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Abstract: The increasing concentration of anthropogenic CO; in the air is one of the main causes of
global warming. The Paris Agreement at COP 21 aims to reach the global peak of greenhouse gas
emissions in the second half of this century, with CO, conversion towards valuable added compounds
being one of the main strategies, especially in the field of heterogeneous catalysis. In the current search
for new catalysts, the deposition of metallic nanoparticles (NPs) supported on metal oxides and metal
carbide surfaces paves the way to new catalytic solutions. This review provides a comprehensive
description and analysis of the relevant literature on the utilization of metal-supported NPs as
catalysts for CO, conversion to useful chemicals and propose that the next catalysts generation can
be led by single-metal-atom deposition, since in general, small metal particles enhance the catalytic
activity. Among the range of potential indicators of catalytic activity and selectivity, the relevance of
NPs’ size, the strong metal-support interactions, and the formation of vacancies on the support are
exhaustively discussed from experimental and computational perspective.

Keywords: supported metallic nanoparticles; metal oxide; metal carbide; CO, hydrogenation;
CO; methanation

1. Introduction

Carbon dioxide (CO,) is the second most abundant greenhouse gas in the Earth’s
atmosphere due to the vast and excessive emissions from human activities related to the
burning of fossil fuels [1] with concomitant environmental problems [2]. It is estimated that
around 80% of the world’s energy demand is supplied by fossil fuels. These anthropogenic
emissions are considered to be the major contributors to climate change which may cause
extreme events (high or low temperature, dryness, etc.) that are beyond human control.
Some technologies have been introduced to reduce the CO, emissions [3], although they
have been increased since the 1960s to a current level of more than 400 ppm in 2020 [4], as
illustrated in Figure 1. Moreover, predictions indicate that CO, emissions will continue to
increase until at least 2040 [5], with devastating consequences for the environment.

It has become urgent to mitigate the harmful effects of CO, emissions, CO, capture
and storage (CCS), and especially its conversion towards valuable fuels and precursors.
Many studies have been conducted with the aim of providing the effective capture and
sequestration of CO; [6,7]. The deployment of CCS schemes is a multifaceted problem that
requires the shared vision and efforts of governments, policy makers, and economists, as
well as scientists, engineers, and venture capitalists [8,9]. The Intergovernmental Panel
on Climate Change estimates that CO, emissions into the atmosphere could be reduced
by 80-90% for a modern conventional power plant equipped with carbon capture and
storage technology [10]. CO, adsorption is considered one of the most promising tech-
nologies for CCS [11], where natural zeolites, metal organic frameworks (MOFs) [12], ionic
liquids [13,14], and Fe3O4-graphene are the conventional adsorbents given their capacity
to adsorb CO; (222-2640 mg CO, /g sorbent) at a laboratory scale [15,16].
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Figure 1. The constant increase in CO, concentrations in the atmosphere over the last sixty years. The
red and black lines indicate the monthly mean values and the seasonal average, respectively. Adapted
from https://www.esrl.noaa.gov/gmd/ccgg/trends/full. html (accessed date: 4 January 2022).

Nevertheless, it seems clear that efforts should be directed towards the potential use of
CO; as an economical feedstock [17-19], because this means that two targets would be hit
with one shot [20-23]. The number of emitted tons of CO; can be reduced while producing
useful chemicals [24-26]. In addition, the net amount of CO, mitigated by conversion with
renewable energy is 20—40 times greater than sequestration over a 20-year period [27,28].
To substantially reduce CO, emissions via catalytic conversion, only reactions that produce
fuels or commodity chemicals can be considered viable and economically feasible solutions.
The demand for fine chemicals is simply not great enough to effectively reduce emissions
through a CO, conversion process [29]. Due to this, Figure 2 summarizes different ways of
CO; conversion. CO; reduction has become an interesting option since the CO produced
could be used as feedstock in Fischer—-Tropsch synthesis [30]. This is an industrial catalytic
process used to produce synthetic hydrocarbons to be used as fuels, which has been known
since the 1940s. Furthermore, CO is also a key ingredient of syngas, a mixture of CO, CO,,
and Hj that is used in many industrial processes to produce tons of chemicals such as
methane (CHy) [31,32] or methanol (MeOH) [33]. In this sense, the CO, conversion to
MeOH emerges as the most important method of CO; recovery, since it is the most direct
route for CO, utilization. In addition, MeOH is a fuel for batteries and a precursor to
many interesting chemicals [34], and it is very remarkable that the use of methanol as a
transportation fuel presents economic advantages with respect to hydrogen-based fuel
cells [35], which unfortunately have not been generalized yet in the automotive world be-
cause of the cost of Pt anodes [36]. Finally, the direct hydrogenation of CO, to alkane species
(CO,—Fischer-Tropsch) is possible in a reactor, since it is thermodynamically easier than
the reverse water gas shift reaction (WGSR) because the overall process is exothermic [37].

Many examples of the use of nanoparticles (NPs) supported on metal oxides to collect
CO; are known. Different methods can be employed to synthesize NPs of different sizes
and shapes, including top-down and bottom-up approaches [38]. As an example, on
the use of NPs to convert CO,, the RWGS (CO, + H, — CO + H,0) reaction occurs on
well-dispersed NPs supported on metal oxides to maximize the interface area between the
particle and support [39]. Table 1 summarizes selected RWGS catalysts with conversion
greater than 20%.
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Figure 2. (a) Simplified scheme about different CO, hydrogenation pathways. (b) Reaction map
of CO, hydrogenation including reaction intermediates. Red, orange, and green panels show the
final products.

Table 1. Summary of selected RWGS catalysts with a conversion superior to 20%, including reac-
tion conditions.

H,:CO, Temperature  Pressure Conversion  Selectivi
Catalyst Ratio 0 (MPa) (%) (%) v

NiO/CeO, [37] 1:1 700 0.1 ~40 ~100

Cu/Al,O5 [40] 1:9 500 N/A ~60 N/A

Cu-Ni/y-AlLO3 [41] 1:1 600 0.1 28.7 79.7

Fe-Mo /v-Al,O3 [42] 1:1 600 1 ~45 ~100
Mo/v-Al,O3 [43] 1:1 600 1 34.2 97

Pt/TiO, [44] 1.4:1 400 N/A ~30 N/A

Pt/Al,O5 [33] 1.4:1 400 N/A ~20 N/A
Ni-Mo,C [45] 5:1 250 2 21 29
Co-Mo,C [34] 5:1 250 2 23 24

On the other hand, the Cu/Zn0O/ Al,O3; composite [46,47] is the commercial catalyst
for MeOH synthesis using a mixture of CO,, CO, and H; as reactants. Nevertheless, this
Cu-supported system requires complex activation steps, particle sintering promotes catalyst
deactivation, high pressures are required to obtain good yields, and it is pyrophoric in
nature [48]. The poor stability of Cu NPs is the bottleneck for industrial application [49]. A
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Cu-based catalyst is not only the most commonly used catalyst in methanol synthesis from
CO; hydrogenation but also the best candidate for the WGS and the RWGS reactions [50],
which highlight the importance of Cu, since both CO; and CO can be hydrogenated to
MeOH [51]. The catalytic pathways controlling these processes catalyzed by Cu surfaces or
Cu-supported metal particles have been extensively investigated in order to implement this
sustainable chemistry on a large scale [52], i.e., to find a low-cost and highly active, selective,
and stable catalyst for the conversion of CO, into useful fuels [53-56]. Furthermore,
hydrogenation to MeOH or CO is not the only way to recycle CO,. CO, methanation
highlights another alternative to produce useful hydrocarbons. In this sense, Ni is the most
used catalyst [57,58]. Cu, Ni, Au, Pt, Pd, and Ru NPs supported on reducible metal oxides
such as Al,O3, TiO,, Si0,, ZrO, and mainly CeO, have been employed as dual-functional
catalysts: the oxide supports provide oxygen vacancies to activate CO,, and metal active
sites dissociate molecular hydrogen. Atomic hydrogen then spills over onto the support or
onto interfacial sites/vacancies to hydrogenate the adsorbed CO; [59,60]. The importance
of oxygen vacancies on the support is essential for many reactions [61-63]. Oxide materials
with ionic characteristics and wide band gaps (such as MgO and Al,O3 among others) are
working just as supports of metal particles in many reactions, i.e., they do not participate in
catalytic conversion [64]. However, metal oxides with lower ionic characteristics and small
band gaps (for instance, CeO;) can participate in the catalytic reaction, not only working
as simple spectators [65], but directly involving the metal and its support in the catalytic
process [66]. In this sense, transition metal carbide materials appeared in the last two
decades as a clear example of how metal<«+support interactions can modify the catalytic
activity of a system with respect to the metal and the support working independently.

In this paper, we briefly review a series of studies that explore the conversion of CO,
to CO, MeOH, and CHj4 using metal NPs supported on metal oxides and transition metal
carbides. Understanding the reaction mechanism is a rewarding goal that requires the
combination of computational techniques based on multiscale modeling [67] together with
sophisticated experiments able to determine the surface-active sites and metal-support
interactions. This review therefore aims at determining the key descriptors about the
performance of metal-supported NPs with the goal to find better (until now) NP-support
combinations for carbon dioxide conversion, either to MeOH, CO, or CH4. We will empha-
size (i) the relation of metal-support interactions and the catalytic activity of the system,
(ii) the importance of NPs’ sizes and shapes, and (iii) the role of the support as an active
phase or a mere spectator. In addition, we briefly describe the progress of metal single-
atom-site catalysts, with special emphasis on supported metal atoms that maximize the
reactivity of many catalytic applications.

2. Metal Nanoparticles Supported on Metal Oxides
2.1. Al,O3

Alumina is considered as a catalytically inert support although essential to enhance
the catalytic activity of metal NPs and to store hydroxyl moieties, as we review in this
section. Carbon dioxide hydrogenation on Cu/Al,O3 was studied by Lam and coworkers
by combining experiments and theoretical calculations [68], concluding that this system
works as a bifunctional catalyst with high activity for the hydrogenation of CO, to MeOH,
dimethyl ether, and CO, in contrast to what is observed with SiO; or ZrO, supports.
Moreover, Lam et al. reported that binary Cu/Al,O3 systems work better than ternary ones
(see Figure 3a). The main formation of CO as a key intermediate was previously determined
by Chen et al. [40]. Song and coworkers recently revealed the role of the terminal hydroxyl
groups on Cu/Al,Os systems, being the active sites to generate HCOO species during the
hydrogenation of CO,. The role of Cu NPs was to break Hy molecules and store the H
atoms necessary for the hydrogenation process [69]. The proposed reaction mechanism
by Song et al. is depicted in Figure 3b, illustrating how OH moieties adsorbed on the
oxide support participate in the reaction. Promotion with Bi and K enhances the selectivity
of Cu/AlyO3 catalysts to MeOH and CO, respectively, according to Bansode et al. [70].
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Pastor-Pérez and coworkers prepared a series of bimetallic Cu-Fe catalysts supported on
Alumina for a RWGS reaction, in which the addition of Cu and Cs particles as promoters
increases the activity and stability toward CO [71].
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Figure 3. (a) Intrinsic formation rates for CO, MeOH, and DME after the deposition of Cu NPs
on different oxide supports. Extracted with permission from Ref. [66]. Copyright Wiley-VCH.
(b) Proposed reaction mechanism for CO, hydrogenation over Cu/Al,O3, extracted with permission
from Ref. [68]. Copyright ACS.

Regarding CO, methanation, several groups [72-75] investigated the use of small
Ru particles supported on Al,O3. They concluded that Ru/Al,Os is an excellent catalyst,
obtaining 96% of methane yields without CO, a slightly higher yield than the obtained with
Ni/Al,O3 [76]. It was revealed that the higher the number of Ni particles, the higher the CO
production. The addition of vanadium improved the catalytic activity of Ni/ Al,O3 towards
CO; methanation, slightly increasing the methane yield, and again, without detecting
the CO generation [77]. In contrast, Italiano and coworkers detected the formation of a
NiAl,Oy spinel, which lowers the quantity of active Ni species, decreasing the catalytic
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activity of the Ni/Al,Oj3 catalyst [78]. Quindimil et al. experimentally evaluated both Ni
and Ru metal particles on Al,O3, reporting that Ni/Al,O3 presents high metal-support
interactions, reducing the amount of metal active sites to catalyze CO, conversion, whereas
Ru is a more efficient metal particle for H, dissociation [79]. Mihet and Lazar studied the
influence of Pt, Pd, and Rh promotion on the Ni/Al,O3 system for the methanation of
COg, concluding that Rh shows lower catalytic activity than Ni/Al,O3, whereas Pd and
Pt promotion increases the catalytic activity [80]. Regarding other noble metals, Schubert
and coworkers proved that the high activity of Co/Al,O3 can be promoted by Pt, which
enhances Hj dissociation [81]. Regarding the methanation process, one can summarize
that Ru and Ni are the best candidates, although there are some discrepancies about which
NP shows better performance.

2.2. ZrO,

Wambach and collaborators [82] exhaustively studied and compared the activity of
several metal NPs supported on zirconia catalysts to investigate their performance in CO,
hydrogenation. They reported that Cu and Ag promoted MeOH formation, while Ni, Ru,
and Rh tended to catalyze CO, methanation. Note that these metals also promote the
formation of methane using alumina as a support [77,78]. Less selectivity and low activity
were found using Pd, Pt, and Au, in which the simultaneous formation of all the byproducts
(MeOH, CO, and CHy) was reported. Regarding Cu NPs, their deposition on ZrO, exhibits
slightly higher activity for the conversion of CO, into MeOH, displaying comparable
yields to the commercial catalysts using a very low amount of Cu (1-2 wt %) [83]. Similar
results were found by Nitta et al., who reported that Cu/ZrO; is more effective for MeOH
production than Cu/ZnO [84]. Nitta and coworkers also found that the addition of ZnO
particles can help carbon dioxide conversion although it decreases the MeOH selectivity. In
another study, Nitta et al. suggested that large Cu crystals favor MeOH production and
selectivity, while the high dispersion of Zr species enhances carbon dioxide conversion [85].
As reported by Song using an alumina support [69], Meunier and coworkers demonstrated
the key effect of hydroxyl groups on the oxide support, since they were characterized as the
sites on which carbonate and formate moieties were hydrogenated to methoxy species [86].

Regarding Au NPs, studies by Bogdan et al. and Baiker et al. show that Au/ZrO, is a
very active catalyst for RWGS, with CO being the main product [87,88]. According to Wu
and coworkers, the use of very small Au NPs exhibits good activity and selectivity towards
MeOH [89]. The use of silver-supported clusters did not show better performance than
Cu, even though some papers reported slightly high selectivity towards MeOH [90,91].
The addition of Ag NPs to Cu/ZrO; did not show an improvement on the catalyst activity
according to Tada and coworkers, although it increased the MeOH selectivity [92]. The use
of Pd was discarded by Fujitani and coworkers since it is not able to hydrogenate CO, [93].
Finally, it was found that a mixture of Pt and Co NPs supported on ZrO, favors methane
production [94].

2.3. 5i0;

Wang and coworkers prepared a long-lived Cu/SiO; catalyst synthetized using an
ammonia evaporation method, showing excellent performance for CO;, hydrogenation and
large catalyst stability. CO, MeOH, and only a low amount of CH, were found at 260 °C,
although the MeOH production drastically decreased at high temperatures [95]. Very
recently, Shawabkeh and collaborators computationally studied the interaction of CO, with
a Cu/SiO; catalyst, concluding that CO; is physiosorbed and bent on the oxide surface,
owing to moderate interaction with one of the oxygen surface atoms [96]. A Cu/SiO,
catalyst prepared via flame spray pyrolysis exhibited comparable catalytic performance to
an active Cu/ZrO; catalyst for MeOH synthesis from CO,, although the conversion was
only 5.2%. This experimental investigation showed that Cu NPs avoid CO dissociation
and allow its hydrogenation to MeOH [97]. The important role of Cu particles was also
suggested by Wang and collaborators [98]. Lam et al. synthetized a Cu-based catalyst
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using surface organometallic chemistry starting from a material consisting of isolated
Zn?* surface sites dispersed on SiO,, and then generating CuZn alloys. This Cu-Zn/SiO,
material displayed high catalytic activity, methanol selectivity, and higher conversion
compared to the benchmark Cu/ZnO/Al,O3 and most other catalysts [99]. Very recently,
Fayisa and coworkers found that Pt could be an effective promoter to enhance the catalytic
performance of Cu/SiO; for the hydrogenation of CO, to MeOH [100].

The combination of Cu and Ni particles on SiO, was investigated for CO, methanation,
concluding that higher Ni content increases CO, conversion and CHy selectivity, and Cu-
promoted samples favor the CO selectivity [101]. Therefore, it seems clear that Ni NPs favor
methanation, whereas Cu NPs enhance hydrogenation into MeOH. The catalytic activity
of Ni supported on SiO, for CHy4 production was reported by several authors [102-104],
showing the high conversion of carbon dioxide and 100% selectivity to CHy (Figure 4). The
work by Wu and collaborators revealed the importance of Ni coverage and size, since at low
Ni loading (0.5 wt%), the system showed comparatively higher catalytic activity for CO,
hydrogenation with large CO selectivity, whereas increasing the content to 10 wt%—9 nm
particles—a selectivity switch was observed, favoring CH4 production [105]. The promotion
of Ni/SiO, with other metal particles such as Fe, Co, and Zn was studied by Dias and
Perez-Lopez, showing that Fe and Co enhanced CO, conversion and selectivity towards
CHy,4, while Zn did not favor CO, conversion and promoted the production of CO [106].
Huang et al. recently investigated the combination of Ni and Pt particles on SiO,, reporting
that CHy was the main product only when the Ni/Pt molar ratio was higher than 9, owing
to the fact that Pt NPs can directly dissociate CO, to CO [107]. The addition of Sn to
Ni/SiO; slightly improved the activity and the catalytic stability at 650 °C, reducing the
carbon formation, although a very small amount of Sn had a negative effect on the activity
and stability of the Ni/SiO; catalyst [108]. Finally, Kattel and coworkers reported that Pt
NPs are able to enhance the overall CO; conversion due to the CO, binding energy on SiO,
with oxygen vacancies [109].
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Figure 4. Catalytic performance of CO, methanation on Ni/SiO, catalysts, reproduced with permis-
sion from Ref. [104]. Copyright Elsevier B. V.

2.4. TiO,

Titanium oxide is not an inert support. It exhibits great potential as an ideal and
powerful photocatalyst for various significant reactions due to their chemical stability,
nontoxicity, and high reactivity [110]. TiOp-supported metal catalysts have attracted interest
due to the characteristics of TiO, NPs, showing high activity for various reduction and
oxidation processes [111].
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As reported using other oxide supports, the deposition of Cu on TiO; enhances
the catalytic activity of these systems towards CO, hydrogenation to CO, MeOH, and
CH,4 [112-118]. Lopez-Caballero and collaborators used DFT simulations to prove that
small Cu clusters catalyze the direct dissociation of CO, due to C=0 bond activation and
the subsequent reduction in the energy barrier for bond breaking [119]. The same tendency
was observed in all these investigations. The deposition of Cu NPs on TiO, photocatalysts
showed significantly higher photoactivity for CO, reduction, and it was more efficient
than bare TiO,. Nevertheless, the use of big NPs of Cu does not favor CO; conversion. In
order to achieve enhanced photoactivity, the concentration of Cu particles on TiO, must
be low [120]. It is important to mention that Liu et al. reported that the deposition of
Cu on TiO, nanotubes shows different results for the RWGS reaction with respect to the
deposition on TiO, NPs. This different behavior was attributed to the formation of more O
vacancies on the anatase (001) surfaces of nanotubes [121].

Xie and collaborators evaluated the effect of noble metal NPs on the photocatalytic
activity of TiO; for CO, hydrogenation. The rate of CH4 formation increased as follows:
Ag < Rh < Au < Pd < Pt [122]. Jin et al. showed that group XI of transition metals
enhances CO selectivity, while group X promotes the methane production [123]. Li and
coworkers studied Pd/TiO; catalysts, showing the importance of Pd-TiO, interaction and
the importance of controlling the size of Pd particles [124]. The performance with respect
to CO; hydrogenation was better than bare TiO,. In addition, Pd particles not only can
capture migrating electrons to separate electron—hole pairs but also promote the activation
and bending of CO,. Regarding Ni NPs, Zhou and coworkers reported the excellent
performance of Ni particles on TiO, for the methanation of CO,, highlighting the important
role of Ni (111) exposed faces and CO as a key intermediate [125]. Li et al. found that
Ni/TiO, NPs enhance the formation of CO,%~ species in the CO, methanation process,
showing 76% conversion. Furthermore, they used DFT simulations to prove that electrons
are transferred from Ti to Ni [126]. The study of Vrijburg and collaborators showed that
the addition of Mn to Ni/TiO; catalysts leads to significantly enhanced CO, methanation
activity [127].

Kohno and collaborators reported that Rh/TiO, produced CO and a very small amount
of CHy, thus enhancing the RWGS reaction [128]. Zhou and coworkers concluded that
metal-support interactions using anatase or rutile phases of TiO; can critically control
metal-support interactions in Ru/TiO, systems and their catalytic performances for CO,
hydrogenation. They reported that annealing Ru/rutile-TiO, in air can enhance CO, con-
version to methane. However, the use of anatase decreases CO; conversion and promotes
CO formation due to the strong metal-support interaction [129]. Zhang and collaborators
demonstrated that the pretreatment temperature of Ir/ TiO, catalysts can tune the selectivity
of CO, hydrogenation, enhancing CHy production or even generating only CO. Encap-
sulated Ir NPs favor CO, while exposed Ir particles promote methane production [130].
The deposition of Pt has been extensively studied by several authors. Liu et al. found that
Pt deposition on TiO; ultrathin nanosheets exhibited excellent photocatalytic efficiency
for the conversion of CO, into CH4 and CO. Strong metal-support interactions due to the
formation of O vacancies improved the capability to bind CO, [131]. Zhang and coworkers
suggested that the methanation process is the preferred reaction for Pt/ TiO; catalysts, with
the ability to activate CO, without H; assistance. They suggested that the methanation
reaction proceeds via the activation of carbon dioxide, the subsequent CO,°~ hydrogena-
tion into HCOO™ moiety, its dissociation to CO, and finally, the hydrogenation to CHO,
with CHy being the final product [132]. Kattel and coworkers also studied Pt deposition on
TiO,, concluding that the effect of Pt NP is better for TiO, supports than for SiO,. Carbon
monoxide is the main product in both Pt-supported oxide supports, although Pt/TiO, is
slightly more selective to CHy than Pt/SiO, [109]. Qiu-Ye and coworkers also found that
the deposition of Pt improved the efficiency of CO, conversion to CHy [133]. The recent
work of Permporn and collaborators also confirmed the excellent performance of Pt. They
loaded Pd, Pt, Cu, and Ni on TiO,, concluding that Pt/ TiO, is the best system for CO,
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activation and conversion, since Pt provides the largest work function when formed in
heterojunction with TiO; [134]. In conclusion, Pt/TiO, does not catalyze MeOH production;
otherwise, it favors CO and CH, generation.

With respect to bimetallic combinations, Neatu et al. revealed that the deposition
of Au and Cu particles on a TiO, photocatalyst is an extremely efficient material for the
solar-light reduction of CO;, to CHy4 [135]. Refiones et al. showed that bimetallic Au
and Ag NPs supported on TiO, are good catalysts for the photocatalytic conversion of
CO;, using water as the reducing agent, reporting that the supported bimetallic particles
switch selectivity, enhancing methane production [136]. Singhal and Kumar reported that
the deposition of two metal particles on TiO,, for instance, AgPd significantly improves
methane formation [137].

2.5. ZnO

The commercial catalyst for CO, hydrogenation towards MeOH is composed of
Cu together with ZnO NPs supported on alumina [138]. Therefore, Cu-ZnO interaction
has been exhaustively investigated to elucidate the key interactions for this excellent
performance. One of the most relevant works was carried out by Kattel and collaborators.
Model systems Cu(111), ZnCu(111), ZnO/Cu(111), Cu/ZnO(0001), and ZnO/Cu/ZnO(0001)
were experimentally synthesized for systematic comparison, including theoretical models of
ZnCu and ZnO/Cu(111) [139]. This work reported that ZnO/Cu(111) presents the highest
catalytic activity, as well as ZnCu(111), since the Zn is oxidized to ZnO at reaction conditions
due to the direct dissociation of carbon dioxide and Zn oxidation. This system showed
higher activity than the model of the commercial catalyst, Cu/ZnO(0001), suggesting that
the inverse system (ZnO NPs on Cu surfaces) is more effective than the traditional Cu NPs
on ZnO supports. The morphology of a ZnO support was evaluated by Lei et al., concluding
that filament-ZnO support is more active than ZnO nanorods after the deposition of Cu
NPs [140]. Mahapatra et al. discussed the size of ZnO NPs, concluding that large ZnO
NPs are not as chemically active as small ZnO NPs [141]. The work of Le Valant and
collaborators revealed that CuZn is not an active site. The key is the presence of a ZnOx
shell, in agreement with the work of Kattel [139]. The co-precipitated Cu-ZnO catalyst
produces a large amount of CO according to Le Valant et al. [142]. Marcos and collaborators
reported that Cu/ZnO/ZrO; is a promising system for MeOH production [143]. It is likely
that CO, is activated by the generated oxygen vacancies of ZnO, and the Cu phase at the
interface assists the molecular rearrangement. The use of a ZnO plate shows higher MeOH
selectivity than a ZnO rod, although the latter shows slightly high catalytic activity [144].
Phongprueksathat et al. presented a new method to synthetize a Cu/ZnO catalyst in the
absence of alumina, showing excellent catalytic activity [145]. Very recently, Guzman and
coworkers reported that Cu NPs and ZnO exhibited a synergistic effect in hydrogenating
CO, with respect to pure Cu-based catalysts, in which MeOH and CO were the only
products, displaying that the selectivity to MeOH changes from 100% at 200 °C to 23% at
300 °C [146].

Going beyond Cu NPs, in 1993, Sakurai and coworkers reported that Au/ZnO showed
the highest selectivity to date and yields of CO, hydrogenation to MeOH in comparison
with other metal oxide supports [147]. Chen et al. studied Au deposition on ZnO, conclud-
ing that increasing Au loading is directly related with an increase in the Au particle size,
leading to a decrease in catalyst activity but enhanced selectivity to MeOH [148]. Hartadi
and coworkers reported that the activity of the Au/ZnO catalyst for CO; hydrogenation is
significantly higher than that for CO hydrogenation, and they concluded that both reaction
pathways can be produced simultaneously [149]. Later, Abdel-Mageed and collaborators
found a rapid formation of O-vacancies in the ZnO surface region in the initial stages of the
reaction with the subsequent formation of negatively charged Au sites. This fact implies an
increase in CO adsorption and MeOH production [150]. To complement these conclusions,
Behm and coworkers demonstrated that increasing the ZnO particle size and maintaining
the Au NP size and loading at constant values, the activity and selectivity increased [151].
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The variation in MeOH production can be rationalized by optimizing the concentration
of oxygen vacancies. On the other hand, the use of ZnO particles enhances the Ni/CeO,
catalyst; it was reported that the addition of ZnO into a Ni/CeO, catalyst markedly alters
the catalyst’s properties and hampers the methanation of CO5, albeit it favors the produc-
tion of CO via the RWGS reaction. Liao and coworkers recently investigated Ni and Ru
deposition on different ZnO support morphologies, concluding that ZnO nanoplates show
strong metal-support interactions since Ru NPs exhibits slightly lower interaction with
the support and enhance CHy selectivity [152]. The deposition of Ru on ZnO enhances
CO; methanation with respect to the bare support, where RWGS is the preferred reaction
mechanism according to Dreyer et al. [153]. Nevertheless, the Ru/CeO; system presents
great activity. Regarding Pd NPs, the use of light irradiation on Pd/ZnO catalyst showed a
higher MeOH yield [154].

In summary, we have clearly highlighted the important role of ZnO for MeOH produc-
tion. ZnO-supported NPs work remarkably better than ZnO surfaces. The main evidence
of this is the structure and performance of the commercial catalyst for CO, hydrogena-
tion to MeOH, where Cu and ZnO NPs are deposited on alumina, which works as an
innocent support.

2.6. CEOZ

Ceria has been used as a catalyst support for a long time due to its unique structural
properties resulting from the stability of Ce** and Ce®* species, which promotes the for-
mation of oxygen vacancies [155]. Therefore, ceria does not act as an innocent support;
otherwise, these O vacancies are the key in most reaction processes [156].

One of the pioneering works in the use of the Cu/CeO; catalyst was carried out by
Graciani and coworkers, combining experiments and DFT simulations. The computed
energy barriers for the HCO—H,CO, H,CO—H3CO, and H;CO—H3COH hydrogenation
steps were 5.3, 3.5, and 5.0 kcal /mol, respectively, which were very easy to overcome at
450 K. In contrast to the commercial Cu/Zn0O/Al,Os catalyst, the reaction pathway using
Cu/CeO; was presented in general exothermic steps [157]. In the work of Wang et al., Cu
NPs were introduced to facilitate the O vacancy concentration on the CeO; support due
to the formation of Ce®* species, promoting the photocatalytic activity of the Cu/CeO,
system, ~26 times larger than the bare CeO, support [158]. Lin and coworkers investigated
the Cu deposition on ceria nanorods, revealing that the (110) termination of ceria showed
better performance because it enhanced the oxygen vacancy formation. This surface
termination also promoted more effective CO; activation and the formation of bidentate
carbonate and formate moieties, characterized by DFT simulations [159]. Figuereido et al.
reported that a higher concentration of Cu NPs on the surface under reaction conditions
was more reactive [160]. The addition of a second metal NP to Cu/CeO; did not show
the same behavior; the work of Yan and collaborators evaluated the addition of W to
Cu/CeO, for CO, hydrogenation. W increased and stabilized the concentration of Ce®*,
enhancing the methanol production and its selectivity [161]. In contrast, the addition of
In into Cu/CeO, decreased the catalyst activity dispersion of Cu NPs and the formation
of oxygen vacancies on CeO, due to the obstruction of In [162]. The work of Yang et al.
revealed that the bimetallic Cu-Fe NPs supported on mixed CeO,-Al,O3 showed the higher
conversion of CO; than the monometallic NPs, boosting H, dissociation and CO; activation
simultaneously [163].

Wang and collaborators published a series of papers investigating the Au-CeO, system.
In 2013, they found that CO, interacts with pre-reduced Au/CeO,, reporting the presence
of oxygen, thus suggesting the direct dissociation of the RWGS reaction at temperatures
above 200 °C [164]. In another study, it was concluded that the RWGS reaction was
dominated by the hydrogenation of carbon dioxide at lower temperatures (120 °C) [165].
The deposition of Au exhibits high activity, 10 times higher towards the RWGS reaction
under light irradiation compared to the photothermal reaction, exhibiting a selectivity of
around 100% to CO according to Lu et al. [166]. Rezvani et al. studied CO, hydrogenation to
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MeOH on Au/CeO,, showing slightly lower activity than a Au/ZnO catalyst under similar
conditions. The key of the Au/CeO; system is the support reducibility, i.e., the O vacancy
generation and the subsequent Au NP dispersion [167]. On the other hand, although
this paper reviews the most relevant binary systems based on metal NPs supported in
one support, it is important to mention the role of ceria in ternary systems, as in the case
of Au/CeO,/TiO,. The work of Yang and collaborators reported that the addition of
0.1 monolayers of ceria to TiO, support stabilized the formation of small Au nanoparticles,
promoting the catalyst activity in both CO and MeOH production and improving their
selectivity towards MeOH with respect to Cu NPs, as illustrated in Figure 5 [168].
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Figure 5. TPR at 573K of CO, hydrogenation over Cu/TiOp and Cu/CeOx/TiO,, Au/TiO,, and
Au/CeOy/TiO; to produce CO and MeOH reproduced with permission from Ref. [168]. Copy-
right ACS.

The deposition of Ni particles on ceria has been extensively studied to carry out
CO, methanation. Several experimental studies report that ceria is the best support for
Ni nanoparticles since this system exhibits higher catalytic activity than other oxide sup-
ports [169-171]. Due to the oxygen vacancy generation and the dispersion of Ni particles,
Ni/CeO, was reported as the best system for CO; methanation, with almost 100% selec-
tivity to methane. Rui et al. synthetized Ni/CeO; catalysts via the decomposition of a
nickel precursor using gas discharge plasma, reporting very high activity due to the rich
interfacial Ni sites, showing 99% selectivity to methane [172]. Bian and coworkers carried
out a kinetic study, again revealing that the oxygen vacancies were thought to be active
sites for the formate route [173]. The work of Jomjaree and collaborators studied the effect
of ceria morphology, showing that Ni supported on ceria nanopolyhedrons displayed the
highest activity for CO, methanation. They expected ceria nanorods to exhibit the highest
catalytic activity due to their high surface area, large amounts of oxygen vacancies, and
very strong interaction with Ni. Nevertheless, this strong interaction has a negative impact
on CO, conversion at low temperatures [174]. Vavroutis et al. reported that, surprisingly,
larger Ni particles (20 nm) exhibit the highest catalytic activity supported on ceria nanorods
compared to Ni particles from 10 to 25 nm, obtaining CHy selectivity of 99% and a yield
of 92%, the highest ever reported below 300 °C [175]. The study of Lin and collaborators
also evaluated the importance of Ni particles on ceria surfaces. The Ni particle of 8 nm
exhibited superior methanation selectivity over the 4 and 2 nm NPs. In addition, the metha-
nation activity in terms of TOF was 10 times and 70 times higher than the 4 and 2 nm NPs,
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respectively. The 8 nm Ni NPs supported on CeO, surfaces were revealed to enhance the
formate hydrogenation [176]. Winter et al. studied the addition of Fe in a 3:1 molar ratio of
Ni to Fe, reporting similar activity to the Ni catalyst with slightly improved CO selectivity.
The catalysts that contained the same amount of Ni and Fe improved the selectivity to
CO, but the catalytic activity was lower [177]. Sun and collaborators [178] investigated
yttrium doping to Ni/CeO;. CO, methanation showed that the 2 wt% Y-doping of the
Ni/CeO; catalyst exhibited the best CO, conversion and high selectivity towards CHy,
since this amount of Y enhances the formation of oxygen vacancies in ceria. Doping with
La has been recently investigated by Alvarez-Galvan and coworkers, reporting that the
optimum value of La concentration is 10%, which corresponds to a maximum oxygen
vacancy concentration and the highest CO yield [179]. Moreover, again, they reported
the importance of O vacancy formation on ceria support. The system reached an average
conversion of 52% and 100% CO selectivity. On the other hand, it has been observed that
Ni NPs supported on mixed CeO;, and Al,Oj3 are a very stable and active catalyst with
high CO, conversion for the RWGS reaction [180].

Regarding other transition metals, Xie and collaborators [181] studied the role of Co
nanoparticles on different ceria morphologies, finding that ceria nanorods show great cat-
alytic activity, as it was found for Ni particles [174]. This work shows that Co? and oxygen
vacancies improve the catalytic performance, with 91% selectivity in CH4. Nguyen et al.
suggested that CO, methanation proceeds by means of the CO; associative pathway, in
which carbonate, bicarbonate, and formate intermediates are detected. However, direct
dissociation was also observed on Co NPs [182]. Lopez-Rodriguez and coworkers reported
that 2.5 wt. Ru% is the optimal loading for Ru/CeO,, since it exhibits good CO, adsorption
and dissociation capacity with the efficient hydrogenation of intermediates on the ceria
surface [183]. Lopez-Rodriguez et al. completed this investigation by studying the role
of Ru and ceria for CO; methanation including DFT simulations [184]. They revealed
that both metal and supports can activate and dissociate H, almost without an energy
barrier, leading to high H and OH coverages on the catalyst. This fact is suggested to
be positive for ceria but negative for Ru. Different Ru sizes were tested by Guo et al,,
who reported that Ru NPs show the best performance for CO, methanation [185]. The
combination of Ru with Fe NPs promoted the RWGS reaction and the formation of CO.
Again, the importance of oxygen vacancies on ceria was highlighted [186]. Iron NPs were
found to be active for carbon dioxide conversion on mixed CeO;-Al,O3 supports with
high selectivity for RWGS at low temperatures [187]. Moreover, the addition of Ni and
Cu particles enhances the catalytic activity and the catalyst robustness. As it was found
for all the supports reviewed in this work, Ni doping promotes CO, methanation and
Cu enhances the formation of CO. The use of Pd dimers supported on CeO, displayed
a selectivity of 99% towards ethanol [188]. Jiang et al. revealed that the presence of Pd
NPs promotes the formation of oxygen vacancies on the ceria support. Moreover, they
performed DFT calculations showing that MeOH formation is likely from the formate
(HCOO*) pathway via C—O bond cleavage in HCOOH?*, with the reduction of HCOO*
to HCOOH* as the rate-limiting step [189]. The deposition of small Pt particles on ceria
provides evidence of strong metal—support interactions in Pt/CeO;(111) and Pt/CeO,
powders, leading to systems that bind CO; well at room temperature [190]. Nevertheless,
in 2004, Goguet and coworkers displayed that large amounts of CO on Pt/CeO, lead to
carbon deposition with subsequent deactivation [191].

Finally, it is important to highlight that for single-metal-atom catalysts, the minimum
size of metal NPs has been employed for CO, conversion using ceria support. Zheng and
coworkers reported that doping with Ti NPs enhances the catalytic activity of a single Rh
atom supported on CeO; for ethanol production [192].

3. Transition Metal Carbides

Transition metal carbides (TMCs) are formed when carbon atoms, produced, for
example, by the decomposition of hydrocarbon molecules, are incorporated into metal
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interstitial sites. TMCs have unique physical and chemical properties which combine
the characteristic features of three different classes of materials: they show the extreme
hardness and brittleness of covalent solids, high melting temperatures and simple crystal
structures, typical in ionic crystals, and electronic and magnetic properties similar to
transition metals [193,194]. TMCs have become a family of materials with an increasing
role in heterogeneous catalysis in recent decades because of their chemical properties and
low cost. The first and key landmark in this topic was the work of Levy and Boudart, who
suggested that tungsten carbides displayed Pt-like behavior in several catalytic reactions
such as hydrogenation, dehydrogenation, isomerization, and desulfurization reactions [195].
Since the pioneering work of Levy and Boudart in the 1970s, the number of reactions
catalyzed by TMCs has greatly increased [196,197]. Apart from their catalytic activity
per se, one of the most promising properties of some TMCs is their capability to modify
the electronic structure of small supported metal particles and dramatically increase their
catalytic activity through strong metal<+support interactions [198].

3.1. Metal Nanoparticles on TiC(001)

The first attempt to deposit metal NPs on TMCs involved the deposition of Au on TiC,
carried out by Roldan-Cuenya and coworkers [199,200]. Theoretical calculations evidenced
strong Au«>TiC interactions, in which TiC activated the deposited Au particles [198]. This
fact promoted the deposition of different metal particles such as Cu or Ni. It was exper-
imentally and computationally tested that small NPs show better results towards CO,
hydrogenation than big NPs [201,202], and usually, these systems have been modeled with
square and planar clusters containing four metal atoms. Focusing on CO, conversion, it is
important to mention that CO, does not show strong interaction with metals, although the
deposition of small metal particles on TiC exhibits the excellent conversion of CO, to CO
and MeOH. Vidal and coworkers demonstrated that TiC produces a slightly lower amount
of MeOH and CO as products of CO, hydrogenation with respect the Cu/Zn0O(0001) sys-
tem, a model of the commercial catalysts, but larger than the Cu(111) surface. However,
Cu/Zn0O(0001) cannot reach the catalytic performance of Au/TiC and Cu/TiC systems,
with the MeOH and CO production being 5-12 times higher than the model of the com-
mercial catalyst, as illustrated in Figure 6a [203]. CO; activation plays a very important
role in the catalyst’s performance. DFT simulations showed a binding energy of —0.62 eV
on a bare TiC(001) surface, where the molecule is bent and both C=0O bonds are equally
elongated (1.29 A). The interaction became stronger when the CO; molecule was adsorbed
on top of the metal-supported particle, Auy/TiC(001) and Cuy/TiC(001), being —0.68 and
—1.12 eV, respectively. According to these studies, the deposition of small particles of Au
and Cu metal particles on TiC(001) increased the catalytic activity of CO; hydrogenation
compared to a bare Cu(111) surface and Cu/Zn0O(0001). Thus, TiC enhanced the reactivity
of the supported metals by 1-2 orders of magnitude. The major product was CO, which
was produced via the RWGS reaction. In addition, a substantial amount of methanol was
also produced, especially using Cu NPs. Nevertheless, the deposition of Ni NPs changed
the selectivity of the reaction. The main product for CO; hydrogenation using the Ni/TiC
system was CHy, which was not observed using Cu- or Au-supported particles [204]. The
amount of produced CO was even higher with respect to Cu and Au supported on TiC.
A recent computational study revealed that CO, interaction is stronger in Ni/TiC(001)
systems in comparison to bare Ni(111) and TiC(001), with lower dissociation energy barri-
ers. According to experimental studies, small and 2D Ni particles deposited on TiC(001)
exhibited larger binding energies and lower dissociation barriers for CO, compared to 3D
particles [205,206].
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Figure 6. Arrhenius plots for CO, MeOH, and CH, production on different bare and metal-supported
carbides catalysts at different temperatures. Panel (a) shows the performance of Cu/TiC in compari-
son to Cu surfaces and the model of commercial catalysts for CO, hydrogenation. Panel (b,c) illustrate
the products for CO, hydrogenation using bare Mo,C and Cu/Mo,C respectively. Panel (d) com-
pares the performance of TiC and MoC for CO, hydrogenation evaluating the formation of CO
and MeOH. Panels (e,f) compares the CO production among different catalysts. All the reported
values correspond to the optimized NP sizes and loadings. Figures adapted with permission from
Refs [203,204,207,208]. Copyright ACS, Elsevier B. V., and Royal Chemistry Society.

3.2. Metal Nanoparticles on Molybdenum Carbides

Despite the great performance of titanium carbide material, it is a cumbersome support
due to the difficulty of obtaining catalytically active supported NPs on working conditions.
In this sense, molybdenum carbides, in particular cubic (§) MoC and orthorhombic ()
Mo,C, have emerged as excellent alternatives because they are more active and do not
require special conditions for their synthesis. Experimental and theoretical investigations
were performed to explore the suitability of these Mo carbide phases. The performance of f3-
Mo, C for CO, conversion was impressive, since it is able to activate and dissociate CO;, and
even CO without the hydrogen assistance [209,210]. Owing to the fact that the 3-Mo,C(001)
single-crystal surface contains two possible terminations, C or Mo, DFT calculations were
essential to elucidate the contribution of each different termination to CO, hydrogenation,
revealing that a Mo-terminated surface is very active and responsible for large amounts
of catalytic activity, while a C-terminated surface is able to activate carbon dioxide [207].
Figure 7 represents the CO, adsorption modes on C- and Mo-terminated surfaces, clearly
showing that C-terminated surfaces enlarge one of the C=0 bonds. Theoretical calculations
showed that the energy barrier for the first C=O scission was only 0.21 eV on the Mo-
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terminated surface and 0.50 eV for the C-terminated surface, in which the second one
was more energy-demanding: 0.86 eV for Mo-terminated and higher than 1.5 eV for C-
terminated surfaces [207].

Figure 7. Sketches of CO, adsorption mode on orthorhombic (8)-Mo,C(001) surface, showing the
C-terminated (left) and Mo-terminated (right) slab models.

The major products for CO; hydrogenation were CH4 and CO, while the amount of
methanol was very low according to the experiments (see Figure 6b). The deposition of
Cu NPs on (3-Mo,C drastically modified the catalysts” selectivity. The CO, conversion
increased under the presence of Hj, increasing the production of MeOH as well with respect
to bare surfaces (Figure 6¢) and decreasing the amount of produced CHy. Posada-Pérez
and coworkers reported that the larger the Cu NP, the lower the CH, production [207].
Nevertheless, big Cu particles and Cu monolayers clearly decreased the catalytic activ-
ity of 3-MoyC. Theoretical models of Cu-supported clusters were reported by Illas and
coworkers [211], showing that Cup, clusters in contact with 3-Mo,C(001) adopted a planar
configuration, independently of the surface termination. The Cuy NPs were anchored to a
Mo-terminated surface to model the Cu/B-Mo,C system. In detail, Posada-Pérez et al. de-
termined that Cu NPs on Cu/$-Mo,C catalysts have a dual function [207]. On the one hand,
Cu NPs occupy active surface sites for direct CO, and CO dissociation, blocking the fast
conversion to CHy. On the other hand, DFT simulations conclude that Cu NPs open a new
pathway to generate MeOH. Cu-supported particles cannot directly dissociate CO,, but
they favor its hydrogenation to COOH and HCOO intermediates, generating a new route
to produce MeOH at the Cu-carbide interface. The experimental work of Heracleous and
coworkers proved that the addition of 20 wt% Cu slightly decreases the catalysts’ reactivity,
although it enhances the MeOH selectivity with respect to methane [212]. Furthermore,
Zhang and coworkers computationally proved that Cu-supported particles facilitate CO
hydrogenation to an HCO moiety compared to bare 3-Mo,C [213], in agreement with the
studies of Posada-Pérez [207,208]. The study of Jing and coworkers [214] also demonstrated
that the addition of Cu exhibits better catalytic activity for the hydrogenation of CO,, and
Zhang et al. demonstrated that Cs and Cu supported on 3-Mo,C have a positive impact
on the selectivity and activity [215]. As it was found with metal NPs supported on TiC,
Cu/B-Mo,C produced larger amounts of MeOH than the model of the commercial catalysts.
However, the commercialization of Cu/S-Mo,C is not viable due to its large deactivation.
The large reactivity of the carbide support, allowing the CO, and CO direct dissociations,
promotes O deposition, which decreases the catalytic activity of the system [216,217]. On
the other hand, the use of supported Ni particles on Mo,C was explored for CO, methana-
tion. In this particular case, the Ni/Mo,C system was supported on Al,O3. Again, the large
influence of metal<+carbide interaction on the catalytic activity was demonstrated, since the
conversions of CO, for the reduced Ni-Mo/Al,Os catalyst and Ni-Mo,C/Al,O3 catalysts
were 5.3% and 13.8%, respectively, with a corresponding selectivity in CHy of 10.0% and
98.1% [218]. Therefore, the Ni<+Mo,C interaction is more efficient for CO, methanation
than Ni<*Mo interaction.
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In order to improve the stability and selectivity of Mo carbides towards the hydro-
genation of CO;, the reaction was investigated by decreasing the metal:carbon ratio on
the carbide. The surface of MoC experimentally synthetized was best described as poly-
crystalline [219]. Owing to the complex phase diagram of MoC [220], a well-defined (001)
termination of the 5-MoC (001) surface is difficult to synthetize. The ideal 6-MoC(001)
surface was modeled computationally [209], exhibiting promising behavior: it can activate
the CO, molecule as it was observed using 3-Mo,C but with a moderate adsorption energy
and a large dissociation energy barrier, which avoids the formation of atomic oxygen and
self-poisoning [208,211,221]. As it was observed for TiC and Cu/TiC systems, 6-MoC and
Cu/6-MoC catalysts only produce CO and MeOH, while CHy is not detected (Figure 6d).
This is because the direct dissociation towards CO is energetically demanding, avoiding
the formation of C* + O*, which is directly related with CH, production and Mo-carbide
deactivation [207,220]. Furthermore, 5-MoC shows slightly more major production of CO
and MeOH than TiC(001). The deposition of small Cu NPs increases the CO and MeOH
production in both 3-Mo,C and 8-MoC(001) surfaces (Figure 6e) and increases the selec-
tivity towards both products on 3-Mo,C, reducing the methane generation. Therefore,
the metal:carbon ratio on the carbide plays a relevant role in the function of Cu NPs: on
3-Mo,C, Cu NPs block surface sites for O generation and CHy production and promote
CO; hydrogenation [222]. In contrast, the deposition of Cu on 6-MoC(001) enhances direct
CO; dissociation to CO on top of Cu clusters [208]. Figure 6f compares all the carbides and
models of commercial catalysts for CO, hydrogenation to CO, highlighting the catalytic
activity of Cu/8-MoC.

On the other hand, other transition metals were deposited on molybdenum carbides,
although these systems demonstrated high catalytic activity for the water gas shift reaction
instead of the reverse water gas shift. For instance, Nagai and coworkers showed that Co
supported on Mo,C is more active than Mo,C, partially avoiding the catalysts” deactiva-
tion [223]. Similar results were reported by Rodriguez and coworkers, using Pt supported
on 5-MoC(001) [224], showing high activity, stability, and selectivity at low temperature,
and better performance than the typical industrial Cu/ZnO catalyst.

In summary, molybdenum carbides in particular and TMCs in general exhibit excellent
catalytic activity towards the hydrogenation of CO,. Nevertheless, the deposition of
metal NPs becomes essential to increase the selectivity towards CO and MeOH, especially
when the metal/carbon ratio on the carbide is 2. This is related with the large O-carbide
interaction, which enhances CO, and CO dissociation. Thus, anchoring metals with
lower oxygen binding energy can avoid these dissociation processes, suppressing methane
generation [225]. This was observed for other reactions, such as MeOH decomposition
studied by Kelly et al. using Ni-, Rh-, and Au-modified WC surfaces [226]. Ni-, Rh-, and
Pt-modified WC surfaces preferably catalyze the C-H scission instead of C-O, disfavoring
methane production.

4. Perspective: Single-Metal-Atom Catalysts

One of the general remarks that can be highlighted from this review is the fact that,
in general, small metal NPs enhance the catalytic activity of the metal-support system,
while the catalytic activity decreases, increasing the NP size. As it has been reported in this
work, the support morphology and NP size can drastically modify the reaction selectivity.
Focusing on the industrial applications of these heterogeneous catalysts, its facile separation
from the products is a very strong point that helps to reduce the operating costs, although
it is complicated to control the selectivity. In this sense, homogeneous catalysts avoid this
problem since, in general, they are very selective, although the use of precious metals
and catalysts’ recovery practically discard their commercialization. Single-atom catalysts
(SACs) hold great promise to bridge homogeneous and heterogeneous catalysts since, on
the one hand, SACs maximize the metal utilization due to the low coordination of the single
metal atom [227], and they have tunability of the catalytic site on the support [228-233].
On the other hand, they can reach the selectivity obtained with homogeneous catalysts.
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Furthermore, SACs contribute to lowering the cost, because the amount of metal decreases.
Since the seminal work of Zhang and coworkers, who reported in 2011 that the Pt; /FeOx
SAC was three times more active than its nano-Pt counterpart for CO oxidation [234], SACs
have become a new frontier in heterogeneous catalysis.

For example, Au single atoms likely occupy surface ceria vacancy sites, thus achieving
higher metal loading [235]. Ceria can stabilize transition metals and favor metal dispersion
due to the high number of vacancies, becoming an excellent support for many reactions such
as the WGS reaction, CO oxidation, CO; reduction, or CHy oxidation. The deposition of
single metal atoms on a TiO, support was exhaustively investigated by Chen and coworkers,
reporting that the direct dissociation of CO; to CO using a Cu single atom presents an
energy barrier lower than 0.2 eV, i.e., the dissociation is almost spontaneous [236]. Using
a Pt single atom, the energy barrier is higher (0.43 eV). Very recently, two-dimensional
transition carbides (MXenes) have emerged as very active catalysts for several reactions,
since the catalytic activity increases with respect to 3D materials [237]. The deposition
of single metal atoms shows excellent catalytic activity; for instance, the Pt; /Tiz xCoTy
catalyst, in the presence of a diverse range of amines and silanes, could readily fixate
CO; and yield value-added amides with very high conversion and selectivity [238]. Bare
MXenes are very reactive, with high metal:carbon ratios, which implies low stability. The
deposition of single metal atoms may enhance the support stabilization and improve
the catalytic activity, especially focusing on carbon dioxide conversion. These studies,
together with the excellent results reviewed in this work about highly active small metal
NPs supported on non-innocent metal oxide and metal carbide supports, encourage the
investigation of the deposition of single-metal-atom catalysts for CO, conversion.

The use of highly dispersed SACs is a promising way to increase the catalytic activity
of a support. Nevertheless, as it was reported with metal NPs, SACs are very sensitive to
the structural and electronic properties of the support. It is commonly assumed that SACs
can activate the adsorbed molecules working analogously to homogeneous catalysts, but
one should bear in mind that the structure of an active support site and possible defects
may play a major role [239]. NPs’ deposition on or close to surface vacancies enhance
the catalytic activity of the system, together with the capability of the support to anchor
reaction intermediates, such as hydroxyl groups, which have been demonstrated to play
a relevant role in CO; activation. In our opinion, this fact may be more decisive in the
performance of SACs. Therefore, to further comprehend and control the catalytic activity
and selectivity of SACs, it is mandatory to explore the local coordination environment
of the metal on the support, avoiding possible SAC absorption on the material, with the
subsequent suppression of the catalytic activity of SACs [240]. The use of SACs may
bring new opportunities in CO; conversion in particular and green chemistry reactions
in general, owing to the precise building of catalytically active sites in dimensions of the
sub-nanometer scale.

5. Conclusions

In the present review, we discussed selected examples of metallic NPs supported on
metal oxides and metal carbide surfaces for the conversion of CO,, covering the most
relevant produced fuels and chemicals. A combined analysis of the state of the art of
density functional simulations and sophisticated experiments was used to find suitable
metal NP and support combinations for the efficient conversion of CO,. The discussion
is focused on the evaluation of suitable catalysts to identify opportunities by exploiting
these harmful greenhouse gases as economical feedstock, following the main principles of
green chemistry.

In this work, we have reported the catalytic activity and selectivity of several metallic
NPs supported on different innocent and a priori non-innocent supports, highlighting
important descriptors that govern the activity, selectivity and stability of these catalysts,
such as metal-support interactions, NP sizes, and support morphology. Some general
conclusions can be extracted independently of the metal oxide and metal carbide structure
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and morphology. In general, Cu stands out among all metal NPs in its enhancement of
the RWGS reaction and the subsequent hydrogenation of CO towards MeOH. The use of
alumina as a unique support is preferred with respect the ternary catalysts. It was proved
that alumina can host hydroxyl moieties, which play a relevant role in the facilitation
of CO; activation and formate production. Furthermore, it is important to highlight the
role of ZnO in MeOH production, where experiments and simulations proved that it is
more active as a supported NP than as support. In addition, CeO; is also presented as
an excellent support for Cu NPs to enhance the conversion of carbon dioxide. The facile
transformation of Ce** to Ce3* species promotes the formation of oxygen vacancies, an
essential fact to become a suitable support for catalytic purposes. Regarding the use of
transition metal carbides as supports, the formation of CH4 using Cu supported in metal
carbide particles was computationally and experimentally observed, which in general
was not observed using metal oxides. Nevertheless, it was proved that the large catalytic
activity of the support enhances the double bond cleavage of CO, molecules, favoring the
formation of methane, i.e., Cu NPs do not participate in the methanation process. This is
because the metal:carbide ratio plays a relevant role in the metal Cu activity. For Mo,C,
with a metal:carbon ratio of 2, Cu NPs block active surface sites for direct CO, and CO
dissociations, which lead to the formation of oxycarbide surfaces with the subsequent
catalysts” deactivation. Cu NPs open a new catalytic route for CO, and CO hydrogenations
since they bind weakly—moderately to Cu NPs. For carbides with metal:carbon ratios of 1,
such as TiC and MoC, Cu NPs can enhance CO, hydrogenation and also promote its direct
dissociation to CO. For these systems, the methane production was not observed.

Regarding other metal particles, the deposition of Au NPs follows the same trend as
Cu, although its performance is lower than Cu NPs. This is not bad for the prospects of
catalyst commercialization, since Cu is cheaper than Au. Some works revealed that Au is
more effective for the WGS reaction. The use of Ni NPs clearly promotes CO, methanation,
independently of metal oxide and metal carbide support. Other metal particles such as Pt,
Pd, and Ru have been reported in this review to show excellent catalytic activity for CO,
methanation, although the take-home message should be simplified, highlighting Cu NPs
for CO and MeOH production and the use of Ni NPs for CO, methanation. No general
conclusions can be extracted for the combination of bimetallic particles, since they do not
always improve the catalytic performance of the system, either for MeOH production or
CO; methanation. Each combination must be evaluated individually.

Another general conclusion that can be gathered from these selected works is the
strong dependence of the catalytic activity of the system and the capability of metal oxide
supports to generate oxygen vacancies. These defects have a double role: they favor
NP dispersion and enhance CO; activation. On the other hand, it is well-known and
assumed by the research community that strong metal-support interactions govern the
catalytic activity of the system, since the stronger the interaction is, the higher the catalytic
performance is. Nevertheless, in this review, we reported a few works that suggest that
the support morphology with the highest interaction with the metal NPs does not always
show the best activity (for instance, CeO, nanorods and Ni and Ru supported on Al,O3).

The last important descriptor to analyze is the metal NP sizes, concluding that, in
general, small metal particles enhance the catalytic activity of CO, conversion. Therefore, it
seems clear that the efforts should be routed towards research regarding a single-metal-
atom catalyst, due to its large activity, selectivity, and the reduction in the amount of metal,
which clearly benefits its possible commercialization. However, as it has been presented in
this review, the number of variables that affect the performance of metal-supported particles
(or single metal atoms) is large, such as the formation of oxygen vacancies, the morphology
of the support, and the metal-support interactions, among others. Therefore, to investigate
the suitability of single-atom catalysts, it is necessary to further explore the interaction
of these single atoms with surface defects and different active sites, using computational
and experimental techniques, with the goal to correlate the catalytic performance with the
coordination site and the coordination environment around the support.
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To summarize, the use of CO; as feedstock is a clear benefit that helps to reduce the
impacts of global warming compared to those of current technologies only based on CO,
capture. One of the keys to accelerate this reduction is to find low-cost, stable, selective,
and highly active catalysts for the potential conversion of CO, to fuels and chemicals.
Despite the fact that the descriptors that govern this process cannot be overgeneralized,
some take-home messages can be derived from our revision. Cu and Ni NPs supported on
metal oxides and metal carbides are promising catalysts for the future commercialization
of more efficient catalysts, although the full puzzle that combines low kinetic barriers and
the thermodynamic stability of catalysts at reaction conditions is not complete. In addition,
the inclusion of single metal atoms as a new puzzle piece will promote the investigation of
metal-support interactions. We hope that the most relevant descriptors analyzed in this
work can help researchers to make progress in CO; utilization.
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