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Abstract: Heterogenized metalloporphyrin catalysts for oxidation reactions are extensively explored
to improve chemical production. In this work, manganese meso-tetraarylporphyrins were immo-
bilized on hydrated mesoporous titanium dioxide (SBET = 705 m2 g−1) through carboxylate or
phosphonate anchoring groups separated from the macrocycle by the 2-arylimidazole linker fused
across one of the pyrrolic rings of the macrocycle. The element composition of two mesoporous
hybrid materials thus obtained were investigated and the integrity of the immobilized complexes
was shown by different physicochemical methods. Finally, the catalytic efficiency of the more stable
material Mn(TMPIP)/TiO2 with the phosphonate anchor was evaluated in the selective oxidation of
sulfides to sulfoxides by molecular oxygen in the presence of isobutyraldehyde (IBA). The hetero-
genized complex has shown excellent catalytic activity exhibiting a turnover (TON) of ~1100 in a
single catalytic run of the sulfoxidation of thioanisole. The catalyst was successfully reused in seven
consecutive catalytic cycles.

Keywords: metalloporphyrin; titania; heterogenized catalyst; oxidation

1. Introduction

Oxidation reactions are key technological processes for converting petroleum into
pharmaceuticals, agrochemicals, and fine chemicals [1,2]. Among all transformations of
organic compounds, oxidation reactions are especially challenging because they often
have low selectivity and require stoichiometric amounts of toxic and hazardous oxidizing
reagents such as oxometal oxidants or peracids [3]. Thus, these processes are among the
most dangerous and pollutant transformations in chemical production. The development
of reactions in which molecular oxygen is used as a terminal oxidant, together with a
reusable catalyst and a nontoxic solvent, is extremely important for both economic and
environmental reasons [4]. It is not surprising that catalytic aerobic oxidation reactions
performed with both non-metal and metal catalysts have received great attention [5,6].

In nature, such processes are carried out in a highly selective manner by mono- and
dioxygenases under mild conditions [7,8]. This stimulated investigations of biomimetic
porphyrin catalysts pioneered by Groves and co-workers, who studied the oxidation of
organic compounds by strong oxidants in the presence of iron(III) porphyrinates in the
late seventies of the last century [9–11]. Later extensive studies on the metalloporphyrin-
catalyzed oxidation have demonstrated that the catalytic efficiency of manganese(III),
ruthenium(III) and cobalt(III) porphyrins can even exceed that of iron(III) complexes in
part due to the high stability of these complexes [12–16]. Another remarkable feature
of metalloporphyrins is that these catalysts are efficient in different types of oxidation
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processes, such as the epoxidation and hydration of alkenes, the hydroxylation of alkanes,
the dehydrogenation of amines, and the oxidation of arenes, amines, sulfides, alcohols,
and aldehydes and so forth [8,17]. The reaction rate and selectivity can be controlled
by varying the nature of the central metal ion and substituents at the periphery of the
porphyrin macrocycle. The peripheral substituents also influence the catalyst stability, and
meso-tetraarylporphyrins bearing ortho-disubstituted aryl residues and electron-deficient
aryl groups exhibit high efficiency in part due to their increased chemical stability [18,19].
Lately, major interest in these reactions appeared when it was shown that metalloporphyrins
could catalyse reactions with environment-friendly oxidants such as hydrogen peroxide
or molecular oxygen which can be used in the presence of isobutyraldehyde (IBA) as a
sacrificial reagent or in photooxidation processes [8].

Unfortunately, the use of metalloporphyrins in practical organic synthesis is still lim-
ited because these catalysts are expensive and often have a disappointingly low TON and
TOF. It was recognized that the heterogenization of homogeneous catalysts significantly
increased their efficiency. In fact, solid catalysts based on metalloporphyrins commonly
display higher stability than their homogeneous counterparts because the deactivation of
metalloporphyrin catalysts mainly proceeds through the formation of catalytically inactive
dimeric complexes. The catalyst dimerization can be decreased when porphyrin molecules
are attached to a solid support, in particular through covalent bonding [20]. Being heterog-
enized, the expensive metalloporphyrins can be recovered after the reaction completion
and reused in the next catalytic cycle. This simplifies product isolation and could decrease
the cost of industrial production. Thus, recent research was mainly focused on preparing
efficient heterogenized porphyrin catalysts [21].

Several different strategies were investigated for the immobilization of porphyrin
complexes onto inorganic and organic supports [22–29], such as zeolites [30,31],
clays [32–35], silicas [36–39], polymers [20,40], metal-organic frameworks
(MOF) [21,41–44] and covalent organic frameworks (COF) [45]. Metalloporphyrin
catalysts were also grafted onto photoactive anatase and a nanocrystalline anatase/
hydrozincite composite material using triethoxysilane anchoring group [46] or electro-
static interactions [47], respectively. Surprisingly, the photocatalytic decomposition
of porphyrins immobilized on these photoactive supports was slow, and the materi-
als thus obtained were stable enough to be used as reusable catalysts. Recently, the
method for the preparation of hybrid materials bearing two porphyrin complexes in-
corporated into charged layer supports was developed [47,48]. Most of the previously
reported heterogenized complexes were efficient as catalysts, and a synergetic action
of support and transition metal catalysts was observed in some cases [43,44,48]. It was
also shown that the immobilization of metalloporphyrin catalysts could switch the
chemoselectivity of oxidation reactions [47,49].

Porous materials with high surface areas are widely explored in catalysis because
they allow us to increase catalyst loading and diminish the influence of the physical phe-
nomenon of mass transfer on reaction rates [50,51]. Different types of porous materials
were investigated, but all of them have serious drawbacks. Mesoporous silicas commonly
display low chemical stability [52,53]. MOF- and COF-bearing catalytic centers in por-
phyrinic linkers are expensive because a high amount of metalloporphyrins is required
for their preparation, and drying procedures leading to porous crystalline networks are
very troublesome and time-consuming [54]. Microporous zeolites are also inconvenient
as solid supports for porphyrins because the size of porphyrin molecules is close to that
of most available zeolite Y supercages (~1.3 nm in diameter) and the diffusion of organic
compounds through zeolite lattice apertures is sterically hindered in these hybrid materi-
als [55]. There is, thus, a need for more efficient immobilization strategies for preparing
porous catalysts based on metalloporphyrins.

In this work, we report grafting porphyrin complexes on the surface of hydrated
mesoporous titanium(IV) oxide (TiO2, SBET = 650–705 m2 g−1). This cheap and photocat-
alytically inactive support was recently prepared by us using a non-templating sol-gel
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process. Our grafting methodology is based on the use of imidazo[4,5-b]porphyrins as
molecular precursors (Figure 1). These fused porphyrin-heterocycle compounds, which
were pioneered by Crossley et al. [56], were widely studied but were not used for the
preparation of heterogenized catalysts [57]. The 2-aryl-imidazole residue is of interest
as a linker in the synthesis of functional materials because the introduction of different
substituents in the aryl residue of this linker is straightforward [56,58]. This long and rigid
spacer provides a perpendicular orientation of the porphyrin ring with respect to the solid
surface. The synthetic strategy based on the introduction of the 2-arylimidazole residue
fused across one pyrrolic ring of the macrocycle opens a way for covalent grafting meso-
tetraarylporphyrins, in particular their derivatives with sterically hindered o-disubstituted
aryl groups which are known to be most efficient catalysts for the oxidation reactions [59].
In this work, this strategy was used for grafting porphyrin catalysts onto titanium dioxide
through a carboxylate or phosphonate anchoring group, as shown in Figure 1. The element
composition of two mesoporous hybrid materials thus obtained were investigated, and
the integrity of the immobilized molecules was shown using different physicochemical
techniques. Finally, the catalytic efficiency of the more stable material Mn(TMPIP)/TiO2
was evaluated in the selective oxidation of sulfides to sulfoxides by molecular oxygen in
the presence of IBA. The Mn(TMPIP)/TiO2 material has shown excellent catalytic activity
and was successfully reused in seven catalytic cycles.
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2. Results and Discussion
2.1. Synthesis of (2-arylimidazo[4,5-b]porphyrinato)manganese(III) Chlorides and
Their Characterization

meso-Tetramesityl-substituted imidazo[4,5-b]porphyrins were chosen for investigation
in this work as their synthesis is reproducible, and they can be obtained in a 100 milligram
scale using available laboratory equipment. The free base 2-arylimidazo[4,5-b]porphyrins
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2H(TMPIC) and 2H(TMPIP) bearing carboxylate and phosphonate anchoring groups on
the aryl substituent of imidazole were prepared through the oxidation of corresponding
β-aminoporphyrin to 2,3-dioxochlorin followed by the Debus–Radziszewski condensation
of this dione with aromatic aldehydes (Scheme 1) [58].

Catalysts 2022, 12, x FOR PEER REVIEW 4 of 25 
 

 

corresponding β-aminoporphyrin to 2,3-dioxochlorin followed by the Debus–
Radziszewski condensation of this dione with aromatic aldehydes (Scheme 1) [58]. 

 
Scheme 1. Synthesis of 2H(TMPIC) and 2H(TMPIP). General conditions and reagents: (i) Cu(NO3)2, 
acetic anhydride, 40 °C, 30 min; (ii) H2SO4+TFA, CH2Cl2, r.t., 2.5 h; (iii) SnCl2·2H2O, HCl, CH2Cl2, r.t., 
2.5 h. 

Insertion of manganese ions was carried out using synthetic procedures developed 
for 5,10,15,20-tetraphenylporphyrin [60]. Free base porphyrins 2H(TMPIC) and 
2H(TMPIP) were heated with an excess of manganese(II) chloride (five equiv equivalents) 
in DMF under air until the complete consumption of the starting compound. Complexes 
Mn(TMPIC) and Mn(TMPIP) were isolated by column chromatography on silica gel and 
characterized by HRMS-ESI spectrometry, FTIR and UV-vis spectroscopies, with the last 
one being the most useful spectroscopic technique. The complexes display UV-vis spectra 
characteristic of manganese(III) porphyrins showing specific shapes compared to other 
porphyrin complexes due to strong metal-porphyrin π interactions [61,62]. The mixing of 
metal and porphyrin orbitals leads to the appearance of a number of charge-transfer bands 
which alter classical electron absorption spectra of the porphyrin complexes in which only 
π–π* transitions of the macrocycle are observed. For example, in the spectrum of 
Mn(TMPIP) in CHCl3, several bands appear in the region of 300–450 nm with the maxima 
at 312, 382, and 402 nm (the region of VI and V bands) and a sharp charge-transfer band 
is observed at 484 nm (log ε = 4.92, V band; see Supporting Information (SI), Figure S1). 
Moreover, less intensive bands appear at 576 nm (IV band) and 622 (III band) and 749 (II 
band). The successful insertion of manganese ion was also confirmed by observation of 
[M+H]+, [M–Cl]+ and [M–Cl+H]2+ ion peaks with matching isotopic patterns as the most 
prominent peaks in the high-resolution mass spectra of complexes Mn(TMPIP) and 
Mn(TMPIC) (see Supplementary Materials, Figures S2 and S3). 

DFT calculations were employed to gain insight into electronic structures for the 
frontier orbitals of complexes Mn(TMPIC) and Mn(TMPIP) and (5,10,15,20-tetra-
phenylporphyrinato)manganese(III) chloride (Mn(TPP)). The computations were per-
formed using B3LYP functional using 6-31G* basis set for all atoms, including all-electron 
set for Mn. As shown in Figure 2, efficient mixing of metal and porphyrin orbitals is ob-
served in HOMO and LUMO orbitals. In complexes Mn(TMPIC) and Mn(TMPIP), the 
electronic density of HOMO is also located on the fused imidazole fragment. In contrast, 
the 2-aryl residue is not involved in the HOMO and LUMO electronic states of both imid-
azoporphyrins. Thus, the introduction of any anchoring group does not significantly 
change the electronic structure of 2-arylimidazo[4,5-b]porphyrins and energies of frontier 
molecular orbitals. This appears to indicate that electronic communication between the 
catalytic site and any solid support may be weak when a 2-arylimidazole linker is used 
for preparing heterogenized catalysts. 

  

Scheme 1. Synthesis of 2H(TMPIC) and 2H(TMPIP). General conditions and reagents: (i) Cu(NO3)2,
acetic anhydride, 40 ◦C, 30 min; (ii) H2SO4 + TFA, CH2Cl2, r.t., 2.5 h; (iii) SnCl2·2H2O, HCl, CH2Cl2,
r.t., 2.5 h.

Insertion of manganese ions was carried out using synthetic procedures developed for
5,10,15,20-tetraphenylporphyrin [60]. Free base porphyrins 2H(TMPIC) and 2H(TMPIP)
were heated with an excess of manganese(II) chloride (five equiv equivalents) in DMF un-
der air until the complete consumption of the starting compound. Complexes Mn(TMPIC)
and Mn(TMPIP) were isolated by column chromatography on silica gel and characterized
by HRMS-ESI spectrometry, FTIR and UV-vis spectroscopies, with the last one being the
most useful spectroscopic technique. The complexes display UV-vis spectra characteris-
tic of manganese(III) porphyrins showing specific shapes compared to other porphyrin
complexes due to strong metal-porphyrin π interactions [61,62]. The mixing of metal and
porphyrin orbitals leads to the appearance of a number of charge-transfer bands which
alter classical electron absorption spectra of the porphyrin complexes in which only π–π*
transitions of the macrocycle are observed. For example, in the spectrum of Mn(TMPIP)
in CHCl3, several bands appear in the region of 300–450 nm with the maxima at 312, 382,
and 402 nm (the region of VI and V bands) and a sharp charge-transfer band is observed
at 484 nm (log ε = 4.92, V band; see Supporting Information (SI), Figure S1). Moreover,
less intensive bands appear at 576 nm (IV band) and 622 (III band) and 749 (II band).
The successful insertion of manganese ion was also confirmed by observation of [M+H]+,
[M–Cl]+ and [M–Cl+H]2+ ion peaks with matching isotopic patterns as the most prominent
peaks in the high-resolution mass spectra of complexes Mn(TMPIP) and Mn(TMPIC) (see
Supplementary Materials, Figures S2 and S3).

DFT calculations were employed to gain insight into electronic structures for the
frontier orbitals of complexes Mn(TMPIC) and Mn(TMPIP) and (5,10,15,20-tetrapheny
lporphyrinato)manganese(III) chloride (Mn(TPP)). The computations were performed
using B3LYP functional using 6-31G* basis set for all atoms, including all-electron
set for Mn. As shown in Figure 2, efficient mixing of metal and porphyrin orbitals is
observed in HOMO and LUMO orbitals. In complexes Mn(TMPIC) and Mn(TMPIP),
the electronic density of HOMO is also located on the fused imidazole fragment. In
contrast, the 2-aryl residue is not involved in the HOMO and LUMO electronic states
of both imidazoporphyrins. Thus, the introduction of any anchoring group does
not significantly change the electronic structure of 2-arylimidazo[4,5-b]porphyrins
and energies of frontier molecular orbitals. This appears to indicate that electronic
communication between the catalytic site and any solid support may be weak when a
2-arylimidazole linker is used for preparing heterogenized catalysts.
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and Mn(TMPIP) obtained from DFT calculations.

Complexes Mn(TMPIC) and Mn(TMPIP) were found to be soluble in methanol and
chlorinated solvents such as chloroform and dichloromethane, which is important for their
use in material chemistry.

2.2. Immobilization of Manganese(III) Complexes Mn(TMPIC) and Mn(TMPIP) on TiO2

Recent studies of hybrid organic-inorganic materials based on organophosphonates
have revealed the great potential of metal oxide and phosphonate networks for preparing
functional materials, in particular, due to their thermal and chemical stability [63–66].
Nevertheless, studies on TiO2-supported transition metal catalysts are limited [67–74],
probably because the synthesis of porous TiO2 is challenging and time-consuming. On the
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other hand, the immobilization of organic chromophores onto porous titania films was
widely explored in view of the production of clean energy from the sun in dye-sensitized
solar cells [75]. Among different anchors, the carboxylate group was most commonly used
and sometimes gave better results as compared to the phosphonate anchoring group. In
this work, we compared the efficiency of the carboxylate and phosphonate anchors for the
fabrication of heterogenized catalysts.

Mn(TMPIC) and Mn(TMPIP) were grafted onto the surface of hydrated amorphous
titanium dioxide, which does not exhibit any photocatalytic activity on its own. Such cost-
effective mesoporous TiO2 (SBET = 650–705 m2 g−1) is readily available by a template-free
sol-gel method developed by us recently [76].

To prepare target materials from phosphonate-substituted complex Mn(TMPIP), we
employed a sol-gel process in organic solvents [77,78] since the immobilization of phospho-
nic acids in aqueous media probably occurs through monodentate P–O–Ti interactions and
yields less-stable materials [71]. Dialkyl phosphoester Mn(TMPIP) was first transformed
into more reactive bis(trimethylsilyl)phosphonate by reacting the complex with a large
excess (30 equivalents; a large excess was used to accelerate the reaction performed in a
diluted solution) of bromotrimethylsilane (TMSBr) in CH2Cl2 for 2 d at room temperature
(Scheme 2). The evaporation of the reaction mixture to dryness gave the target compound
in a quantitative yield.
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Then this moisture-sensitive complex was engaged in the next step, dissolving the
solid in dry CH2Cl2 and adding this solution to a suspension of mesoporous titania in
the same solvent at room temperature under Ar. The material was isolated by centrifu-
gation after stirring for 2 d, thoroughly washed with THF, water, MeOH, and ether and
dried under reduced pressure. In these experiments, the Mn/Ti molar ratio was varied
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between 1:100 and 1:15 to prepare a solid with spatially separated catalytic sites (1:100,
Mn(TMPIP)/TiO2) and to get insight into maximal loading of catalytic sites on this support
(1:15, Mn(TMPIP)/TiO2-1).

The studies on the element composition of hybrid materials thus obtained were
started by EDX chemical analysis in STEM mode of solid Mn(TMPIP)/TiO2 because this
technique is well suited for the determination of the axial ligand in the heterogenized
Mn(TMPIP). It was previously demonstrated that the treatment of porphyrinatogallium(III)
chlorides with TMSBr in toluene led to the exchange of axial chloride ligands by bromide
ions [79]. We hypothesized that this exchange reaction could also be observed under
our experimental conditions. The EDX spectrum confirmed successful grafting of the
Mn complex and the presence of all expected elements, with the only exception being
chlorine (Figures 3 and S5 (see Supplementary Materials)). We also observed an EDX peak
corresponding to bromine. This indicated that the ligand exchange reaction was observed
during the activation of the diethoxyphosphoryl group by TMSBr. The elemental mapping
images shown in Figure 3 revealed the homogeneous distribution of all elements in the
studied samples.
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Figure 3. STEM image of Mn(TMPIP)/TiO2 before the analysis (a) and EDS elemental mapping
images of Mn(TMPIP)/TiO2 (b–h): O (b), Ti (c), C (d), P (e), N (f), Mn (g), Br (h). The acquisition
time, i.e., exposure to the electron beam, was 1 h.

The empirical formulas of materials thus obtained were derived from the content
of six elements (C, H, N, Ti, Mn and P; see Supplementary Materials, Table S1). The
Mn/Ti ratio in the materials Mn(TMPIP)/TiO2 and Mn(TMPIP)/TiO2-1 was found to be
1:125 and 1:28, respectively. Thus, the content of heterogenized Mn(TMPIP) was lower
than the expected values in both cases despite the fact that colored filtrates were obtained
only during the synthesis of Mn(TMPIP)/TiO2-1. To prove quantitative immobilization of
Mn(TMPIP) onto the solid Mn(TMPIP)/TiO2, the combined organic and aqueous filtrates
obtained during washing the solid were evaporated and dried under reduced pressure.
The residue thus obtained was dissolved in methanol and analyzed by UV-vis spectroscopy
to check the presence of starting complex Mn(TMPIP) and corresponding phosphonic
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acid Mn(TMPIP-OH). These two compounds are the only porphyrin products that can
be present in the solution if grafting is incomplete. To perform the qualitative analysis,
complex Mn(TMPIP-OH) was prepared, as shown in Scheme 2. Based on the results of
this UV-vis study, we safely concluded that more than 98% of complex Mn(TMPIP) was
immobilized on a titania support. In contrast, the filtrates were intensively colored when
Mn(TMPIP) and titania were reacted in a 1:15 molar ratio, and the experimental content of
Mn in the target solid was about twice lower than was expected. This likely indicates that
maximal catalyst loading (~1:30) was achieved under these experimental conditions.

To enable the immobilization of Mn(TMPIC), the complex was dissolved in dry
CH2Cl2, and this solution was added to mesoporous titania suspended in the same solvent
and stirred for 2 d at room temperature (Scheme 3).
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The Mn/Ti molar ratio also varied between 1:100 and 1:15 for comparative reasons.
The empirical formulas of Mn(TMPIC)/TiO2 and Mn(TMPIC)/TiO2-1 thus obtained were
derived from the content of five elements (C, H, N, Ti and Mn) and were very similar
to those of materials based on Mn(TMPIP) (Table S1). Quantitative immobilization was
observed when complex and inorganic support were reacted in the ratio of 1:100, and the
maximal catalyst loading was about 1:32.

The intact structure of the heterogenized complexes Mn(TMPIP) and Mn(TMPIC)
was confirmed by UV-vis diffuse reflectance and FTIR spectroscopies. In brief, the spec-
tral signatures of both manganese complexes before and after immobilization on TiO2
were remarkably similar except for the characteristic vibration bands of carboxylic and
phosphonic anchors. Kubelka–Munk transformed UV-vis diffuse reflectance spectra of
the studied solids show a strong and broad absorption feature in the high energy region
(<300 nm). This band was attributed to the TiO2 phase. The spectral shape of materi-
als in the 350–750 nm region resembles closely to those observed for Mn(TMPIC) and
Mn(TMPIP) complexes, confirming that the metalloporphyrin residue keeps its integrity
after immobilization (Figure 4).
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In the FTIR spectra (see Supplementary Materials, Figures S6 and S7), vibra-
tion bands assigned to the porphyrin macrocycle (720–850 and 1000–1200 cm−1) and
aryl residues (1350–1610 cm−1) are all much weaker as compared to the Ti–OH and
O–H stretching modes (3500–3700 cm−1) even in the spectra of Mn(TMPIP)/TiO2-1
and Mn(TMPIC)/TiO2-1 materials with high Mn/Ti ratios. Notably, the shape of
Mn(TMPIP)/TiO2-1 spectrum in the region of 850–1260 cm−1, where characteristic
bands associated with vibrations of the phosphonate substituent are observed, is signif-
icantly different from those of diethoxyphosphoryl-substituted complex Mn(TMPIP)
and phosphonic acid Mn(TMPIP-OH). Valence vibration bands of P=O residue of the
diethoxyphosphoryl group (1250 and 1277 cm−1) and of P–O–H of phosphonic acid
(916 cm−1) are absent. This likely reveals the formation of metal–O–P bonds whose
stretching vibrations are overlapped with those of the porphyrin macrocycle, giving a
rather strong band at 1003 cm−1. In the spectrum of Mn(TMPIC)/TiO2-1, stretching vi-
brations of the carboxylic acid group (1719 cm−1 for Mn(TMPIC)) were not observed,
pointing out the involvement of this anchoring group in the interaction with the
titania support.
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The morphology of Mn(TMPIP)/TiO2 was studied by SEM and compared to that of
the bare TiO2 (Figures 5 and S8). The latter is composed of strongly aggregated nanoparti-
cles of similar shape and narrow grain-size distribution. The incorporation of Mn(TMPIP)
does not have any influence on the cauliflower-like morphology of the solid. The meso-
porous nanospheroids, with diameters ranging from 5 to 20 nm, are irregularly distributed
in space and separated by large holes of hundreds of nanometers, thus providing good ac-
cessibility to the bound complexes of catalytic sites. This morphology is, therefore, perfectly
suited for application of the material in catalysis.

Catalysts 2022, 12, x FOR PEER REVIEW 10 of 25 
 

 

nanoparticles of similar shape and narrow grain-size distribution. The incorporation of 
Mn(TMPIP) does not have any influence on the cauliflower-like morphology of the solid. 
The mesoporous nanospheroids, with diameters ranging from 5 to 20 nm, are irregularly 
distributed in space and separated by large holes of hundreds of nanometers, thus provid-
ing good accessibility to the bound complexes of catalytic sites. This morphology is, there-
fore, perfectly suited for application of the material in catalysis. 

  
(a) (b) 

Figure 5. SEM microphotographs of (a) bare hydrated TiO2 and (b) Mn(TMPIP)/TiO2. 

N2 adsorption-desorption isotherms of all four hybrid materials were recorded at 77 
K, and the results of these analyses were summarized in Table S2 (see Supplementary 
Materials). Upon the derivatization of TiO2, no change in the shape of the isotherms was 
observed, whereas a marked decrease in the BET surface area and volume of pores for all 
samples was noted, which was consistent with the presence of grafted complexes in the 
mesopores. It’s worth noting that materials Mn(TMPIP)/TiO2-1 and Mn(TMPIC)/TiO2-1 
with high porphyrin loading display smaller BET surface areas and pore volumes as com-
pared to their counterparts Mn(TMPIP)/TiO2 and Mn(TMPIP)/TiO2 charged less in por-
phyrin complexes. These data agree well with the hypothesis that both complexes are lo-
cated not only at the outside titania surface but also in its mesopores. 

Powder X-ray diffraction measurements confirmed that the pristine mesoporous ti-
tania and all samples of functionalized materials prepared in this work are amorphous 
solids. 

The materials with high catalysts loading Mn(TMPIP)/TiO2-1 and 
Mn(TMPIC)/TiO2-1 were chosen for comparative studies of their stability in different or-
ganic solvents and in aqueous media with variable pH. A suspension of the solid in tolu-
ene, chlorinated (CH2Cl2, CHCl3), polar (CH3CN, DMF), and protic (MeOH, EtOH) sol-
vents were centrifugated after 1 week, and the solutions thus obtained were analyzed vis-
ually or using a laboratory spectrophotometer. Only Mn(TMPIP)/TiO2-1 with the phos-
phonate anchor was stable in all these solvents, which is commonly used in organic syn-
thesis. Mn(TMPIC)/TiO2-1 was rapidly washed off in protic solvents (>50%) and also in 
acetonitrile (~10%). 

The stability of Mn(TMPIP)/TiO2-1 was also explored in aqueous media in all pH 
ranges. The leaching of the complex was observed only in basic solutions (pH > 9). We 
also found that Mn(TMPIP)/TiO2-1 was stable in the presence of triethylamine in CHCl3 
and DMF. This is important for organic synthesis because tertiary amines are common 
reagents in catalytic and photocatalytic transformations. 

The more stable heterogenized complex with spatially separated catalytic sites 
(Mn(TMPIP)/TiO2) was next studied as a catalyst in oxidation reactions. 
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N2 adsorption-desorption isotherms of all four hybrid materials were recorded at
77 K, and the results of these analyses were summarized in Table S2 (see Supplementary
Materials). Upon the derivatization of TiO2, no change in the shape of the isotherms was
observed, whereas a marked decrease in the BET surface area and volume of pores for all
samples was noted, which was consistent with the presence of grafted complexes in the
mesopores. It’s worth noting that materials Mn(TMPIP)/TiO2-1 and Mn(TMPIC)/TiO2-
1 with high porphyrin loading display smaller BET surface areas and pore volumes as
compared to their counterparts Mn(TMPIP)/TiO2 and Mn(TMPIP)/TiO2 charged less in
porphyrin complexes. These data agree well with the hypothesis that both complexes are
located not only at the outside titania surface but also in its mesopores.

Powder X-ray diffraction measurements confirmed that the pristine mesoporous titania
and all samples of functionalized materials prepared in this work are amorphous solids.

The materials with high catalysts loading Mn(TMPIP)/TiO2-1 and Mn(TMPIC)/TiO2-
1 were chosen for comparative studies of their stability in different organic solvents and in
aqueous media with variable pH. A suspension of the solid in toluene, chlorinated (CH2Cl2,
CHCl3), polar (CH3CN, DMF), and protic (MeOH, EtOH) solvents were centrifugated
after 1 week, and the solutions thus obtained were analyzed visually or using a laboratory
spectrophotometer. Only Mn(TMPIP)/TiO2-1 with the phosphonate anchor was stable in
all these solvents, which is commonly used in organic synthesis. Mn(TMPIC)/TiO2-1 was
rapidly washed off in protic solvents (>50%) and also in acetonitrile (~10%).

The stability of Mn(TMPIP)/TiO2-1 was also explored in aqueous media in all pH
ranges. The leaching of the complex was observed only in basic solutions (pH > 9). We also
found that Mn(TMPIP)/TiO2-1 was stable in the presence of triethylamine in CHCl3 and
DMF. This is important for organic synthesis because tertiary amines are common reagents
in catalytic and photocatalytic transformations.
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The more stable heterogenized complex with spatially separated catalytic sites
(Mn(TMPIP)/TiO2) was next studied as a catalyst in oxidation reactions.

2.3. Catalytic Reactions

To get insight into the catalytic properties of Mn(TMPIP)/TiO2, we studied its cat-
alytic efficiency and reusability in the oxidation reactions using molecular oxygen as a
terminal oxidant and isobutyraldehyde (IBA) as a sacrificial reagent (Mukaiyama con-
ditions [80]) because these mild oxidation conditions are suitable for transformations of
different compounds such as alkanes, alkenes, aldehydes, cyclic ketones, sulfides and
alcohols [81–85]. Metalloporphyrins are known as active catalysts for these reactions un-
der homogeneous conditions [12,16,81,83,86,87]. In our work, the oxidation of sulfide to
sulfoxide was chosen as a model reaction. Selective sulfoxidation attracts considerable
interest due to its relevance to biochemistry, warfare agent disposal, the environmental
consequences of fuel desulfurization, and organic synthesis [88–95]. The overoxidation of
sulfides to sulfones and the cleavage of S–C and (S)C–H bonds are commonly observed
as side reactions [96–98], and thus selective methods for transformation of different sul-
fides are in high demand, in particular in the asymmetric synthesis of ligands and in the
development of pharmaceuticals involving selective late-stage oxygenation [93,95,99–101].

In the preliminary experiments, the oxidation of thioanisole with molecular oxy-
gen (1 atm) was performed in the presence of 0.09 mol% of TiO2-supported complex
Mn(TMPIP) and 6 equivalents of IBA in toluene at 80 ◦C and monitored by GC-MS
(Table 1). Starting sulfide was consumed in less than 30 min, but the overoxidation of
sulfoxide to methyl phenyl sulfone (42%) was observed as a side reaction (entry 1). To
diminish the overoxidation, the temperature was decreased to 40 ◦C (entry 2). Under these
conditions, the reaction proceeded more slowly, but sulfone was obtained in a similar yield
(37%). Comparing the amount of sulfone in the reaction mixture before and after complete
consumption of sulfide in the reaction performed at 30 ◦C (entry 3), we concluded that the
overoxidation was slow until the starting sulfide was present in the reaction mixture but
was significantly accelerated after the sulfide consumption. The results obtained at 20 ◦C
confirmed this hypothesis, but the control of the overoxidation was difficult, even under
these mild conditions, because the reaction was too rapid (entry 4). Thus, the amount of IBA
was decreased up to three equivalents. The rate of oxidation was decreased, and methyl
phenyl sulfoxide was the main product (96%) when 76% of starting sulfide was consumed
(entry 5). However, when this reaction was prolonged for additional 2 h, only 10% of start-
ing sulfide was reacted, probably due to the complete consumption of IBA. Oxidation at
50 ◦C also gave only sulfoxide when 52% of sulfide was reacted (entry 6), but 6% of starting
compound was still observed after 8 h of reacting. Finally, adjusting the amount of IBA to
reach a complete conversion and an appropriate reaction rate (5 equivalents), the sulfoxide
was obtained in about quantitative yield (entry 7).

It is noteworthy that the oxidation did not proceed at all in the absence of
Mn(TMPIP)/TiO2, IBA, or oxygen under these conditions (entries 8–10). Our attempts to
use non-functionalized TiO2 as a catalyst (entry 11) or to decrease catalyst loading 10 times
(entry 12) failed.

Thus, as low as 0.09 mol% of TiO2-supported Mn(TMPIP) were required for the selec-
tive sulfoxidation of thioanisole with molecular oxygen in the presence of five equivalents
of IBA (TON = ~1100, TOF = ~370 h−1) in a single catalytic run of the sulfoxidation of
thioanisole. The overoxidation of sulfide to sulfone in the presence of this catalyst proceeds
even at room temperature, but sulfoxides can be obtained in a quantitative yield controlling
the amount of IBA, temperature, and the time of reacting.
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Table 1. Oxidation of thioanisole by molecular oxygen in the presence of Mn(TMPIP)/TiO2 and IBA 1.
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Entry IBA (Equiv.) Temperature (°C) Time (h) Conversion 2 (%) 
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Sulfoxide Sulfone 
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Entry
IBA

(Equiv.)
Temperature

(◦C)
Time (h)

Conversion
2 (%)

Selectivity 2 (%)

Sulfoxide Sulfone

1 6 80 0.5 100 58 42
2 6 40 2 100 63 37
3 6 30 2.5 92 99 1

3 100 53 47
4 6 20 2 85 100 0

2.5 100 82 12
5 3 80 1.5 76 96 4

3.5 86 86 14
6 3 50 1.5 52 100 0

8 94 95 5
7 5 20 3 100 98 2

8 3 5 20 3 0
9 0 20 3 0

10 4 5 20 3 0
11 5 5 20 3 0
12 6 5 20 3 0

1 Reaction conditions: 2.5 mmol of thioanisole, molecular oxygen (1 atm), IBA, 0.09 mol% of heterogenized Mn(III)
porphyrin (based on the formula of Mn(TMPIP)/TiO2, which was calculated from the data of elemental analysis
and ICP-OES (Table S1)), toluene (10 mL) were stirred at a given temperature. 2 Conversion and selectivity
were determined by GC-MS analysis of reaction mixtures. Naphthalene was used as an internal standard.
3 The reaction was performed without a transition metal catalyst. 4 The experiment was performed in Ar (1 atm).
5 The catalyst was replaced by bare TiO2. 6 The reaction was carried out in the presence of 0.009 mol% of the
heterogenized complex.

To determine whether the catalyst leaching was observed under reaction conditions
and show that the reaction was not catalyzed by the non-supported manganese complex in
solution, a “hot filtration test” was performed (see Supplementary Materials, Figure S9).
Half of the solution was filtered when 50% of the starting sulfide was consumed, and both
reactions were continued under identical conditions. In the filtered solution, oxidation
was also observed but was much slower than in the suspension. To prove the absence of
catalyst leaching, we determined the content of manganese-containing compounds in the
residue obtained after evaporation of the homogeneous reaction mixture using the ICP-OES
technique. The manganese content was found to be less than 5 ppm. Based on these data,
we assumed that the oxidation reaction observed in the filtrated solution proceeds without
the participation of transition metal catalysts. This can be the sluggish autoxidation of
sulfides in the presence of O2 and IBA, as reported previously [102,103].

Encouraged by these results, we investigated the scope of substrates for this reaction.
To our surprise, various sulfides can be selectively oxidized to sulfoxides under ambient
conditions controlling the amount of IBA introduced into the reaction (Table 2). The rate of
oxidation of aryl methyl sulfides is dependent on the nature of substituents on the phenyl
ring. Electron-rich derivatives are more reactive than compounds with electron-deficient
aryl groups. For instance, 4-methoxythionisole was converted to sulfoxide in 2 h, but the
reaction time should be prolonged to 7 h if 4-nitrothioanisole was oxidized. Nevertheless,
all target products were obtained in almost quantitative yield. The oxidation of more
sterically hindered diphenyl sulfide, which is known to be resistant to oxidation by O2
under photocatalytic conditions [104], can be performed with excellent selectivity using
only 3.3 equivalents of IBA and 6 h of reacting under otherwise identical conditions to give
the target product in a 92% yield.
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Table 2. Oxidation of sulfides by molecular oxygen in the presence of Mn(TMPIP)/TiO2 and IBA 1.
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1 Reaction conditions: 2.5 mmol of tioanisole, IBA, 0.09 mol% of heterogenized complex (calculations were based
on the data of ICP analysis of Mn(TMPIP)/TiO2), toluene (10 mL) were stirred at a given temperature under
molecular oxygen (1 atm). 2 Conversion and selectivity were determined by GC-MS analysis of reaction mixtures.
Naphthalene was used as an internal standard.

Linear and cyclic dialkyl sulfides were found to be less reactive than aryl sulfides and
were oxidized in the presence of 6–9 equivalents of IBA. The oxidation of cyclic derivative
seems to be less selective because sulfoxide and sulfone were obtained in a 92:8 ratio when
only 92% of the sulfide was consumed.

Finally, we explored the sulfoxidation of compounds bearing additional oxidizable
sites such as vinyl, hydroxyl and cyano substituents (entries 7–9). To our great satisfaction,
all target sulfoxides were obtained in a high yield, and the overoxidation of sulfoxide was
only observed as a side reaction. Despite the reactions being optimized only briefly, even in
the case of the most problematic phenyl vinyl sulfide, the sulfoxide:sulfone ratio was 89:11
when 90% of starting compound was consumed.

The mechanistic pathways of oxidation by the O2-IBA reagent system were debated in
the literature [12,105–109]. Several active species with and without transition metal atoms
were identified. The relative efficacy by which a sulfide molecule is oxidized by one versus
the other pathways appears to be dependent on the nature of the transition metal catalyst,
solvent and temperature. Despite mechanistic studies of porphyrin catalysts being very
limited, high-valent metalloporphyrin–oxo intermediates were considered as main active
oxygen-containing intermediates [108,110–112]. Our data do not contradict this hypothesis
because the oxidation is more rapid in the presence of the Mn(III) complex, as was shown in
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the “hot filtration test.” However, other less-active oxygen-containing intermediate species
can also contribute to the formation of the target product. Detailed mechanistic studies of
this reaction are beyond the scope of this work.

Catalyst recovery and refining were straightforward. After completion of the reac-
tion, the catalyst was isolated by centrifugation, washed with toluene and introduced
in the next cycle. Seven consecutive oxidation reactions of thioanisole were carried out,
giving the target sulfoxides in comparable yields (94–98%; Figure 6 and Table S3 (see
Supplementary Materials)). The reaction time was different in these experiments, but the
changes were non-systematic, probably because this reaction parameter is highly depen-
dent on the efficiency of stirring heterogeneous reaction mixtures. The content of resting
manganese derivatives in the crude products was found to be less than 5 ppm by using
the ICP-OES analysis (Table S3 (see Supplementary Materials)). This proves that catalyst
leaching in the reaction mixture was negligible. The integrity of the Mn(TMPIP)/TiO2
catalyst was also confirmed by studying the solid recovered after the last catalytic cycle by
diffuse reflectance spectroscopy. As shown in Figure S10 (see Supplementary Materials),
the solid exhibits absorption features characteristic of Mn(TMPIP) in CHCl3 solution and
Mn(TMPIP)/TiO2 material. A small bathochromic shift of spectral band positions was
observed for several bands in the spectrum of the recovered solid. This likely indicates
a difference in the adsorbed solvent molecules in the starting and reused catalysts or the
chemical modification of the TiO2 surface (the esterification by isobutyric acid, for instance)
during the oxidation reaction. Nevertheless, based on these spectral data, we can safely
conclude that the heterogenized porphyrin macrocycle is not decomposed after seven
consecutive oxidation cycles.
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When oxidation of thioanisole was performed under homogeneous conditions re-
placing Mn(TMPIP)/TiO2 by its soluble counterpart Mn(TMPIP) or commercially avail-
able (meso-tetramesitylporphyrinato)manganese(III) chloride (Mn(TMP)) only starting
thioanisole was observed in the reaction mixture after 24 h of reacting. When Mn(TMPIP)
loading was increased up to 0.5 mol%, only 15% of thioalisole was converted to sulfoxide
after 24 h. Thus, immobilization of Mn(TMPIP) on hydrated titania significantly increases
its catalytic efficiency allowing us to perform sulfoxidation under ambient conditions.
The reason for the synergetic effect is unclear at this point of investigation. We cannot
exclude that the adsorption of sulfides on a large surface of inorganic support accelerates
the oxidation reaction, but most probably, peroxide intermediates formed on the surface of
hydrated TiO2 [113] also participated in the oxidation.
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Comparing Mn(TMPIP)/TiO2 with porphyrin catalysts reported previously, we can
conclude that this material is situated among the best catalysts known for the sulfoxidation
reaction. Indeed, the oxidation of sulfides by sodium periodate in the presence of Mn(III)
porphyrins grafted on polystyrene [114] or silica [115] led to a mixture of sulfoxides and
sulfones. When Mn(III) porphyrins were grafted on graphene oxide and used as catalysts
for the sulfoxidation by hydrogen peroxide-urea adduct, about 2 mol% of catalysts were
required, and the reactions were less selective, in particular when aromatic sulfides were
used as substrates [116]. Fe(III) porphyrins grafted on activated multi-walled carbon nan-
otubes were efficient in ethanol when tetra-n-butylammonium peroxomonosulfate was
used as an oxidant, but some of the studied reactions were difficult to control [117]. Several
heterogenized porphyrin catalysts were also reported for the oxidation of sulfides to sul-
foxides under Mukaiyama conditions. Manganese(III) complex with 5,10,15,20-tetrakis(N-
methylpyridinium-4-yl)porphyrin immobilized in montmorillonite gave the selective trans-
formation only when the reaction was conducted at 50–80 ◦C [34]. Only COP based on
Fe(III) porphyrin has shown catalytic activity similar to that of Mn(TMPIP)/TiO2 [45].
However, this immobilization procedure requires a large amount of the complex and yields
hybrid materials in which the number of catalytic sites cannot be optimized.

It’s also worth noting that porphyrin catalysts bearing phosphonate anchors were
successfully immobilized onto the zinc phosphonate network with low porosity [118]
and incorporated onto zirconium phosphonate film materials [119]. Our immobilization
strategy is complementary to these approaches and gave porous porphyrin catalysts.

3. Materials and Methods
3.1. General

Unless otherwise noted, all chemicals and starting materials were obtained commer-
cially from Acros (via Thermo Fisher Scientific, Illkirch, France) or Aldrich-Sigma Co.
(via Merck Co., Darmstadt, Germany) and used without further purification. (5,10,15,20-
Tetramesitylporphyrinato)manganese(III) chloride (Mn(TMP)) was provided by Porphy-
Chem (Dijon, France). 2-Nitro-5,10,15,20-tetramesitylporphyrin was prepared according to
the literature protocol [120]. 5,10,15,20-Tetramesityl-2-(4-carboxyphenyl)-1H-imidazo[4,5-
b]porphyrin (2H(TMPIC)) and 5,10,15,20-tetramesityl-2-[4-(diethoxyphosphoryl)phenyl]-
1H-imidazo[4,5-b]porphyrin (2H(TMPIP)) were synthesized according to a procedure
developed by us previously [58,121]. Mesoporous hydrated titanium(IV) oxide was pre-
pared using a surfactant-free sol-gel procedure reported by us previously [76]. The content
of Ti in the solid thus obtained was determined by ICP-OES analysis. Preparative column
chromatography was carried out using silica gel 60 (40–63 µm) from Merck Co. (Darmstadt,
Germany). CH2Cl2 was distilled over CaH2.

UV-vis absorption spectra were collected with an Agilent Cary 60 (Massy, France)
using Suprasil 300 cuvettes (Hellma, l = 1 cm). Diffuse reflectance spectra of materials
were acquired on a Cary 5000 (Massy, France) UV-vis-NIR spectrophotometer outfitted
with a praying MantisTM accessory (Harrick, via Agilent, Massy, France). The baseline was
recorded with a Spectralon® pellet. Corrected reflectance data (R) were converted to f (R)
values using the Kubelka–Munk function expressed as f (R) = (1 − R2)/2R.

FTIR spectra were registered either on a Nicolet iS 5 (Thermo Ficher Scientific, Illkirch,
France) or a Bruker Vector 22 (Wissembourg, France) spectrophotometer. A micro-ATR
accessory (Pike) was used in order to obtain FTIR spectra of solid polycrystalline complexes.

MALDI-TOF mass-spectra were obtained on a Bruker Ultraflex II LRF 2000 (Wissem-
bourg, France) mass-spectrometer in positive ion mode with the dithranol matrix. Accurate
mass measurements (HRMS-ESI) were performed with a Thermo Scientific Orbitrap Elite
high-field Orbitrap hybrid mass spectrometer (Thermo Ficher Scientific, Illkirch, France).
The samples were dissolved in a methanol/chloroform (1:1, v/v) solvent mixture and
analyzed in positive mode. Microanalyses (CHN) were performed using a Thermo Electron
Flash EA 1112 analyzer (Thermo Ficher Scientific, Illkirch, France). Mn, P and Ti contents
were measured by inductively coupled plasma optical emission spectrometry (ICP-OES



Catalysts 2023, 13, 402 16 of 25

DUO) on an ICAP 7400 instrument from Thermo Ficher Scientific (Illkirch, France). The
samples were mineralized using standard procedures.

Field-emission scanning electron microscopy (FESEM) was performed using a JEOL
JSM 7600F (JEOL (Europe) SAS, Croissy-sur-Seine, France) instrument located in the
ARCEN analysis center of the University of Bourgogne (Dijon, France). Images were ac-
quired using GentleBeam-High SEM mode. Transmission electron microscopy (TEM) anal-
yses were conducted using a JEOL JEM-2100F microscope ((JEOL (Europe) SAS, Croissy-
sur-Seine, France) operating at 200 kV and located in the ARCEN analysis center of the
University of Bourgogne (Dijon, France). EDX spectroscopy in STEM mode was used
for chemical mapping and qualitative and quantitative elemental analysis using a Bruker
XFlash Detector 5030 spectrometer fitted on the JEM-2100F microscope (Bruker, Wissem-
bourg, France).

Nitrogen adsorption-desorption isotherms were measured with a BELSORP max
analyzer (BEL Japan, INC, via Mercer Instruments, Passy, France) at 77 K with samples
degassed for 6 h at 80 ◦C under reduced pressure (10−5 torr). Specific surface areas (SBET)
were calculated according to the Brunauer–Emmett–Teller (BET) method.

Powder X-ray diffraction experiments were performed with an Empyrean diffractome-
ter from the PANalytical company (Palaiseau, France) in the range 3◦ < 2θ < 50◦, using
a copper anticathode X-ray tube (Cu Kα1 = 1.54060 Å and Cu Kα2 = 1.54443 Å) and an
X’Celerator detector outfitted with an anti-scattering slit of 5 mm. The uncrushed samples
were placed between 2 Mylar sheets, and the analysis was carried out in transmission
mode using a focusing X-ray mirror equipped with fixed divergent and anti-scattering slits
(aperture 0.5◦) and 0.02 rad Soller slits.

All elemental analyses except EDX analyses were performed at the “Pôle Chimie
Moléculaire,” the technological platform for chemical analysis and molecular synthesis
(http://www.wpcm.fr, accessed on 30 December 2022) of the Institut de Chimie Moléculaire
de l’Université de Bourgogne and WelienceTM, a private subsidiary of the Université
de Bourgogne.

3.2. Synthesis of Manganese(III) Complexes Mn(TMPIC), Mn(TMPIP) and Mn(TMPIP-OH)

General procedure. To a solution of free base porphyrin (0.1 mmol) in dimethylfor-
mamide (13 mL), manganese dichloride (63 mg, 0.5 mmol, 5 equivalents) was added at
150 ◦C. The reaction mixture was stirred at this temperature and monitored by TLC. After
complete consumption of starting porphyrin (4 h), the reaction mixture was cooled to
room temperature and evaporated under reduced pressure. The residue thus obtained
was dissolved in dichloromethane (30 mL), and the solution was washed with water
(3 × 20 mL), dried over MgSO4 and evaporated under reduced pressure. The residue thus
obtained was chromatographed on silica gel using CH2Cl2/MeOH as eluent.

[5,10,15,20-tetramesityl-2-(4-carboxyphenyl)-1H-imidazo[4,5-b]porphyrinato]mangane-se(III)
chloride (Mn(TMPIC)). The complex was prepared according to the general procedure from
2H(TMPIC) (120 mg, 0.127 mmol) and isolated as a green solid using CH2Cl2/MeOH
(95:5 v/v) as an eluent. Yield 92% (116 mg); mp > 320 ◦C, decomp. UV-vis (CHCl3, λmax,
nm (log(ε (cm−1M−1))): 333 (4.60), 382 (4.80), 403 (4.75), 481 (5.00), 540 (sh), 573 (4.09),
622 (4.04), and 748 (3.04). FTIR (neat, ν, cm−1): 3410 (w, NH), 2913 (m), 2849 (m), 1719 (m,
C=O), 1610 (m), 1437 (w), 1378 (w), 1331 (w), 1250 (w), 1225 (w), 1195 (m), 1003 (s), 862 (w),
851 (w), 833 (m), 802 (m), and 721 (m). HRMS-ESI: m/z [M-Cl]+ calcd for C64H56MnN6O2:
995.38398; found: 995.38814.

[5,10,15,20-tetramesityl-2-[4-(diethoxyphosphoryl)phenyl]-1H-imidazo[4,5-b]porphyrin-ato]-
manganese(III) chloride (Mn(TMPIP)). The complex was prepared according to the general
procedure from 2H(TMPIP) (554 mg, 0.535 mmol) and isolated as a green solid using
CH2Cl2/MeOH (95:5 v/v) as eluent. Yield 60% (330 mg); mp > 320 ◦C, decomp. UV-vis
(CHCl3, λmax, nm (log(ε (cm−1M−1))): 327 (4.46), 383 (4.72), 407 (4.65), 484 (4.92), 576 (3.93),
626 (3.89), and 749 (2.92). FTIR (neat, ν, cm−1): 3385 (w, NH), 2916 (w), 2854 (w), 1609 (w),
1475 (w), 1437 (w), 1410 (w), 1377 (w), 1333 (w), 1248 (m, P=O), 1227 (m, P=O), 1196 (m),

http://www.wpcm.fr
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1130 (m), 1051 (m), 1016 (s, P–O–C), 1003 (s), 953 (m), 851 (w), 833 (m), 800 (s), 762 (w),
719 (m), and 665 (w). HRMS-ESI: m/z [M-Cl+H]2+ calcd for C67H66MnN6O3P: 544.21518;
found: 544.21526; [M-Cl]+ calcd for C67H65MnN6O3P: 1087.42308; found: 1087.42690;
[M+H]+ calcd for C67H66ClMnN6O3P: 1123.39976; found: 1123.39579.

[5,10,15,20-tetramesityl-2-[4-(dihydroxyphosphoryl)phenyl]-1H-imidazo[4,5-b]porphyrin-ato]
manganese(III) bromide (Mn(TMPIP-OH)).

A dry Schlenk tube was charged with diethyl phosphonate ester Mn(TMPIP)
(15 mg, 0.0134 mmol) and dry CH2Cl2 (5 mL) under argon. Then, TMSBr (53 mL, 0,4 mmol,
30 equivalents) was added via a syringe, and the resulting mixture was stirred for 3 d at
r. t. and monitored by MALDI-TOF mass spectrometry. After the complete consumption of
ethyl phosphoesters, methanol (2 mL) was added to the reaction mixture, and stirring was
continued for 30 min. Evaporation of volatiles under reduced pressure afforded the target
phosphonic acid as a dark green solid. Yield: 90% (14 mg); mp > 350 ◦C, decomp. UV-vis
(CHCl3, λmax, nm (log(ε (cm−1M−1))): 303 (4.40), 385 (4.78), 419 (4.73), 452 (4.53), 491 (4.81),
587 (3.90), 633 (3.92), and 760 (2.86). FTIR (neat, ν, cm−1): 2918 (m), 2853 (m), 1609 (w),
1437 (m), 1408 (w), 1379 (w), 1335 (w), 1196 (m), 1134 (w), 1003 (s), 916 (m, P–OH), 851 (w),
831 (s), 802 (s), 719 (s), and 663 (w). HRMS-ESI: m/z [M-Br]+ calcd for C63H57MnN6O3P:
1031.36048; found: 1031.36328; [M-HBr+Na]+ calcd for C63H56MnN6NaO3P: 1053.34242;
found: 1053.34345. HRMS-ESI spectrum is shown in Figure S4.

3.3. Synthesis of Heterogenized Catalysts

Grafting complex Mn(TMPIC). A dry Schlenk tube was charged with carboxylic acid
Mn(TMPIC) (18 mg, 0.018 mmol) and dry CH2Cl2 (50 mL) under argon. Then meso-
porous hydrated TiO2 (18 mmol, 100 equivalents) was added under an argon stream. The
suspension was stirred for 2 d at r.t. The solid was collected by centrifugation and thor-
oughly washed with THF (2 × 20 mL), water (15 mL), MeOH (3 × 15 mL), and ether
(2 × 15 mL). The material was finally dried for 24 h at 80 ◦C under reduced pressure
(2 mmHg). Yield: 165 mg.

The solid Mn(TMPIC)/TiO2-1 with a high content of Mn(TMPIC) (the Mn(TMPIC):TiO2
ratio was 1:15) was also prepared according to this procedure.

Grafting complex Mn(TMPIP). A dry Schlenk tube was charged with diethyl phospho-
nate ester Mn(TMPIP) (360 mg, 0.32 mmol) and dry CH2Cl2 (50 mL) under argon. Then,
TMSBr (30 equiv equivalents) was added via a syringe, and the resulting mixture was
stirred for 48 h at r. t. The reaction was monitored by MALDI-TOF mass spectrometry
to ensure a complete conversion had occurred before the evaporation of volatiles under
reduced pressure. Then, 50 mL of dry CH2Cl2 was introduced into the Schlenk tube with a
syringe, followed by the addition of mesoporous hydrated TiO2 (32 mmol, 100 equivalents)
under an argon stream. The suspension was stirred for 2 d at r. t. The solid was collected
by centrifugation and thoroughly washed with THF (2 × 20 mL), water (15 mL), MeOH
(3 × 15 mL), and ether (2 × 15 mL). The material was dried for 24 h at 80 ◦C under reduced
pressure (2 mmHg). Yield: 3050 mg.

The solid Mn(TMPIP)/TiO2-1 with a high content of Mn(TMPIP) (ratio of
Mn(TMPIP):TiO2 was 1:15) was prepared according to this procedure.

3.4. Catalytic Reactions

General procedure. A 25 mL two-necked flask equipped with a magnetic stir bar
and a back-flow condenser was charged with 0.09 mol% of heterogenized Mn(TMPIP)
(calculations were based on the data of ICP-OES analysis of Mn(TMPIP)/TiO2, Table S1).
The reaction vessel was evacuated and purged by oxygen 3 times. Subsequently, 2.5 mmol
of sulfide, the calculated amount of IBA (Tables 1 and 2), and 10 mL of toluene were
added by syringe, and the reaction mixture was stirred under oxygen (filled balloon),
controlling the temperature (see Tables 1 and 2). The reaction was periodically monitored
by GC-MS, and quantitative analyses were performed using naphthalene as an internal
standard. When the reaction was complete, the mixture was centrifugated, and the filtrate
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was washed with water (3 × 5 mL), dried over MgSO4 and evaporated under reduced
pressure at room temperature. The structure of the target product was confirmed by 1H
NMR, comparing its spectral data with those reported previously in the literature.

Turnover number (TON = Number of product molecules/Number of active catalytic
sites) and turnover frequency (TON in an hour) were estimated using a calculated value of
catalyst loading (0.09 mol%).

In the experiment with bare TiO2 (Table 1, entry 11), the amount of hydrated titania
was identical to that which was used in the experiments with Mn(TMPIP)/TiO2. The cal-
culations were performed using the empirical formula obtained from the data of elemental
analysis and ICP-OES.

Methyl phenyl sulfoxide (Table 2, entry 1) [122]. 1H NMR (CDCl3, 400 MHz): 2.72 (s, 3H,
CH3), 7.50–7.58 (m, 3H, Ar), 7.63–7.72 (m, 2H, Ar).

4-Methoxyphenyl methyl sulfoxide (Table 2, entry 2) [122]. 1H NMR (CDCl3, 300 MHz):
2.70 (s, 3H, CH3), 3.82 (s, 3H, OCH3), 7.04−7.10 (m, 2H, Ar), 7.59−7.68 (m, 2H, Ar).

Methyl 4-nitrophenyl sulfoxide (Table 2, entry 3) [123]. 1H NMR (CDCl3, 300 MHz):
2.81 (s, 3H, CH3), 7.79–7.88 (m, 2H, Ar), 8.37–8.44 (m, 2H, Ar).

Diphenyl sulfoxide (Table 2, entry 4) [124]. 1H NMR (CDCl3, 300 MHz): 7.29–7.43 (m,
6H, Ar), 7.56 (m, 4H, Ar).

Dibutyl sulfoxide (Table 2, entry 5) [122]. 0.96 (t, J = 7.3 Hz, 3H, CH3), 1.36–1.61 (m, 2H,
CH2), 1.65–1.83 (m, 2H, CH2), 2.60–2.78 (m, 2H, CH2).

Thian-4-one S-oxide (Table 2, entry 6) [125]. 1H NMR (CDCl3, 300 MHz): 2.43–2.58 (m,
2H, CH2), 2.78–2.95 (m, 2H, CH2), 3.19–3.39 (m, 4H, 2CH2).

(Phenylsulfinyl)acetonitrile (Table 2, entry 7) [126]. 1H NMR (CDCl3, 300 MHz): 3.72 (s,
2H, CH2), 7.49–7.75 (m, 5H, CH).

(2-Phenylsulfinyl)ethanol (Table 2, entry 8) [127]. 1H NMR (CDCl3, 300 MHz):
3.07–3.13 (t, 2H, CH2S), 3.72–3.77 (t, 2H, CH2O), 7.19–7.28 (m, 3H, p-, m-CH), 7.35 (d, J = 7 Hz,
2H, o-CH).

Phenyl vinyl sulfide (Table 2, entry 9) [128]. 1H NMR (CDCl3, 300 MHz): 5.88 (d,
J = 9.7 Hz, 1H, CH2), 6.18 (d, J = 16.4 Hz, 1H, CH2), 6.65 (dd, J = 16.4, 9.7 Hz, 1H, CH),
7.44–7.77 (m, 5H, Ar).

Hot filtration test. A 15 mL 2-necked flask equipped with a magnetic stir bar was
charged with 0.09 mol% of heterogenized Mn(TMPIP) (calculations were based on the data
of ICP-OES analysis of Mn(TMPIP)/TiO2). The reaction vessel was evacuated and purged
with oxygen 3 times. Subsequently, 117 µL (1 mmol) of thioanisole, 456 µL (5 mmol) of
IBA, and 4 mL of toluene were added by syringe, and the reaction mixture was stirred at
room temperature under oxygen (filled balloon) and periodically monitored by GC-MS.
When half of the sulfide was consumed, half of the solution (2.2 mL) was withdrawn and
filtered using a membrane filter (0.22 µm). The second 15 mL 2-necked flask equipped with
a magnetic stir bar was evacuated and purged by oxygen 3 times. This reaction vessel was
charged with the filtered solution obtained as described above and an oxygen-filled balloon.
Both reaction mixtures were stirred at room temperature and monitored by GS-MS. The
results of GS-MS analyses are shown in Figure S9.

Catalyst recycling. A 25 mL 2-necked flask equipped with a magnetic stir bar was
charged with 0.09 mol% of heterogenized Mn(TMPIP) (calculations were based on the data
of ICP-OES analysis of Mn(TMPIP)/TiO2). The reaction vessel was evacuated and purged
by oxygen 3 times. Subsequently, 293 µL (1 mmol) of thioanisole, 1.139 mL (5 mmol) of IBA,
and 10 mL of toluene were added via a syringe, and the reaction mixture was stirred at
room temperature under oxygen (filled balloon) and monitored by GC-MS. After complete
consumption of thioanisole, the reaction mixture was centrifugated, and the catalyst was
washed with toluene (3 × 10 mL) and dried for 3 h at r.t. The solid thus obtained was
used as a catalyst in the next consecutive oxidation cycle. The filtrate was analyzed using
GC-MS with naphthalene as an internal standard, evaporated under reduced pressure and
analyzed by ICP-OES to determine the content of Mn. The results of these experiments are
summarized in Table S3 and shown in Figure 6.
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3.5. Computational Details

The quantum calculations were carried out with Spartan’10 software (build 1.1.0,
Wavefunction Inc., Tokio, Japan) running on a desktop computer with the Windows oper-
ating system. The structures were found by convergence to equilibrium geometry at an
energy minimum with default values of gradient tolerance (4.5 × 10−4 Hartree.Bohr−1)
and distance tolerance (1.8 × 10−3Å). The DFT calculations were performed at the B3LYP
level of theory with a 6-31G* basis set. The starting structures for calculation were
prepared by minimization with the semi-empirical PM6 method. The vibrational fre-
quencies were calculated to prove the found structures to be minimal and showed no
imaginary frequencies.

4. Conclusions

meso-Tetraarylporphyrins were immobilized on hydrated mesoporous titanium diox-
ide (SBET = 705 m2 g−1) using carboxylate or phosphonate anchoring groups attached to
2-arylimidazole linker fused across one of the pyrrolic rings of the macrocycle. Two types
of hybrid materials with different loading of metalloporphyrins were prepared and char-
acterized as both a bulk solid and at the molecular level using different physicochemical
methods, including elemental analysis, UV-vis diffusion and infrared spectroscopies, SEM
microphotography and nitrogen sorption isotherms. The morphology of these hybrid
materials is similar to that of the pristine TiO2 and is perfectly suited for application of
these materials in catalysis. The mesoporous nanospheroids, with a diameter ranging from
5 to 20 nm, are irregularly distributed in space and separated by large holes of hundreds of
nanometers, thus providing good accessibility to catalytic sites. The homogeneous distribu-
tion of catalytic sites inside mesopores was proven by EDX analysis in STEM mode and
studies of N2 adsorption isotherms. Quantitative immobilization of porphyrin catalysts
can be achieved using both carboxylate and phosphonate anchors, but only the latter one
gives hybrid materials which are stable in polar and protic solvents commonly used in
organic synthesis.

Finally, catalytic properties of the more stable material Mn(TMPIP)/TiO2 with the
phosphonate anchor were evaluated in the selective oxidation of sulfides to sulfoxides
by the molecular oxygen/IBA system. The heterogenized complex has shown excellent
catalytic activity exhibiting a turnover (TON) of ~1100 in a single catalytic run of the
sulfoxidation of thioanisole. TON can be increased by recycling the catalysts at least
seven times, owing to the exceptional stability of the solid. This catalyst allows for mild
reaction conditions, a wide range of substrates, and excellent product yields in the reactions
performed in toluene which is tolerated in industry.

Thus, we have developed a novel synthetic approach to the heterogenization of
metalloporphyrins. This strategy has many potential benefits for sustainable chemistry
technologies. Structural parameters of grafted metalloporphyrins can be fine-tuned by
changing the nature of the central metal ion and four aryl substituents attached to the meso-
positions of the porphyrin core, which is important for the optimization of their catalytic
activity. The heterogenized catalysts thus prepared also benefit from the rational design
of the spacer, which is a long and rigid residue and provides a perpendicular orientation
of the mean porphyrin plane with respect to a solid surface which is highly desirable for
the easy accessibility of catalytic sites. The mesoporous titania is a cost-efficient, thermally
and chemically stable support that could decrease production costs. Last but not least, the
quantity of the catalyst grafted onto the TiO2 surface can be easily controlled and adapted
to the target catalytic reaction allowing for the economic use of expensive porphyrin
complexes. We believe that this immobilization strategy will be useful in catalysis because
the scope of reactions catalyzed by metalloporphyrins is constantly increased.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13020402/s1. Figure S1: UV–vis spectra of Mn(TMPIC)
(a) and Mn(TMPIP) (b) in chloroform solution; Figure S2: HRMS-ESI mass spectrum of Mn(TMPIC);
Figure S3: HRMS-ESI mass spectrum of Mn(TMPIP); Figure S4: HRMS-ESI mass spectrum of
Mn(TMPIP-OH); Figure S5: EDX spectra in STEM mode of hybrid material Mn(TMPIP)/TiO2: all
studied region (a), the region of 0–0.6 keV (b) the region of 0.6–1.4 keV (c), the results of quanti-
tative analysis (d). Cu is observed because of spurious X-rays coming from the TEM copper grid;
Figure S6: FTIR spectra of Mn(TMPIP), Mn(TMPIP-OH), Mn(TMPIP)/TiO2-1 and hydrated TiO2;
Figure S7: FTIR spectra of Mn(TMPIC), Mn(TMPIC)/TiO2-1, Mn(TMPIC)/TiO2, and hydrated TiO2;
Figure S8: SEM microphotographs of (a) bare hydrated TiO2, and (b) Mn(TMPIP)/TiO2; Figure S9:
The hot filtration test for oxidation reaction of thioanisole with molecular oxygen in the presence
of Mn(TMPIP)/TiO2 and IBA (Table 2, entry 1); Figure S10: Kubelka-Munk transformed diffusion
reflectance spectra of Mn(TMPIP)/TiO2 before and catalytic tests. The solid recovered after the 7th
catalytic cycle was analysed. The electronic absorption spectrum of complex Mn(TMPIP) in methanol
is shown on the inlet; Table S1: Chemical composition of solids prepared by grafting Mn(TMPIP)
and Mn(TMPIC); Table S2: BET surface area, total pore volume and pore diameter for hydrated
titania and heterogenized catalysts obtained in this work; Table S3: Recycling of Mn(TMPIP)/TiO2.
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