribed
to the increased low-temperature reducibility of the Cu/CeO2-NR sample (Figure 24) [150].
Moreover, as depicted in Figure 24c, the Cu/CeO2-NR sample is highly active towards
CO production even after 12 h at 450 ◦C under hydrogen excess conditions, implying the
stability of Cu/CeO2-NR samples. It should be noted, however, the ex-situ characterization
of oxygen vacancies and the relatively few studies examining the morphology-dependency
of the rWGS reaction over ceria-based materials have not yet elucidated the complete role
of the different ceria facets in the rWGS performance of metal/nanoceria catalyst.

Moreover, besides modulating the local surface structure of ceria-based catalysts
through size and shape effects methodologies, the fine-tuning of electronic structure by the
addition of an appropriate promoter is another approach for boosting the rWGS activity of
CeO2-based catalytic systems. In this regard, we recently reported on the beneficial effect
of Cs addition into a series of copper–ceria catalysts towards enhanced CO selectivity [201].
The addition of cesium induced a stabilization of the partially reduced copper species
as well as an increase in the catalyst basicity, largely suppressing methane generation
(Figure 25). This finding is in agreement with another study regarding the structural pro-
motion of a highly active CO2 methanation Ni catalyst supported on CeO2 nanorods with
ZnO. Notably, ZnO addition completely shifted the reaction pathway towards CO forma-
tion, ascribed to the zinc-induced modifications in redox properties and CO desorption
affinity [202]. Similarly, the suppression of CO2 methanation on Ni/CeO2 was achieved
by doping with Na, K and Cs [203]. Although all promoted catalysts exhibited electronic,
structural and textural property changes compared to bare Ni/CeO2, doping with Cs
showed the optimal catalytic activity, as seen by the improved CO selectivity and stability
for long-term runs in cyclable temperature ranges. Elsewhere, it was found that over a
K-promoted nickel-ceria catalyst, a K/Ni ratio of one was the optimum in terms of CO2
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conversion and CO2 methanation suppression, as well as enhanced CO selectivity [204].
The formation of CO instead of CH4 on the catalyst surface was favored due to the elec-
tronic interactions of K-Ni and K-Ni/CeO2. Interestingly, a linear correlation between Na
content and oxygen vacancies was disclosed in Na-doped ceria catalysts, which was, in turn,
responsible for the increased intrinsic rWGS activity on the highly-loaded Na-CeO2 [167].
Moreover, the promotion of Fe/CeO2-Al2O3 catalysts with either Cu, Mo or Ni showed that
the highest CO yield was attained over the copper catalyst [205]. The authors ascribed this
result to the strong interaction between Fe and Cu, which in turn modified the electronic
density of Fe and facilitated the activation of CO2 on the catalytic surface, as revealed
by XPS. Nonetheless, it should be stated that the alkali promotion effect in CeO2-based
catalysts for the rWGS has not been extensively studied. Moreover, the promoting effect of
P species was demonstrated in a novel approach regarding a Ni2P/CeO2 catalyst prepared
using the stepwise saturated volume impregnation method [206]. Indeed, compared to
conventional Ni/CeO2, the employment of the nickel phosphide phase resulted in higher
CO yield values, even under a high space velocity of 300 L·g−1·h−1. This was ascribed to
the moderate CO2 adsorption affinity and the simultaneously high H2 adsorption ability
of Ni2P/CeO2, which collectively prevented the deep hydrogenation of CO-like species
to CH4.

Catalysts 2023, 13, x FOR PEER REVIEW 28 of 51 
 

 

[184] were shown to be the most active, in general agreement with theoretical results 

demonstrating a lower formation energy barrier for oxygen vacancies for (100) and (110) 

surfaces. In a similar manner, we recently showed the increased rWGS activity of copper 

catalysts supported on ceria nanorods (NR) compared to the nanocubes (NC), mostly as-

cribed to the increased low-temperature reducibility of the Cu/CeO2-NR sample (Figure 

24) [150]. Moreover, as depicted in Error! Reference source not found.c, the Cu/CeO2-NR 

ample is highly active towards CO production even after 12 h at 450 °C under hydrogen 

excess conditions, implying the stability of Cu/CeO2-NR samples. It should be noted, how-

ever, the ex-situ characterization of oxygen vacancies and the relatively few studies exam-

ining the morphology-dependency of the rWGS reaction over ceria-based materials have 

not yet elucidated the complete role of the different ceria facets in the rWGS performance 

of metal/nanoceria catalyst. 

 

 

Figure 24. Values of CO2 conversion (a) and CO selectivity (b) as a function of temperature and time 

on stream (c) for Cu/CeO2 catalysts with variable ceria nanomorphology (NR: nanorods, NC: 

nanocubes). Adapted from Ref. [150]. Copyright©  2019, MDPI. 

Moreover, besides modulating the local surface structure of ceria-based catalysts 

through size and shape effects methodologies, the fine-tuning of electronic structure by 

the addition of an appropriate promoter is another approach for boosting the rWGS activ-

ity of CeO2-based catalytic systems. In this regard, we recently reported on the beneficial 

effect of Cs addition into a series of copper–ceria catalysts towards enhanced CO selectiv-

ity [201]. The addition of cesium induced a stabilization of the partially reduced copper 

species as well as an increase in the catalyst basicity, largely suppressing methane gener-

ation (Figure 25). This finding is in agreement with another study regarding the structural 

promotion of a highly active CO2 methanation Ni catalyst supported on CeO2 nanorods 

with ZnO. Notably, ZnO addition completely shifted the reaction pathway towards CO 

formation, ascribed to the zinc-induced modifications in redox properties and CO desorp-

tion affinity [202]. Similarly, the suppression of CO2 methanation on Ni/CeO2 was 

achieved by doping with Na, K and Cs [203]. Although all promoted catalysts exhibited 

electronic, structural and textural property changes compared to bare Ni/CeO2, doping 

Figure 24. Values of CO2 conversion (a) and CO selectivity (b) as a function of temperature and
time on stream (c) for Cu/CeO2 catalysts with variable ceria nanomorphology (NR: nanorods, NC:
nanocubes). Adapted from Ref. [150]. Copyright© 2019, MDPI.



Catalysts 2023, 13, 275 29 of 50

Catalysts 2023, 13, x FOR PEER REVIEW 29 of 51 
 

 

with Cs showed the optimal catalytic activity, as seen by the improved CO selectivity and 

stability for long-term runs in cyclable temperature ranges. Elsewhere, it was found that 

over a K-promoted nickel-ceria catalyst, a K/Ni ratio of one was the optimum in terms of 

CO2 conversion and CO2 methanation suppression, as well as enhanced CO selectivity 

[204]. The formation of CO instead of CH4 on the catalyst surface was favored due to the 

electronic interactions of K-Ni and K-Ni/CeO2. Interestingly, a linear correlation between 

Na content and oxygen vacancies was disclosed in Na-doped ceria catalysts, which was, 

in turn, responsible for the increased intrinsic rWGS activity on the highly-loaded Na-

CeO2 [167]. Moreover, the promotion of Fe/CeO2-Al2O3 catalysts with either Cu, Mo or Ni 

showed that the highest CO yield was attained over the copper catalyst [205]. The authors 

ascribed this result to the strong interaction between Fe and Cu, which in turn modified 

the electronic density of Fe and facilitated the activation of CO2 on the catalytic surface, as 

revealed by XPS. Nonetheless, it should be stated that the alkali promotion effect in CeO2-

based catalysts for the rWGS has not been extensively studied. Moreover, the promoting 

effect of P species was demonstrated in a novel approach regarding a Ni2P/CeO2 catalyst 

prepared using the stepwise saturated volume impregnation method [206]. Indeed, com-

pared to conventional Ni/CeO2, the employment of the nickel phosphide phase resulted 

in higher CO yield values, even under a high space velocity of 300 L·g−1·h−1. This was as-

cribed to the moderate CO2 adsorption affinity and the simultaneously high H2 adsorption 

ability of Ni2P/CeO2, which collectively prevented the deep hydrogenation of CO-like spe-

cies to CH4. 

 

Figure 25. Correlation between CO selectivity, Cs content and total basicity of the samples in various 

Cs-doped Cu/CeO2 catalysts. Reproduced with permission from Ref. [201]. Copyright©  2021, Else-

vier. 

In all, a summary of the most active rWGS ceria-based catalysts and the key adjusted 

parameter inducing high CO production is given in Table 1. It must be stated that only 

the state-of-the-art ceria-based catalytic systems (involving both noble and non-noble met-

als as active phases) have been included in this table for the sake of gaining insight into 

both the current advances in the field as well as into the effectiveness of the fine-tuning 

approaches described herein. It is evident that highly efficient rWGS catalysts, in terms of 

low-temperature CO2 conversion and CO selectivity, can be obtained by combining ceria 

with various transition metals and concurrently adjusting their physicochemical proper-

ties by the routes highlighted above. Most importantly, from a practical perspective, NMs-

free catalysts formulations with similar or even superior rWGS performance to that of 

NMs-based catalysts can be obtained by modulating the structural and surface character-

Figure 25. Correlation between CO selectivity, Cs content and total basicity of the samples in
various Cs-doped Cu/CeO2 catalysts. Reproduced with permission from Ref. [201]. Copyright©
2021, Elsevier.

In all, a summary of the most active rWGS ceria-based catalysts and the key adjusted
parameter inducing high CO production is given in Table 1. It must be stated that only the
state-of-the-art ceria-based catalytic systems (involving both noble and non-noble metals
as active phases) have been included in this table for the sake of gaining insight into
both the current advances in the field as well as into the effectiveness of the fine-tuning
approaches described herein. It is evident that highly efficient rWGS catalysts, in terms of
low-temperature CO2 conversion and CO selectivity, can be obtained by combining ceria
with various transition metals and concurrently adjusting their physicochemical properties
by the routes highlighted above. Most importantly, from a practical perspective, NMs-free
catalysts formulations with similar or even superior rWGS performance to that of NMs-
based catalysts can be obtained by modulating the structural and surface characteristics.
For instance, Cs-doped Cu/Ceria-nanorods exhibit superior CO yield values compared to
Pt/CeO2 under similar reaction conditions of T = 400 ◦C and H2:CO2 = 1, demonstrating
the effectiveness of the rational design and optimization routes.

Table 1. State-of-the-art CeO2-based catalysts for the rWGS reaction at 1 bar.

Sample H2:CO2 T (◦C) XCO2 (%) SCO (%) Adjusted Parameter Ref.

Noble metal-based
RuNi/CeZr 4 350 53 93 Active metal phase [207]

Ru45Fe55/Sm-CeO2 1 500 23 100 Metal phase composition [208]
In2O3-CeO2 1 500 20 100 In/Ce ratio [192]

Pt/CeO2-TiO2 1 500 25 99 Ce/Ti ratio [209]
Pt/CeO2 1 400 16 100 Calcination temperature [187]

Pt/CeO2-nanorods 3 400 40 94 Pt addition method [210]
Pd/CeO2 5 500 51 87 Active metal phase [211]

Transition metal-based
CeO2 3 550 51 - Calcination temperature [185]

Cu/CeO2 3 300 18 100 Catalyst support [188]
Fe15.3Cu9.4/CeAl 4 500 46 99 Metal promoter [205]
Cu/m-CeO2−δ 4 400 43 100 Cu loading [198]

Cu-CeO2 4 340 16 100 Active metal phase [212]
Cu/CeO2-nanorods 4 400 38 97 CeO2 morphology [150]

Cs-CuO/CeO2 1 450 25 97 Cs loading [201]
CuCeOx 4 400 33 100 Ce/Cu ratio [186]
Co-CeO2 1 550 29 98 Ni loading [213]

NiFe/CeAl 4 500 60 98 Metal promoter [214]
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5.2. CeO2-Based Catalysts for the Sabatier Reaction

The methanation of CO2 via H2, also called the Sabatier reaction (Equation (11)), was
discovered by the French chemists Paul Sabatier and Jean-Baptiste Senderens at the start
of the 20th century and was applied industrially mainly to remove traces of COx from
the H2-rich stream in ammonia plants. Later, the reaction was further investigated for
the production of synthetic natural gas (SNG) in the 1970s oil crisis [215–217]. In the last
decades, however, CO2 methanation has again been in the spotlight, this time being the core
reaction in the so-called power-to-gas scheme (alternatively termed as power-to-methane),
which involves the mass production of hydrogen via RES-powered water electrolysis and
the large-scale capture of CO2 from the flue gases of hard-to-abate sectors such as cement
industries or power plants (Figure 26). This route can effectively offer a simultaneous
solution to excess renewable energy curtailment, valorization of CO2 emissions, and natural
gas grid stability at times when large decarbonization is practically impossible and the
energy crisis has caused natural gas prices to skyrocket worldwide [172,218–221]. In
addition, the reaction is also appealing for long-term outer space missions, as evidenced by
the recent efforts from NASA considering the Sabatier reaction for Mars exploration, where
CO2 is abundant [222].

CO2 + 4H2 ↔ CH4 + 2H2O, ∆H298K = −164.8 kJ/mol (11)
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As can be seen from Equation (11), CO2 methanation is a highly exothermic and
mole-reducing reaction; thus, it is expected thermodynamically to be favored at lower
reaction temperatures and high pressure, respectively. Moreover, the presence of over-
stoichiometric hydrogen in the reactor inlet (i.e., at an inlet molar ratio of H2:CO2 larger
than 4) enhances CH4 yield [174,224]. Indeed, it is largely reported that the operating range
for industrial CO2 methanation is mainly around 300–500 ◦C and 10–30 bar. However, in
addition to CO2 methanation, the rWGS reaction almost always takes place to a certain
extent under a COx/H2 feed, mainly due to the formation of hotspots (>500 ◦C) in the
reactor induced by the reaction’s exothermicity, leading to operation under a temperature
range where CO formation is not negligible thermodynamically [172,223,225,226].

On the micro-scale, although the mechanism of the reaction of CO2 methanation has
not been unambiguously elucidated, two main pathways have been generally proposed,
namely, the CO route and the formate route (Table 2). The former is associated with the
initial conversion of CO2 to intermediate carbonyl-like species (denoted as either *CO or CO-
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s) via the direct dissociation of gaseous CO2 to *CO and *O, which are fully hydrogenated
towards *CH4 that is eventually desorbed from the surface forming gas-phase methane.
As for the second route, formate species (*HCOO) instead of *CO is the main intermediate
observed during the reaction, followed by a reaction with chemisorbed hydrogen adatoms.
With regards to the role of metal-ceria catalysts in the mechanism of hydrogen activation,
it is considered that gas-phase H2 is activated via dissociation on metal particles that
are increasingly active towards hydrogen activation in the vicinity of ceria surfaces. The
adsorbed hydrogen adatoms rapidly migrate to the ceria support via spillover phenomena
and are able to react with low-energy and abundant C-containing intermediates onto
CeO2−x and result in gaseous methane molecules [227]. In general, numerous factors have
been shown to affect the reaction pathway, most prominently the active metal phase nature,
support topology, metal-support interphase and reaction conditions [228,229].

Table 2. Proposed elementary reaction steps for the reaction of CO2 methanation, where “s” denotes
an adsorption site onto the catalytic surface. Adapted from Ref. [228]. Copyright© 2021, Elsevier.

CO Formation Pathway Formate Formation Pathway

(1a) H2,g + 2s = 2H-s (2a) H2,g + 2s = 2H-s
(1b) CO2,g + 2s = CO-s +O-s (2b) CO2,g + s = CO2-s
(1c) CO-s = CO,g + s (2c) CO2-s + H-s = HCOO-s + s
(1d) CO-s + s = C-s + O-s (2d) HCOO-s + H-s = HCO-s + OH-s
(1e) C-s + 4H-s = CH4-s + 4s (2e) HCO-s + H-s = CH-s + OH-s
(1f) CH4-s = CH4,g + 4s (2f) CH-s + 3H-s = CH4,g + 4s
(1g) O-s + 2H-s = H2O-s + 2s (2g) OH-s + H-s = H2O,g + 2s
(1h) H2O-s = H2O,g + s

As is the case for the rWGS reaction, the predominant catalyst category for CO2
methanation also involves the participation of an active metallic phase supported on a
metal oxide. In line with the above, the role of the metal phase is mainly the rapid activation
of gaseous H2, which subsequently migrates to the support, onto which the activation
of gas-phase CO2 towards reactive C-containing intermediate species takes place. In this
regard, the most active metal phases reported in the literature are Ru, Rh, Ni and Co, while
the most active supporting oxides are Al2O3, ZrO2 and CeO2, with bimetallic or mixed
oxide catalysts, are also reported to be active in several cases [230–232]. However, Ni-based
catalysts essentially dominate the relevant literary works, based on the combination of the
high activity of Ni towards H2 activation and its cost-effectiveness compared to the noble
metals Ru and Rh [233].

The employment of ceria-based materials for the reaction of CO2 methanation has
been reported from as early as 1997 when for the first time, the high activity of noble
metal catalysts supported on CeO2 was demonstrated, as compared to other oxides [234].
The results had been ascribed to the increased oxygen vacancy concentration on CeO2−x
and their filling by the produced H2O, explaining the transient nature of the catalytic
performance. Ever since this publication, a multitude of ceria-based catalysts has been
studied and found to attain higher activity in terms of both CO2 conversion and methane
selectivity compared to other oxides. In essence, transition metal sites are practically
indispensable in the case of CH4 formation via CO2 hydrogenation since the reaction
requires four times more hydrogen than the rWGS reaction, and at the same time ceria
alone is not capable of substantially activating gaseous hydrogen via its dissociation, as
is the well-established case over transition metals [32,235]. Despite the different results in
the literature, the general consensus of the role of ceria in CO2 methanation is to provide
the catalytic system with high concentrations of oxygen vacancies and Ce3+ ions that are
highly effective for the activation of CO2 via a redox reaction, as well as an intrinsically
active interphase near the metal active sites.
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In all, the effect of the CeO2 support (and the associated SMSI) over metal/ceria sys-
tems leads to enhanced metal dispersion, which augments the abovementioned hydrogen
dissociation, enabling the complete hydrogenation of CO2-derived intermediates and lead-
ing to enhanced CH4 production. To this end, the majority of studies have focused on the
structure-sensitivity nature of ceria-based catalysts using predominantly Ni or Ru as active
metallic phases. This is largely due to SMSI phenomena occurring in Ni-CeO2 and Ru-CeO2
systems that result in remarkable methanation performance, especially at temperatures
lower than 350 ◦C, evidenced by both theoretical and experimental works [20,236–239].
The interaction between Ni, Ru and CeO2 can be enhanced by appropriately modifying the
metal particle size and the oxygen vacancy density (or, equivalently, the reducibility).

Indicatively, over a series of CeO2-supported Ru catalysts, the optimum performance
was established by the catalyst with intermediate Ru particle sizes between 1 and 2 nm,
owing to the compromise between the sufficiently low particle size to boost SMSI and the
presence of sufficiently large Ru crystallites necessary for H2 dissociation and spillover
(Figure 27) [240]. Besides, by means of detailed in situ X-ray photoelectron spectroscopy
and operando infrared spectroscopy characterizations, the key role of metal-support in-
teractions leading to enhanced intrinsic CO2 methanation activity was also reported in
a comparative study of Co/CeO2 and Co/SiO2 [241]. Indeed, it was demonstrated that
Co/CeO2 was associated with a significantly higher concentration and reactivity of for-
mates and carbonyls in the periphery of the active cobalt-ceria interphase. In the work by
Ye et al. [242] comparing the CO2 methanation performance of Ni/CeO2 catalysts prepared
by conventional impregnation and sol-gel method, the latter was characterized by the
optimum nickel-ceria interactions, owing to the presence of nickel particles embedded into
the CeO2 structure and the resulting Ni-Ce-O solid solution that were crucial for the stabi-
lization of metallic Ni nanoparticles and improved thermal stability. In a similar manner,
the use of an optimal chelating ligand-to-cations ratio of 0.1 over Ni catalysts supported on
Sm-doped CeO2 can modulate metal-support interactions and, in turn, CO2 methanation
performance [243]. Elsewhere, in a study of Ni/CeO2 catalysts with variable nickel-ceria
interactions induced via different preparation protocols, the interface between NiO and
CeO2 was considered responsible for CO2 activation, whereas metallic Ni promoted the
dissociation of gaseous hydrogen [244]. Similarly, the heating method during the synthesis
of Ni/CeO2 induced changes in the SMSI phenomena, evidenced by the variabilities in
Ni dispersion [245]. A structure-sensitive effect was reported since the catalyst prepared
by microwave heating exhibited the strongest SMSI and, in turn, the highest turnover
frequency. Intriguingly, however, in a series of Ni- and Ru-based catalysts prepared by wet
impregnation [237], Ni/CeO2 possessed the smallest and Ru/CeO2 the largest metal parti-
cle size. Nonetheless, similar catalytic activity was attained, indicating the complex role of
the support in affecting the intrinsic activity of the metal phase and, in turn, the turnover
frequency. In a novel approach, the effect of support particle size was explored in a series
of Ni/CeO2-nanocubes catalysts with variable CeO2 crystallite size and similarly sized
nickel particles by changing NaOH concentration (i.e., 6, 9 and 12 M) during the synthesis
of ceria nanocubes [246]. It was inferred that CO2 methanation activity increased with
decreasing ceria size (or equivalently, with decreasing NaOH concentration), attributable
to the enhanced nickel-ceria interaction, leading to increased ceria reducibility and surface
basicity and lower values for the apparent activation energy (Figure 28).



Catalysts 2023, 13, 275 33 of 50

Catalysts 2023, 13, x FOR PEER REVIEW 33 of 51 
 

 

on Sm-doped CeO2 can modulate metal-support interactions and, in turn, CO2 methana-

tion performance [243]. Elsewhere, in a study of Ni/CeO2 catalysts with variable nickel-

ceria interactions induced via different preparation protocols, the interface between NiO 

and CeO2 was considered responsible for CO2 activation, whereas metallic Ni promoted 

the dissociation of gaseous hydrogen [244]. Similarly, the heating method during the syn-

thesis of Ni/CeO2 induced changes in the SMSI phenomena, evidenced by the variabilities 

in Ni dispersion [245]. A structure-sensitive effect was reported since the catalyst pre-

pared by microwave heating exhibited the strongest SMSI and, in turn, the highest turn-

over frequency. Intriguingly, however, in a series of Ni- and Ru-based catalysts prepared 

by wet impregnation [237], Ni/CeO2 possessed the smallest and Ru/CeO2 the largest metal 

particle size. Nonetheless, similar catalytic activity was attained, indicating the complex 

role of the support in affecting the intrinsic activity of the metal phase and, in turn, the 

turnover frequency. In a novel approach, the effect of support particle size was explored 

in a series of Ni/CeO2-nanocubes catalysts with variable CeO2 crystallite size and similarly 

sized nickel particles by changing NaOH concentration (i.e., 6, 9 and 12 M) during the 

synthesis of ceria nanocubes [246]. It was inferred that CO2 methanation activity increased 

with decreasing ceria size (or equivalently, with decreasing NaOH concentration), at-

tributable to the enhanced nickel-ceria interaction, leading to increased ceria reducibility 

and surface basicity and lower values for the apparent activation energy (Figure 28).  

 

Figure 27. Schematic depiction of the competitive effects of SMSI and hydrogen spillover leading to 

competing activation and surface CO dehydration for CeO2-supported Ru single atoms (up), 

nanoclusters (middle) and large nanoparticles (bottom). Reproduced with permission from Ref. 

[240]. Copyright©  2018, American Chemical Society. 

Figure 27. Schematic depiction of the competitive effects of SMSI and hydrogen spillover leading
to competing activation and surface CO dehydration for CeO2-supported Ru single atoms (up),
nanoclusters (middle) and large nanoparticles (bottom). Reproduced with permission from Ref. [240].
Copyright© 2018, American Chemical Society.
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activation energy values (c) as a function of CeO2 nanocubes size. Reproduced with permission from
Ref. [246]. Copyright© 2023, Elsevier.
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In another study, the effect of oxygen vacancies was decoupled from the Ni size effect
by the synthesis of Ni/CeO2 samples with similar oxygen vacancy concentrations [247].
It was disclosed that the turnover frequency decreased with increasing Ni nanoparticle
size in the range between 8 and 21 nm, highlighting the equally crucial role of geometric
effects in the catalytic activity. In this regard, we recently showed that the variation of Ni
loading (and, equivalently, the nickel particle size) in a series of highly active Ni/CeO2-
nanorods notably affects the catalytic performance (Figure 29) [248]. Noteworthy, Ni/CeO2
samples with a Ni particle size of ca. 20 nm demonstrated a superior methane yield (~92%
at 275 ◦C), one of the highest values reported so far. Interestingly, the oxygen vacancy
concentration was in general agreement with the catalytic activity, highlighting the crucial
role of ceria reducibility towards high methane yield values induced by the synergy of
nickel-ceria species in the metal-support interphase. Even more importantly, the crucial role
of under-coordinated nickel sites (i.e., corners/steps) located on larger Ni particles were
revealed through a structure-sensitivity analysis. In other words, a compromise between
the nickel-ceria perimeter and the competitive presence of large nickel particles is required
for optimum performance.
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As is now evident, the effect of oxygen vacancies is rather prominent in the case of
CeO2-based CO2 methanation catalysts, as variabilities in their population can exert signifi-
cant changes in the catalytic activity [120,234]. Indicatively, the role of oxygen vacancies in
CO2 methanation was thoroughly explored by operando spectroscopy and steady-state iso-
tope transient kinetic analysis (SSITKA) over Ru/CeO2 and Ru/α-Al2O3 [249]. Markedly,
CO2 methanation proceeds via the formate route over Ru/CeO2 (containing a large number
of vacancies), and the rate-determining step is the formate dissociation to methanol, cat-
alyzed by oxygen vacancies (Figure 30). On the contrary, the reaction pathway is completely
shifted towards the CO route over the Ru surface in Ru/α-Al2O3 (i.e., in the absence of
oxygen vacancies), showcasing the active site-dependent reaction mechanism. Moreover,
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activity evaluation and the oscillating reaction over Ru/CeO2 further corroborate that the
oxygen vacancies offer a much lower activation temperature compared with the one in the
case of Ru/α-Al2O3. Moreover, the complex roles and interplay of Ni and CeOx species in
terms of oxygen exchange kinetics were in situ explored by NAP-XPS [250]. It was disclosed
that substantial oxygen exchange occurs between gas-phase species and ceria under CO2
hydrogenation conditions. Specifically, the authors revealed that oxygen transfer progresses
through a combination of two mechanisms, namely, simple hetero-exchange between one
O atom from a gaseous molecule one O atom from ceria and multiple hetero-exchange
between an oxygen-containing gas-phase molecule and at least two oxygen atoms of the
support. Both these phenomena were accentuated by the presence of the oxygen vacancies
since kinetic analysis revealed that oxygen exchange rate is fast compared to the CO2
hydrogenation rate. In a similar manner, the catalytic activity and product selectivity were
found to be ascribable to the interfacial oxygen vacancies and the structure of Ni species,
respectively, in a series of Ni/CeO2 catalysts with variable Ni particle sizes [251]. In partic-
ular, the increase in Ni loading led to a higher population of surface oxygen vacancies in the
nickel-ceria interface, which resulted in higher CO2 activation. Meanwhile, the increased
Ni particle size along with more reduced nickel entities, was deemed beneficial for the
increased CO binding capacity, eventually attaining higher CH4 yield values. Elsewhere,
improved CO2 methanation performance over Ni/CeO2 was observed precisely due to the
formation of the so-called Ni-Vox-Ce interfacial sites [252,253].
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Figure 30. Schematic illustration of the formate route catalyzed by oxygen vacancies for the reaction
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The effect of the synthesis method is another prominent way of manipulating the
concentration of oxygen vacancies and the reducibility of ceria. In this regard, a series of
nickel-ceria catalysts were hydrothermally prepared by varying the ethylene glycol/water
ratio [238]. The variability in the solvent composition during the synthesis procedure
induced changes in the oxygen vacancy concentration and in turn in the population of
reducible surface sites below 450 ◦C, the abundance of which correlated with the catalytic
activity. The effect of the synthesis method on the ceria reducibility was also demonstrated
in a nickel catalyst supported on ceria-zirconia, whereby the catalyst prepared by impreg-
nation possessed the most enhanced redox properties and increased CO2 methanation
activity [254]. In another study, the preparation of Ni/CeO2 catalysts derived from a Ce-
MOF precursor either by impregnation or by the one-pot method was explored, revealing
the vital role of oxygen vacancy concentration towards optimal catalytic performance [255].
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In a similar manner compared to the production of CO from CO2 hydrogenation, the
performance of ceria-based CO2 methanation catalysts has been shown to also exhibit a de-
gree of facet-dependency, according to the order for oxygen vacancy formation. In general,
nanorod ceria particles are more active in terms of CH4 yield, followed by nanocubes and
nano-octahedra, evidenced by the observed changes in the reaction mechanism [256–260].
The relative abundance of interfacial sites is another crucial parameter that has been
demonstrated to partly determine the catalytic performance, being strongly affected by the
exposed crystal planes. Indeed, the following order for interfacial site concentration has
been reported; Ru/CeO2-nanorods > Ru/CeO2-nanocubes > Ru/CeO2-nano-octahedra,
in agreement with the CH4 selectivity values [261]. Elsewhere, the facet dependency of
ceria-based catalysts was examined in terms of the effect of CeO2 morphology in the distri-
bution of frustrated Lewis pair (FLP) structures [262]. By means of systematical ex-situ and
in-situ surface analysis in combination with DFT calculations, it was demonstrated that
Ni/CeO2-nanorods possessed the highest potential for FLP construction, which in turn
resulted in the optimum CO2 conversion to CH4 via the cooperation of OV and OH species,
along with the co-promotion of the emerged CO* route and formate pathway. Notably,
in all the above studies, the catalyst possessing the most defective structure was the most
active, although this catalyst was not always a nanorod sample, a finding deriving from the
inherent variability of the defective structure of ceria nanorods, as the synthesis method
affects the growth direction, exposed facets and the abundance of defects [263]. In this
regard, the morphology effect of CeO2 nanoparticles was examined in Ni-based catalysts
prepared hydrothermally [264], whereby the catalyst supported on ceria nanopolyhedra
attained the highest CO2 methanation activity, owing to the relatively high surface area
and low-temperature reducibility. At the same time, although the strongest SMSI were
reported for the nanorod catalyst, this exerted a detrimental effect regarding the catalytic
activity. In a similar manner, Ni/CeO2 nanoparticles with exposed (111) crystal planes
exhibited superior CO2 methanation performance compared to other distinct morphologies
(rod, cubic, octahedron), ascribed mainly to their excellent reduction ability [160]. It is also
worth noticing that exceptional thermal stability and sintering resistance was disclosed for
all Ni-based catalysts, independent of nanoceria morphology.

Another topic that requires attention on the basis of ceria-catalyzed CO2 methanation
is the employment of promoting substances. Aliovalent doping can alter the selectivity
and product distribution as well as the catalytic stability in CO2 methanation. For instance,
our research group has recently shown [202] that the addition of Zn into Ni/CeO2 led
to a complete change in the reaction pathway, with Ni/ZnO-CeO2 being very selective
towards CO, in complete contrast to the high CO2-to-CH4 activity of Ni/CeO2. This
finding was attributed to the zinc-induced changes in the nickel-ceria catalyst, namely, a
decrease in the BET surface area, surface basicity, low-temperature reducibility and CO
desorption affinity, collectively disfavoring the complete hydrogenation of CO-like species
towards CH4 (Figure 31). Elsewhere, Mn or In were used as dopants in Ni/CeO2, revealing
that methane was the main product in the Mn-doped catalyst and CO in the In-doped
one, with Mn or In doping increasing the catalyst’s surface area and pore volume while
generating more surface oxygen vacancies [265]. In effect, the reducibility of Ni species
was modified, with Mn species facilitating the reduction of nickel, as opposed to the
indium-containing catalyst. Furthermore, adding cobalt in Ni/CeO2 catalysts significantly
enhanced CO2 conversion and methane selectivity, with the CoNi/CeO2 catalyst exhibiting
the highest amount of medium basic sites and the optimum performance in both plasma
and non-plasma reactions [266]. In this regard, europium ions (Eu3+) were introduced into
a nickel-ceria catalyst with the scope of the enhancement of metal-support interactions.
Indeed, Eu doping led to higher Ni dispersion, thus creating more interfacial sites and
significantly enhancing the low-temperature activity [267].
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Figure 31. Temperature-dependent CO yield values (a) and correlation of reaction rate with reducibil-
ity and basicity (b) for Ni/CeO2-NR, Ni/ZnO and Ni/ZnO-CeO2-NR catalysts, where NR: nanorods.
Adapted from Ref. [202]. Copyright© 2022, Elsevier.

Elsewhere, the low-temperature CO2 methanation over Ni/CeO2 was enhanced
through a novel approach involving the regulation of the rate-determining step through the
increase in surface oxygen vacancies and medium-strength surface basic sites on the sup-
port [268]. This was achieved by doping ceria with La species, resulting in the formation of
a La-Ce-O solid solution with a thin layer of La2O2CO3 on the surface, thereby facilitating
the adsorption and direct dissociation of CO2 (Figure 32). Similar results were attained over
vacancy-engineered Ni/CeO2 catalysts doped with yttria, whereby the introduction of Y2O3
to CeO2 enhances surface oxygen vacancies generation under reaction conditions [269].
The authors also conducted a spectrokinetic analysis, further revealing the promoting role
of these sites towards the direct dissociation of carbon dioxide, which is kinetically a more
favorable step compared to the associative route. In another work, Sn was used as a dopant
in the synthesis of typical CO2 methanation nickel-ceria catalysts in order to examine the
importance of interface microstructure on CO2 hydrogenation reactivity [270]. The strong
interaction between Sn cations and Ni species in Ni/Ce0.9Sn0.1Ox resulted in the formation
of a complex Ni-O-Sn-O-Ce interface, which was distinctly different from the Ni-O-Ce
interface in Ni/CeO2. CO2 chemisorption, as well as HCO3* generation, was decreased
due to the enrichment of surface acidic Sn cations on Ni/Ce0.9Sn0.1Ox, thus inhibiting the
formate path for CH4. Conversely, the presence of interface Sn cations favored carbonates
generation, thus promoting CO yield.
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species introduced into CeO2 support and calcined at 600 ◦C. Reproduced with permission from
Ref. [268]. Copyright© 2022, Elsevier.
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Collectively, a summary of the state-of-the-art ceria-based catalysts employed for
stoichiometric CO2 methanation is shown in Table 3, where a remark regarding the adjusted
parameter for enhancing the catalytic activity in each study is shown. In essence, the
catalysts are representatively categorized as those containing Ru (noble metal) and Ni (non-
noble metal) since they are by far the most dominant and active catalysts in the literature.

Table 3. State-of-the-art CeO2-based catalysts for stoichiometric CO2 methanation at 1 bar.

Sample T (◦C) XCO2 (%) SCH4 (%) Adjusted Parameter Ref.

Ru-based
Ru/CeO2/Al2O3 300 83 100 CeO2 content [271]

Ru/CeO2 300 83 99 Support nature [235]
Ru-Ni/Ce0.9Zr0.1O2 230 98 100 Ru loading [272]

Ru/CeO2 350 78 99 Support nature [237]
Ru/CeO2 300 82 98 Ru particle size [240]

Ni-based
Ni/CeO2-nanorods 300 91 100 Ni loading/support morphology [248]

Ni/CeO2 300 90 100 Support nature [273]
Ni/CeO2 300 86 99 Ni addition method [274]

Ni-CeO2/MCM-41 380 86 100 CeO2 content [275]
Ni/La-CeO2 300 88 99 Support calcination temperature [268]
Ni-Ce/rGO 350 85 99 Mixed support nature [276]

Ni/CeO2 340 91 100 CeO2 synthesis method [277]

By comparing the state-of-the-art catalysts for ambient-pressure CO2 methanation
under a stoichiometric reactant ratio, it could be inferred that highly active non-noble metal
catalysts can be obtained by adjusting the aforementioned activity descriptors by means of
appropriate synthesis and modification routes. For instance, by concomitantly modulating
the Ni particle size and ceria support morphology [248], extremely active composites can
be obtained with similar or even superior reactivity to state-of-the-art Ru-based catalysts.

6. Conclusions and Perspectives

The role of cerium oxide in the field of environmentally related heterogeneous catalysis
has, by all means, become prominent over the last decades, evidenced by the voluminous
amount of scientific literature with regard to the applications of ceria-based catalytic com-
posites in several reactions. In this regard, CeO2-based materials constitute, by now, the
state-of-the-art catalysts for three-way converters as well as soot combustion and CO oxi-
dation. The improved catalytic performance of these materials stems from the multitude
of intriguing properties of CeO2, most prominently its augmented redox capabilities aris-
ing from the rapid interchangeability between Ce3+ and Ce4+ with the concurrent facile
formation of oxygen vacancies, as well as the metal-support interactions that generate
intrinsically active interphases in the metal-ceria nexus that can effectively activate the
gaseous reactant molecules. Moreover, the facile and tunable surface chemistry and local
structure of CeO2 nanoparticles can potentially lead to finely tuned catalytic materials that
are associated with augmented characteristics depending on the target application.

Specifically, and as has been reviewed in the present work, several methodologies have
been applied so far toward enhancing the catalytic performance of CeO2-supported cata-
lysts. These fine-tuning strategies essentially exploit the already mentioned properties of
the oxide of cerium and its combination with one or more metallic active phases and can be
contextualized as part of an overall structure/surface functionalization. In other words, size
and shape engineering in conjunction with promotion/doping can exert profound changes
in the redox properties and metal-ceria interactions and can collectively be regarded as an
excellent and rather facile adjustment tool for the synthesis of CeO2-based materials with
increased performance and characteristics pertaining to the selected catalytic application.
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Advancing from the above, the extent to which ceria may constitute an important
component in the general field of heterogeneous catalysis is still an open question and can
be very well exemplified by its role in the thermocatalytic CO2 hydrogenation towards
CO or CH4 production. Indeed, even though the reverse water–gas shift reaction and CO2
methanation have been known and studied for decades, they have attracted great interest,
particularly in the last years, within the context of CO2 emissions mitigation and excess
renewable energy curtailment. As is the case with the majority of chemical reactions, how-
ever, the phasing away of noble metal-based catalysts is one of the Holy Grails of the field of
heterogeneous catalysis, despite their increased performance and stability compared to less
costly or non-critical materials. In this regard and precisely due to its peculiar properties,
ceria-based oxides have emerged as promising candidate compounds for the complete
substitution of noble metals in highly efficient CO2 hydrogenation catalysts, evidenced
by the similar or superior performance of “fine-tuned” transition metal-based catalysts
supported on ceria, most prominently Ni/CeO2 for CO2 methanation and Cu/CeO2 for
rWGS reaction. Equally importantly, the conclusions that can be drawn from the detailed
study of ceria-supported catalysts for CO2 hydrogenation via the identification of the
key activity descriptors and fine-tuning strategies can be transferred to other important
reactions governed by similar underlying phenomena (e.g., reactions progressing via a
Mars–van Krevelen mechanism), indicatively dry methane reforming, Fischer–Tropsch
synthesis or ethanol steam reforming.

Nonetheless, although a great deal of activity descriptors have been identified and
studied regarding ceria-based catalysts for numerous environmentally relevant chemical
reactions probed herein by CO2 hydrogenation, the extent to which these properties actually
contribute to the reaction mechanism is still a rather nascent field compared to other
well-established and commercial catalysts. With this in mind and considering the rapid
development of advanced characterization technologies, in-situ/operando techniques need
to be employed in order to monitor in real-time the dynamic evolution of the structure
of active sites (e.g., dynamic OSC measurements, CO adsorption/desorption affinity or
metal-ceria solid solution formation) under actual reaction conditions, to identify the
rate-determining step and to elucidate possible structure–sensitivity relationships. In this
regard, even more dedicated functionalization synthesis protocols can be applied, with
the scope of fully identifying the nature and local geometry of the metal-ceria active sites
with the highest intrinsic activity and facilitating their stabilization towards maximizing
the production of either CO or CH4.

Lastly, in spite of the plethora of published scientific works for ceria-catalyzed CO2
hydrogenation, there is always room for further analysis. In this regard, it should be
mentioned that the majority of studies examining size effects focus on the variations
of metal particle size in more or less similarly sized ceria crystallites. Although this is
an important parameter by itself and can lead to important conclusions regarding the
effect of metal loading and/or particle size in the metal-ceria interphase and taking into
consideration the tunable nature of ceria nanoparticles, the fabrication of metal/ceria
catalysts with specific metal loading supported on variable CeO2 sizes would provide
valuable insights towards structure-sensitivity relationships that are decoupled from size
effects on the metallic phase side, arising from different degree of MSIs induced by the local
geometry of CeO2 crystallites. Moreover, the synthesis of bi- or tri-metallic formulations
based on the aforementioned fine-tuning strategies can greatly alter the reaction pathway
and completely shift the products of the CO2 hydrogenation reaction to either CO or CH4.
Lastly, the modification of metal dispersion using advanced synthesis methods, dispersing
agents, and special pretreatment protocols can exert a profound influence on local surface
chemistry and metal-support interactions with direct implications on activity/selectivity.
As a general conclusion remark, it could be stated that mechanistic understanding at an
atomic level under reaction conditions in conjunction with the offered fine-tuning strategies
can provide cost-efficient and highly active earth-abundant metal oxide systems, not only
for CO2 hydrogenation process but for various energy and environmental applications.
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