Methane Combustion over the Porous Oxides and Supported Noble Metal Catalysts
Abstract
:1. Introduction
2. Synthesis of Porous Composite Metal Oxides
2.1. Preparation of Templates
2.2. Macroporous or Mesoporous Composite Oxides
2.3. Supported Metal Oxides or Noble Metals
3. Applications for Methane Combustion
3.1. Porous Composite Metal Oxides
3.2. Supported Metal Oxide Catalysts
3.3. Supported Noble Metal Catalysts
3.4. Effects of H2O and SO2 on Methane Combustion
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pfefferle, L.D.; Pfefferle, W.C. Catalysis in combustion. Catal. Rev. 1987, 29, 219–267. [Google Scholar] [CrossRef]
- Wei, L.; Wang, Z.W.; Liu, Y.X.; Guo, G.S.; Dai, H.X.; Cui, S.P.; Deng, J.G. Support promotion effect on the SO2 and K+ co-poisoning resistance of MnO2/TiO2 for NH3-SCR of NO. J. Hazard. Mater. 2021, 416, 126117. [Google Scholar] [CrossRef] [PubMed]
- Gremminger, A.T.; Pereira de Carvalho, H.W.; Popescu, R.; Grunwaldt, J.-D.; Deutschmann, O. Influence of gas composition on activity and durability of bimetallic Pd-Pt/Al2O3 catalysts for total oxidation of methane. Catal. Today 2015, 258, 470–480. [Google Scholar] [CrossRef]
- Öcal, M.; Oukaci, R.; Marcelin, G.; Jang, B.W.-L.; Spivey, J.J. Steady-state isotopic transient kinetic analysis on Pd-supported hexaaluminates used for methane combustion in the presence and absence of NO. Catal. Today 2000, 59, 205–217. [Google Scholar] [CrossRef]
- Raza, J.; Khoja, A.H.; Anwar, M.; Saleem, F.; Naqvi, S.R.; Liaquat, R.; Hassan, M.; Javaid, R.; Qazi, U.Y.; Lumbers, B. Methane decomposition for hydrogen production: A comprehensive review on catalyst selection and reactor systems. Renew. Sust. Energ. Rev. 2022, 168, 112774. [Google Scholar] [CrossRef]
- Wang, Y.G.; Ren, J.W.; Wang, Y.Q.; Zhang, F.Y.; Liu, X.H.; Guo, Y.; Lu, G.Z. Nanocasted synthesis of mesoporous LaCoO3 perovskite with extremely high surface area and excellent activity in methane combustion. J. Phys. Chem. C 2008, 112, 15293–15298. [Google Scholar] [CrossRef]
- Chen, J.H.; Arandiyan, H.; Gao, X.; Li, J.H. Recent advances in catalysts for methane combustion. Catal. Surv. Asia 2015, 19, 140–171. [Google Scholar] [CrossRef]
- Tang, X.F.; Li, J.H.; Hao, J.M. Synthesis and characterization of spinel Co3O4 octahedra enclosed by the {111} facets. Mater. Res. Bull. 2008, 43, 2912–2918. [Google Scholar] [CrossRef]
- Li, J.H.; Liang, X.; Xu, S.C.; Hao, J.M. Catalytic performance of manganese cobalt oxides on methane combustion at low temperature. Appl. Catal. B 2009, 90, 307–312. [Google Scholar] [CrossRef]
- Chen, J.H.; Zhang, X.Y.; Arandiyan, H.; Peng, Y.; Chang, H.Z.; Li, J.H. Low temperature complete combustion of methane over cobalt chromium oxides catalysts. Catal. Today 2013, 201, 12–18. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Tan, R.Q.; Feng, J.; Ji, S.S.; Cao, L.L. The reaction and poisoning mechanism of SO2 and perovskite LaCoO3 film model catalysts. Appl. Catal. A 2001, 209, 71–77. [Google Scholar] [CrossRef]
- Huang, H.F.; Sun, Z.; Lu, H.F.; Shen, L.Q.; Chen, Y.F. Study on the poisoning tolerance and stability of perovskite catalysts for catalytic combustion of volatile organic compounds. React. Kinet. Mechan. Catal. 2010, 101, 417–427. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, H.L.; Hao, Z.P.; Wang, S.B. Catalytic combustion of methane over cobalt doped lanthanum stannate pyrochlore oxide. Catal. Commun. 2008, 9, 690–695. [Google Scholar] [CrossRef]
- Cheng, J.; Li, J.J.; Ma, C.Y.; Hao, Z.P. Catalytic combustion of methane over La2TM0.3Zr1.7O7−δ (TM = Mn, Fe, and Co) pyrochlore oxides. Catal. Commun. 2009, 10, 1170–1173. [Google Scholar] [CrossRef]
- Aitbekova, A.; Zhou, C.; Stone, M.L.; Lezama-Pacheco, J.S.; Yang, A.-C.; Hoffman, A.S.; Goodman, E.D.; Huber, P.; Stebbins, J.F.; Bustillo, K.C.; et al. Templated encapsulation of platinum-based catalysts promotes high-temperature stability to 1100 °C. Nat. Mater. 2022, 21, 1290–1297. [Google Scholar] [CrossRef]
- Bartley, J.K.; Dimitratos, N.; Edwards, J.K.; Kiely, C.J.; Taylor, S.H. A Career in catalysis: Graham J. Hutchings. ACS Catal. 2021, 11, 5916–5933. [Google Scholar] [CrossRef]
- Agarwal, N.; Freakley, S.J.; McVicker, R.U.; Althahban, S.M.; Dimitratos, N.; He, Q.; Morgan, D.J.; Jenkins, R.L.; Willock, D.J.; Taylor, S.H.; et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Dai, H.X.; Hou, Z.Q.; Zhang, X.; Zhang, K.F. Catalytic performance of regularly morphological and porous catalysts for the oxidation of volatile organic compounds. J. Beijing Univ. Technol. 2019, 45, 1095–1114. [Google Scholar]
- Dai, H.X.; Deng, J.G.; Xia, Y.S.; Zhang, R.Z.; Zhang, L. Hard-templating fabrication and catalytic applications of three-dimensionally ordered meso-and macroporous transition-metal oxides. Inorg. Chem. Ind. 2012, 44, 55–58. [Google Scholar]
- Xu, P.; Zhang, X.; Zhao, X.T.; Yang, J.; Hou, Z.Q.; Bai, L.; Chang, H.Q.; Liu, Y.X.; Deng, J.G.; Guo, G.S.; et al. Preparation, characterization, and catalytic performance of PdPt/3DOM LaMnAl11O19 for the combustion of methane. Appl. Catal. A 2018, 562, 284–293. [Google Scholar] [CrossRef]
- Xia, Y.S.; Dai, H.X.; Jiang, H.Y.; Deng, J.G.; He, H.; Au, C.T. Mesoporous chromia with ordered three-dimensional structures for the complete oxidation of toluene and ethyl acetate. Environ. Sci. Technol. 2009, 43, 8355–8360. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.S.; Dai, H.X.; Jiang, H.Y.; Zhang, L.; Deng, J.G.; Liu, Y.X. Three-dimensionally ordered and wormhole-like mesoporous iron oxide catalysts highly active for the oxidation of acetone and methanol. J. Hazard. Mater. 2011, 186, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.S.; Dai, H.X.; Jiang, H.Y.; Zhang, L. Three-dimensional ordered mesoporous cobalt oxides: Highly active catalysts for the oxidation of toluene and methanol. Catal. Commun. 2010, 11, 1171–1175. [Google Scholar] [CrossRef]
- Deng, J.G.; Zhang, L.; Dai, H.X.; Xia, Y.S.; Jiang, H.Y.; Zhang, H.; He, H. Ultrasound-assisted nanocasting fabrication of ordered mesoporous MnO2 and Co3O4 with high surface areas and polycrystalline walls. J. Phys. Chem. C 2010, 114, 2694–2700. [Google Scholar] [CrossRef]
- Xie, S.H.; Liu, Y.X.; Deng, J.G.; Zhao, X.T.; Yang, J.; Zhang, K.F.; Han, Z.; Arandiyan, H.; Dai, H.X. Effect of transition metal doping on the catalytic performance of Au–Pd/3DOM Mn2O3 for the oxidation of methane and o-xylene. Appl. Catal. B 2017, 206, 221–232. [Google Scholar] [CrossRef]
- Xie, S.H.; Liu, Y.X.; Deng, J.G.; Zang, S.M.; Zhang, Z.H.; Arandiyan, H.; Dai, H.X. Efficient removal of methane over cobalt-monoxide-doped AuPd nanocatalysts. Environ. Sci. Technol. 2017, 51, 2271–2279. [Google Scholar] [CrossRef]
- Xie, S.H.; Liu, Y.X.; Deng, J.G.; Zhao, X.T.; Yang, J.; Zhang, K.F.; Han, Z.; Dai, H.X. Three-dimensionally ordered macroporous CeO2-supported Pd@Co nanoparticles: Highly active catalysts for methane oxidation. J. Catal. 2016, 342, 17–26. [Google Scholar] [CrossRef]
- Wu, Z.X.; Deng, J.G.; Liu, Y.X.; Xie, S.H.; Jiang, Y.; Zhao, X.T.; Yang, J.; Arandiyan, H.; Guo, G.S.; Dai, H.X. Three-dimensionally ordered mesoporous Co3O4-supported Au–Pd alloy nanoparticles: High-performance catalysts for methane combustion. J. Catal. 2015, 332, 13–24. [Google Scholar] [CrossRef]
- Zhao, X.T.; Liu, Y.X.; Deng, J.G.; Xu, P.; Yang, J.; Zhang, K.F.; Han, Z.; Dai, H.X. Mesoporous PdxPt alloys: High-performance catalysts for methane combustion. Mol. Catal. 2017, 442, 191–201. [Google Scholar] [CrossRef]
- Ciuparu, D.; Lyubovsky, M.R.; Altman, E.; Pfefferle, L.D.; Datye, A. Catalytic combustion of methane over palladium-based catalysts. Catal. Rev. 2002, 44, 593–649. [Google Scholar] [CrossRef]
- Gélin, P.; Primet, M. Complete oxidation of methane at low temperature over noble metal based catalysts: A review. Appl. Catal. B 2002, 39, 1–37. [Google Scholar] [CrossRef]
- Yang, J.; Guo, Y.B. Nanostructured perovskite oxides as promising substitutes of noble metals catalysts for catalytic combustion of methane. Chin. Chem. Lett. 2018, 29, 252–260. [Google Scholar] [CrossRef]
- Bashan, V.; Ust, Y. Perovskite catalysts for methane combustion: Applications, design, effects for reactivity and partial oxidation. Int. J. Energy Res. 2019, 43, 7755–7789. [Google Scholar] [CrossRef]
- Nkinahamira, F.; Yang, R.J.; Zhu, R.S.; Zhang, J.W.; Ren, Z.Y.; Sun, S.L.; Xiong, H.F.; Zeng, Z.Y. Current progress on methods and technologies for catalytic methane activation at low temperatures. Adv. Sci. 2022, 2204566. [Google Scholar] [CrossRef]
- Arandiyan, H.; Wang, Y.; Sun, H.Y.; Rezaei, M.; Dai, H.X. Ordered meso- and macroporous perovskite oxide catalysts for emerging applications. Chem. Commun. 2018, 54, 6484–6502. [Google Scholar] [CrossRef]
- Zhang, C.X.; Zhao, P.Y.; Liu, S.X.; Yu, K. Three-dimensionally ordered macroporous perovskite materials for environmental applications. Chin. J. Catal. 2019, 40, 1324–1338. [Google Scholar] [CrossRef]
- Velev, O.D.; Jede, T.A.; Lobo, R.F.; Lenhoff, A.M. Porous silica via colloidal crystallization. Nature 1997, 389, 447–448. [Google Scholar] [CrossRef]
- Harkins, W.D. A general theory of the mechanism of emulsion polymerization. J. Am. Chem. Soc. 1947, 69, 1428–1444. [Google Scholar] [CrossRef]
- Jiang, S.; Sudol, E.D.; Dimonie, V.L.; El-Aasser, M.S. Seeding as a means of controlling particle size in dispersion polymerization. J. Appl. Polym. Sci. 2008, 108, 4096–4107. [Google Scholar] [CrossRef]
- Hartlen, K.D.; Athanasopoulos, A.P.T.; Kitaev, V. Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays. Langmuir 2008, 24, 1714–1720. [Google Scholar] [CrossRef]
- Lin, J.; Zhao, L.S.; Zheng, Y.; Xiao, Y.H.; Yu, G.T.; Zheng, Y.; Chen, W.; Jiang, L.L. Facile strategy to extend stability of simple component-alumina-supported palladium catalysts for efficient methane combustion. ACS Appl. Mater. Interfaces 2020, 12, 56095–56107. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Chen, Y.L.; Liu, X.J.; Chen, X.H.; Zheng, Y.; Huang, F.; Xiao, Y.H.; Zheng, Y.; Jiang, L.L. Microstructural property regulation and performance in methane combustion reaction of ordered mesoporous alumina supported palladium-cobalt bimetallic catalysts. Appl. Catal. B 2020, 263, 118269. [Google Scholar] [CrossRef]
- Ryoo, R.; Joo, S.H.; Jun, S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 1999, 103, 7743–7746. [Google Scholar] [CrossRef]
- Yan, H.W.; Blanford, C.F.; Holland, B.T.; Smyrl, W.H.; Stein, A. General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion. Chem. Mater. 2000, 12, 1134–1141. [Google Scholar] [CrossRef]
- Sadakane, M.; Horiuchi, T.; Kato, N.; Takahashi, C.; Ueda, W. F Facile preparation of three-dimensionally ordered macroporous alumina, iron oxide, chromium oxide, manganese oxide, and their mixed-metal oxides with high porosity. Chem. Mater. 2007, 19, 5779–5785. [Google Scholar] [CrossRef]
- Xu, J.F.; Liu, J.; Zhao, Z.; Xu, C.M.; Zheng, J.X.; Duan, A.J.; Jiang, G.Y. Easy synthesis of three-dimensionally ordered macroporous La1−xKxCoO3 catalysts and their high activities for the catalytic combustion of soot. J. Catal. 2011, 282, 1–12. [Google Scholar] [CrossRef]
- Arandiyan, H.; Dai, H.X.; Deng, J.G.; Wang, Y.; Sun, H.Y.; Xie, S.H.; Bai, B.Y.; Liu, Y.X.; Ji, K.M.; Li, J.H. Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 supported Ag nanoparticles for the combustion of methane. J. Phys. Chem. C 2014, 118, 14913–14928. [Google Scholar] [CrossRef]
- Wang, Z.W.; Deng, J.G.; Liu, Y.X.; Yang, H.G.; Xie, S.H.; Wu, Z.X.; Dai, H.X. Three-dimensionally ordered macroporous CoCr2O4-supported Au–Pd alloy nanoparticles: Highly active catalysts for methane combustion. Catal. Today 2017, 281, 467–476. [Google Scholar] [CrossRef]
- Wang, Y.; Arandiyan, H.; Scott, J.; Akia, M.; Dai, H.X.; Deng, J.G.; Aguey-Zinsou, K.-F.; Amal, R. High performance Au–Pd supported on 3D hybrid strontium-substituted lanthanum manganite perovskite catalyst for methane combustion. ACS Catal. 2016, 6, 6935–6947. [Google Scholar] [CrossRef]
- Xu, P.; Zhao, X.T.; Zhang, X.; Bai, L.; Chang, H.Q.; Liu, Y.X.; Deng, J.G.; Guo, G.S.; Dai, H.X. Three-dimensionally ordered macroporous LaMnAl11O19- supported Pd nanocatalysts highly active for methane combustion. Mol. Catal. 2017, 439, 200–210. [Google Scholar] [CrossRef]
- Li, X.Y.; Liu, Y.X.; Deng, J.G.; Xie, S.H.; Zhao, X.T.; Zhang, Y.; Zhang, K.F.; Arandiyan, H.; Guo, G.S.; Dai, H.X. Enhanced catalytic performance for methane combustion of 3DOM CoFe2O4 by co-loading MnOxand Pd–Pt alloy nanoparticles. Appl. Surf. Sci. 2017, 403, 590–600. [Google Scholar] [CrossRef]
- Pei, W.B.; Liu, Y.X.; Deng, J.G.; Zhang, K.F.; Hou, Z.Q.; Zhao, X.T.; Dai, H.X. Partially embedding Pt nanoparticles in the skeleton of 3DOM Mn2O3: An effective strategy for enhancing catalytic stability in toluene combustion. Appl. Catal. B 2019, 256, 117814. [Google Scholar] [CrossRef]
- Pei, W.B.; Dai, L.Y.; Liu, Y.X.; Deng, J.G.; Jing, L.; Zhang, K.F.; Hou, Z.Q.; Han, Z.; Rastegarpanah, A.; Dai, H.X. PtRu nanoparticles partially embedded in the 3DOM Ce0.7Zr0.3O2 skeleton: Active and stable catalysts for toluene combustion. J. Catal. 2020, 385, 274–288. [Google Scholar] [CrossRef]
- Han, Z.; Fang, J.Y.; Xie, S.H.; Deng, J.G.; Liu, Y.X.; Dai, H.X. AuRu/ Meso -Mn2O3: A Highly Active and Stable Catalyst for Methane Combustion. IOP Conf. Ser. Mater. Sci. Eng. 2018, 359, 012022. [Google Scholar] [CrossRef]
- Lou, Y.; Ma, J.; Hu, W.D.; Dai, Q.G.; Wang, L.; Zhan, W.C.; Guo, Y.L.; Cao, X.-M.; Guo, Y.; Hu, P.; et al. Low-temperature methane combustion over Pd/H-ZSM-5: Active Pd sites with specific electronic properties modulated by acidic sites of H-ZSM-5. ACS Catal. 2016, 6, 8127–8139. [Google Scholar] [CrossRef]
- Petrov, A.W.; Ferri, D.; Kröcher, O.; van Bokhoven, J.A. Design of stable palladium-based zeolite catalysts for complete methane oxidation by postsynthesis zeolite modification. ACS Catal. 2019, 9, 2303–2312. [Google Scholar] [CrossRef]
- Luo, L.; Wang, S.; Fan, C.; Yang, L.; Wu, Z.W.; Qin, Z.F.; Zhu, H.Q.; Fan, W.B.; Wang, J.G. Promoting effect of alkali metal cations on the catalytic performance of Pd/H-ZSM-5 in the combustion of lean methane. Appl. Catal. A 2020, 602, 117678. [Google Scholar] [CrossRef]
- Chen, J.J.; Giewont, K.; Walker, E.A.; Lee, J.; Niu, Y.B.; Kyriakidou, E.A. Cobalt-induced PdO formation in low-loading Pd/BEA catalysts for CH4 oxidation. ACS Catal. 2021, 11, 13066–13076. [Google Scholar] [CrossRef]
- Han, Z.; Dai, L.Y.; Liu, Y.X.; Deng, J.G.; Jing, L.; Zhang, Y.X.; Zhang, K.F.; Zhang, X.; Hou, Z.Q.; Pei, W.B.; et al. AuPd/Co3O4/3DOM MnCo2O4: Highly active catalysts for methane combustion. Catal. Today 2021, 376, 134–143. [Google Scholar] [CrossRef]
- Chen, C.-Q.; Li, W.; Cao, C.-Y.; Song, W.-G. Enhanced catalytic activity of perovskite oxide nanofibers for combustion of methane in coal mine ventilation air. J. Mater. Chem. 2010, 20, 6968. [Google Scholar] [CrossRef]
- Arandiyan, H.; Scott, J.; Wang, Y.; Dai, H.X.; Sun, H.Y.; Amal, R. Meso-molding three-dimensional macroporous perovskites: A new approach to generate high-performance nanohybrid catalysts. ACS Appl. Mater. Interfaces 2016, 8, 2457–2463. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Dai, H.X.; Zhang, L.; Deng, J.G.; Liu, Y.X.; Zhang, H.; Jiang, H.Y.; He, H. PMMA-templating preparation and catalytic properties of high-surface-area three-dimensional macroporous La2CuO4 for methane combustion. Catal. Today 2011, 175, 209–215. [Google Scholar] [CrossRef]
- Gao, Q.X.; Wang, X.F.; Wu, X.C.; Tao, Y.R.; Zhu, J.J. Mesoporous zirconia nanobelts: Preparation, characterization and applications in catalytical methane combustion. Microporous Mesoporous Mater. 2011, 143, 333–340. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Deng, J.G.; Zhang, L.; Qiu, W.G.; Dai, H.X.; He, H. AuOx/Ce0.6Zr0.3Y0.1O2 nano-sized catalysts active for the oxidation of methane. Catal. Today 2008, 139, 29–36. [Google Scholar] [CrossRef]
- Zhao, X.T.; Zhang, R.; Liu, Y.X.; Deng, J.G.; Xu, P.; Yang, J.; Han, Z.; Hou, Z.Q.; Dai, H.X.; Au, C.-T. In-situ reduction-derived Pd/3DOM La0.6Sr0.4MnO3: Good catalytic stability in methane combustion. Appl. Catal. A 2018, 568, 202–212. [Google Scholar] [CrossRef]
- Guo, G.S.; Lian, K.; Gu, F.B.; Han, D.M.; Wang, Z.H. Three dimensionally ordered macroporous Pd−LaMnO3 self-regeneration catalysts for methane combustion. Chem. Commun. 2014, 50, 13575–13577. [Google Scholar] [CrossRef] [PubMed]
- Saalfrank, J.W.; Maier, W.F. Directed evolution of noble-metal-free catalysts for the oxidation of CO at room temperature. Angew. Chem. Int. Ed. 2004, 43, 2028–2031. [Google Scholar] [CrossRef] [PubMed]
- Paredes, J.R.; Díaz, E.; Díez, F.V.; Ordóñez, S. Combustion of methane in lean mixtures over bulk transition-metal oxides: Evaluation of the activity and self-deactivation. Energy Fuels 2009, 23, 86–93. [Google Scholar] [CrossRef]
- Liotta, L.F.; Wu, H.; Pantaleo, G. Co3O4 nanocrystals and Co3O4–MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: A review. Catal. Sci. Technol. 2013, 3, 3085–3102. [Google Scholar] [CrossRef]
- Li, D.Y.; Li, K.Z.; Xu, R.D.; Zhu, X.; Wei, Y.G.; Tian, D.; Cheng, X.M.; Wang, H. Enhanced CH4 and CO oxidation over Ce1−xFexO2−δ hybrid catalysts by tuning the lattice distortion and the state of surface iron species. ACS Appl. Mater. Interfaces 2019, 11, 19227–19241. [Google Scholar] [CrossRef]
- Zhang, K.; Peng, X.B.; Cao, Y.N.; Yang, H.G.; Wang, X.Y.; Zhang, Y.Y.; Zheng, Y.; Xiao, Y.H.; Jiang, L.L. Effect of MnO2 morphology on its catalytic performance in lean methane combustion. Mater. Res. Bull. 2019, 111, 338–341. [Google Scholar] [CrossRef]
- Liotta, L.F.; Di Carlo, G.; Pantaleo, G.; Deganello, G. Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite oxides for methane combustion: Influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture. Appl. Catal. B 2007, 70, 314–322. [Google Scholar] [CrossRef]
- Tao, F.F.; Shan, J.-J.; Nguyen, L.; Wang, Z.Y.; Zhang, S.R.; Zhang, L.; Wu, Z.L.; Huang, W.X.; Zeng, S.B.; Hu, P. Understanding complete oxidation of methane on spinel oxides at a molecular level. Nat. Commun. 2015, 6, 7798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royer, S.; Duprez, D. Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem 2011, 3, 24–65. [Google Scholar] [CrossRef]
- Li, H.F.; Lu, G.Z.; Qiao, D.S.; Wang, Y.Q.; Guo, Y.; Guo, Y.L. Catalytic methane combustion over Co3O4/CeO2 composite oxides prepared by modified citrate sol–gel method. Catal. Lett. 2011, 141, 452–458. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liu, Z.M.; Wei, Z.L.; Du, X.C.; Gong, M.C.; Chen, Y.Q. Preparation of high performance methane combustion catalyst and its application to natural gas catalytic combustion fan-boiler. Chin. J. Catal. 2006, 27, 823–826. [Google Scholar] [CrossRef]
- Yuan, X.; Meng, L.Q.; Xu, Z.W.; Zheng, C.H.; Zhao, H.B. CuO quantum dots supported by SrTiO3 perovskite using the flame spray pyrolysis method: Enhanced activity and excellent thermal resistance for catalytic combustion of CO and CH4. Environ. Sci. Technol. 2021, 55, 14080–14086. [Google Scholar] [CrossRef]
- Rui, Z.B.; Huang, Y.F.; Zheng, Y.; Ji, H.B.; Yu, X. Effect of titania polymorph on the properties of CuO/TiO2 catalysts for trace methane combustion. J. Mol. Catal. A Chem. 2013, 372, 128–136. [Google Scholar] [CrossRef]
- Li, J.H.; Fu, H.J.; Fu, L.X.; Hao, J.M. Complete combustion of methane over indium tin oxides catalysts. Environ. Sci. Technol. 2006, 40, 6455–6459. [Google Scholar] [CrossRef]
- Zeng, S.H.; Fu, X.J.; Zhou, T.Z.; Wang, X.M.; Su, H.Q. Influence of pore distribution on catalytic performance over inverse CeO2/Co3O4 catalysts for CH4/CO2 reforming. Fuel Process. Technol. 2013, 114, 69–74. [Google Scholar] [CrossRef]
- Zarur, A.J.; Ying, J.Y. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature 2000, 403, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Habibi, N.; Arandiyan, H.; Rezaei, M. Mesoporous MgO·Al2O3 nanopowder-supported meso–macroporous nickel catalysts: A new path to high-performance biogas reforming for syngas. RSC Adv. 2016, 6, 29576–29585. [Google Scholar] [CrossRef]
- Wang, Y.J.; Guo, M.N.; Lu, J.Q.; Luo, M.F. Mesoporous alumina supported PdO catalysts for catalytic combustion of methane. Chin. J. Catal. 2014, 32, 1496–1501. [Google Scholar] [CrossRef]
- Zhang, J.J.; Li, J.W.; Zhu, J.Q.; Wang, Y.; Chen, B.H. Effect of promoter on the performance of Cu-Mn complex oxide monolithic catalysts for lean methane catalytic combustion. Chin. J. Catal. 2011, 32, 1380–1386. [Google Scholar] [CrossRef]
- Du, X.C.; Liu, Z.M.; Luo, Y.Y.; Chen, Y.Q.; Gong, M.C. Methane combustion over Co3O4/YSZ−γ-Al2O3 + CYZ monolithic catalysts. Acta Chim. Sin. 2005, 63, 1651–1655. [Google Scholar]
- Chen, Q.Q.; Zhang, L.J.; Chen, Y.Q.; Wang, M.; Gong, M.C. Effect of Ce0.67Zr0.33O2 on Catalytic properties of Fe2O3/Al2O3 catalyst for methane combustion. Chem. J. Chin. Univ. 2005, 26, 1704–1708. [Google Scholar]
- Chen, Y.D.; Zhu, Y.; Wang, J.L.; Chen, Y.Q.; Gong, M.C. Influence of CeZrYLaO solid solution on performance of Fe2O3-based monolith catalyst for catalytic combustion of methane. Chin. J. Inorg. Chem. 2009, 25, 1771–1778. [Google Scholar]
- Wang, Y.; Shang, H.Y.; Xu, H.D.; Gong, M.C.; Chen, Y.Q. Effects of ZnO content on the performance of Pd/Zr0.5Al0.5O1.75 catalysts used in lean-burn natural gas vehicles. Chin. J. Catal. 2014, 35, 1157–1165. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, H.D.; Shang, H.Y.; Gong, M.C.; Chen, Y.Q. Excellent complete conversion activity for methane and CO of Pd/TiO2−Zr0.5Al0.5O1.75 catalyst used in lean-burn natural gas vehicles. J. Energy Chem. 2014, 23, 461–467. [Google Scholar] [CrossRef]
- Svensson, E.E.; Nassos, S.; Boutonnet, M.; Järås, S.G. M Microemulsion synthesis of MgO-supported LaMnO3 for catalytic combustion of methane. Catal. Today 2006, 117, 484–490. [Google Scholar] [CrossRef]
- Thaicharoensutcharittham, S.; Meeyoo, V.; Kitiyanan, B.; Rangsunvigit, P.; Rirksomboon, T. Catalytic combustion of methane over NiO/Ce0.75Zr0.25O2 catalyst. Catal. Commun. 2009, 10, 673–677. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Niu, J.R.; Wang, G.Z.; Li, D.; Dai, H.X.; He, H.; Qiu, W.G. Investigation on catalytic behaviors of PdO/nano-Ce0.6Zr0.35Y0.05O2 in methane oxidation. J. Rare Earths 2006, 24, 1–5. [Google Scholar]
- Zhang, Y.J.; Wang, G.Z.; Zhang, L.; Dai, H.X.; He, H.; Zi, X.H. Synthesis, characterization and catalytic properties of three-dimensional wormhole-like mesoporous Ag2O/Ce0.6Zr0.35Y0.05O2 nanoparticles in methane oxidation. Chem. J. Chin. Univ. 2007, 28, 1929–1934. [Google Scholar]
- Zavyalova, U.; Scholz, P.; Ondruschka, B. Influence of cobalt precursor and fuels on the performance of combustion synthesized Co3O4/γ-Al2O3 catalysts for total oxidation of methane. Appl. Catal. A Gen. 2007, 323, 226–233. [Google Scholar] [CrossRef]
- Zheng, Y.N.; Li, K.Z.; Wang, H.; Zhu, X.; Wei, Y.G.; Zheng, M.; Wang, Y.H. Enhanced activity of CeO2–ZrO2 solid solutions for chemical-looping reforming of methane via tuning the macroporous structure. Energ. Fuel. 2016, 30, 638–647. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Deng, J.G.; Dai, H.X.; He, H. Hydrothermal fabrication and catalytic properties of YBa2Cu3O7 single crystallites for methane combustion. Catal. Lett. 2010, 135, 126–134. [Google Scholar] [CrossRef]
- Peng, H.G.; Rao, C.; Zhang, N.; Wang, X.; Liu, W.M.; Mao, W.T.; Han, L.; Zhang, P.F.; Dai, S. Confined ultrathin Pd-Ce nanowires with outstanding moisture and SO2 tolerance in methane combustion. Angew. Chem. Int. Ed. 2018, 57, 8953–8957. [Google Scholar] [CrossRef]
- Cargnello, M.; Jaén, J.J.D.; Garrido, J.C.H.; Bakhmutsky, K.; Montini, T.; Gámez, J.J.C.; Gorte, R.J.; Fornasiero, P. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 2012, 337, 713–717. [Google Scholar] [CrossRef]
- Arandiyan, H.; Dai, H.X.; Ji, K.M.; Sun, H.Y.; Li, J.H. Pt nanoparticles embedded in colloidal crystal template derived 3D ordered macroporous Ce0.6Zr0.3Y0.1O2: Highly efficient catalysts for methane combustion. ACS Catal. 2015, 5, 1781–1793. [Google Scholar] [CrossRef]
- Xu, P.; Wu, Z.X.; Deng, J.G.; Liu, Y.X.; Xie, S.H.; Guo, G.S.; Dai, H.X. Catalytic performance enhancement by alloying Pd with Pt on ordered mesoporous manganese oxide for methane combustion. Chin. J. Catal. 2017, 38, 92–105. [Google Scholar] [CrossRef]
- Yao, Y.X.; Giapis, K.P. Direct hydrogenation of dinitrogen and dioxygen via Eley–Rideal reactions. Angew. Chem. 2016, 128, 11767–11771. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.V.; Porkodi, K.; Rocha, F. Langmuir–Hinshelwood kinetics—A theoretical study. Catal. Commun. 2008, 9, 82–84. [Google Scholar] [CrossRef]
- Widmann, D.; Behm, R.J. Dynamic surface composition in a Mars-van Krevelen type reaction: CO oxidation on Au/TiO2. J. Catal. 2018, 357, 263–273. [Google Scholar] [CrossRef]
- Jørgensen, M.; Grönbeck, H. First-principles microkinetic modeling of methane oxidation over Pd(100) and Pd(111). ACS Catal. 2016, 6, 6730–6738. [Google Scholar] [CrossRef]
- Tang, Z.Y.; Zhang, T.; Luo, D.C.; Wang, Y.J.; Hu, Z.; Yang, R.T. Catalytic combustion of methane: From mechanism and materials properties to catalytic performance. ACS Catal. 2022, 12, 13457–13474. [Google Scholar] [CrossRef]
- Stotz, H.; Maier, L.; Boubnov, A.; Gremminger, A.T.; Grunwaldt, J.-D.; Deutschmann, O. Surface reaction kinetics of methane oxidation over PdO. J. Catal. 2019, 370, 152–175. [Google Scholar] [CrossRef]
- Li, X.S.; Wang, X.; Roy, K.; Bokhoven, J.A.; Artiglia, L. Role of water on the structure of palladium for complete oxidation of methane. ACS Catal. 2020, 10, 5783–5792. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Dai, L.Y.; Deng, J.G.; Zhao, G.F.; Jing, L.; Wang, Y.S.; Yu, X.H.; Gao, R.Y.; Tian, X.R.; Dai, H.X.; et al. Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst. Angew. Chem. Int. Ed. 2022, 134, e202201655. [Google Scholar] [CrossRef]
- Huang, W.X.; Zhang, X.R.; Yang, A.C.; Goodman, E.D.; Kao, K.C.; Cargnello, M. Enhanced catalytic activity for methane combustion through in situ water sorption. ACS Catal. 2020, 10, 8157–8167. [Google Scholar] [CrossRef]
- Yang, W.W.; Gong, J.; Wang, X.; Bao, Z.H.; Guo, Y.B.; Wu, Z.L. A review on the impact of SO2 on the oxidation of NO, hydrocarbons, and CO in diesel emission control catalysis. ACS Catal. 2021, 11, 12446–12468. [Google Scholar] [CrossRef]
- Auvinen, P.; Hirvi, J.T.; Kinnunen, N.M.; Suvanto, M. PdSO4 surfaces in methane oxidation catalysts: DFT studies on stability, reactivity, and water inhibition. ACS Catal. 2020, 10, 12943–12953. [Google Scholar] [CrossRef]
- Somorjai, G. On the mechanism of sulfur poisoning of platinum catalysts. J. Catal. 1972, 27, 453–456. [Google Scholar] [CrossRef] [Green Version]
- Harris, P.J.F. Sulphur-induced faceting of platinum catalyst particles. Nature 1986, 323, 792–794. [Google Scholar] [CrossRef]
- Kitchin, J.R.; Nørskov, J.K.; Barteau, M.A.; Chen, J.G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 2004, 120, 10240–10246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Catalyst | Template | Pore Diameter (nm) | BET Surface Area (m2/g) | CH4 Concentration (vol%) | SV (mL/(g h)) | T50% (℃) | T90% (℃) | Ref. |
---|---|---|---|---|---|---|---|---|
meso-Co3O4 | KIT-6 | 14.4 | 106.3 | 2.5 | 20,000 | 345 | 440 | [28] |
meso-Mn2O3 | KIT-6 | 11.0 | 104.8 | 2.5 | 20,000 | 486 | >500 | [54] |
3DOM CeO2 | PMMA | 155–165 | 41.2 | 2.5 | 40,000 | 599 | >600 | [27] |
3DOM CoFe2O4 | PMMA | 83–123 | 20.0 | 2.5 | 20,000 | 500 | 598 | [51] |
3DOM CoCr2O4 | PMMA | 120–180 | 33.2 | 2.5 | 20,000 | 370 | 440 | [48] |
3DOM MnCo2O4 | PMMA | 180–200 | 26.5 | 2.5 | 40,000 | 435 | 524 | [59] |
LaMnO3 nanofibers | PVP | 100–200 | 55.2 | 0.2 | 104,000 | 450 | 520 | [61] |
LaFeO3 nanofibers | PVP | 100–200 | 40.1 | 0.2 | 104,000 | 470 | 540 | [61] |
LaCoO3 nanofibers | PVP | 100–200 | 57.3 | 0.2 | 104,000 | 472 | 510 | [61] |
La0.8Sr0.2CoO3 nanofibers | PVP | 100–200 | 63.6 | 0.2 | 104,000 | 400 | 470 | [61] |
La0.9Ce0.1CoO3 nanofibers | PVP | 100–200 | 60.8 | 0.2 | 104,000 | 415 | 490 | [61] |
3DOM LaCeCoO3 | MTMP | 195–205 | 31.5 | 2.0 | 30,000 | 479 | 555 | [60] |
3DOM La2CuO4 | PMMA | 68–136 | 46 | 2.0 | 50,000 | 560 | 672 | [62] |
Meso-LaCoO3 | Vinyl silica | 6.7 | 96.7 | 0.8 | 60,000 | 470 | 600 | [6] |
3DOM LaMnPdO3 | PMMA | 180 ± 10 | 31 | 1.0 | 32,000 | 412 | 504 | [66] |
Meso-Zr0.8Fe0.2O2 | P-123 | 3.4–3.6 | 51.2 | 1.99 | 25,000 | 650 | 750 | [63] |
3DOM La0.6Sr0.4MnO3 | PMMA | 180–195 | 24.3 | 2.5 | 40,000 | 479 | 592 | [65] |
3DOM La0.6Sr0.4MnO3 | PMMA | 140–153 | 32.4 | 5.0 | 50,000 | 384 | 508 | [49] |
3DOM La0.6Sr0.4MnPd0.04O3 | PMMA | 180–190 | 24.2 | 2.5 | 40,000 | 458 | 550 | [65] |
3DOM LaMnAl11O19 | PMMA | 116 | 27.2 | 2.5 | 20,000 | 535 | 625 | [50] |
Meso-Ce0.6Zr0.3Y0.1O2 | CTAB | 4.4 | 90 | 2.5 | 50,000 | 840 | 870 | [64] |
Catalyst | Pore Size (nm) | Surface Area (m2/g) | Loading (wt%) | CH4 Concentration (vol%) | SV (mL/(g h)) | T50% (°C) | T90% (°C) | Ref. |
---|---|---|---|---|---|---|---|---|
Co3O4/CeO2 | – | 64.0 | 7.7 | 1.0 | 30,000 | 401 | 490 | [75] |
Co3O4/Fe2O3 | – | – | 18 | 1.0 | 12,000 | 480 | 500 | [76] |
Co3O4/Mn2O3 | – | – | 18 | 1.0 | 12,000 | 400 | 416 | [76] |
Co3O4/Fe2O3/Mn2O3 | – | – | 18 | 1.0 | 12,000 | 358 | 378 | [76] |
Co3O4/MnOx | – | 147.65 | 5:1 | 1.0 | 36,000 | 293 | 320 | [9] |
CuO/SrTiO3 | – | 49 | 15.53 | 2.0 | 60,000 | 527 | 645 | [77] |
CuO/TiO2 | 18.9 | 25.7 | 7 | 1.0 | 30,000 | 450 | 550 | [78] |
SnO2/In2O3 | – | 55.47 | 20 | 1.0 | 30,000 | 463 | 505 | [79] |
Co3O4/γ-Al2O3 | – | 150 | 10 | 1.0 | 15,000 | 337 | 395 | [94] |
CeO2/ZrO2 | 100–200 | 48 | 20 | 5.0 | 30,000 | 450 | >450 | [95] |
Porous CeO2/Co3O4 | 14 | 91 | 40.8 | 1.0 | 8000 | <700 | 700 | [80] |
CeO2/BaAl12O19 | – | 160 | 25 | 1.0 | 60,000 | 510 | 575 | [81] |
Meso-MgO/Al2O3 | 7.62 | 301.6 | 2.0 | 1.0 | 18,000 | 600 | >700 | [82] |
Meso-Fe2O3/ZrO2 | 3.4 | 55.0 | 0.25 | 1.99 | 25,000 | 580 | 650 | [63] |
PdO/Meso-Al2O3 | – | 245 | 0.98 | 0.5 | 6000 | 350 | 400 | [83] |
Co3O4/Y2O3–ZrO2–γ-Al2O3+CeO2–Y2O3–ZrO2 | – | 115.6 | 20 | 1.0 | 20,000 | 402 | 436 | [85] |
LaMnO3/MgO | – | 11.5 | 20 | 1.5 | 100,000 | 670 | 750 | [90] |
NiO/Ce0.75Zr0.25O2 | – | 77.9 | 5 | 3.0 | 39,000 | 500 | 560 | [91] |
Y2O3/YBa2Cu3O7 | – | 6.1 | – | 0.1 | 50,000 | 649 | 711 | [96] |
Fe2O3/Ce0.67Zr0.33O2–Al2O3 | – | 164.5 | 8 | 1.0 | 15,000 | 515 | 530 | [86] |
MnOx/3DOM CoFe2O4 | 83–123 | 21.1 | 6.7 | 2.5 | 20,000 | 425 | 520 | [51] |
Co3O4/3DOM MnCo2O4 | 180–200 | 41.1 | 18.2 | 2.5 | 40,000 | 350 | 480 | [59] |
AuOx/meso-Ce0.6Zr0.3Y0.1O2 | 5.0 | 88 | 0.2 | 2.5 | 50,000 | 600 | 660 | [64] |
PdO/meso-Ce0.2Zr0.35Y0.05O2 | 3–7 | 120.1 | 4.0 | 2.5 | 50,000 | 320 | 360 | [92] |
Ag2O/meso-Ce0.2Zr0.35Y0.05O2 | 6.5 | 65 | 2.0 | 2.5 | 50,000 | 540 | 600 | [93] |
Cu–Mn–O/Al2O3/COR | 3.7 | 30.6 | 13.1 | 1.0 | 20,000 | 468 | >700 | [84] |
Cu–Mn–Ce–O/Al2O3/COR | 4.0 | 34.6 | 13.1 | 1.0 | 20,000 | 420 | 640 | [84] |
Cu–Mn–Zr–O/Al2O3/COR | 4.2 | 37.4 | 13.1 | 1.0 | 20,000 | 400 | 581 | [84] |
Cu–Mn–La–O/Al2O3/COR | 3.8 | 31.6 | 13.1 | 1.0 | 20,000 | 440 | 630 | [84] |
Cu–Mn–Ce–Zr–O/Al2O3/COR | 4.1 | 34.3 | 13.1 | 1.0 | 20,000 | 430 | 650 | [84] |
Fe2O3/Ce0.35Zr0.55Y0.07La0.03O1.95/LaAl2O3 | – | 83 | 8 | 1.0 | 50,000 | 516 | 565 | [87] |
Catalyst | Pore Size (nm) | Surface Area (m2/g) | Mean Noble Metal Particle Size (nm) | Noble Metal Loading (wt%) | CH4 Concentration (vol%) | SV (mL/(g h)) | T50% (℃) | T90% (℃) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Meso-Pd2.41Pt | 18.1 | 25.5 | 7.1 | – | 2.5 | 100,000 | 303 | 322 | [29] |
Meso-Pd | 19.8 | 30.2 | 9.4 | – | 2.5 | 100,000 | 350 | 368 | [29] |
Meso-Pt | 13.7 | 31.1 | 6.8 | – | 2.5 | 100,000 | 372 | 506 | [29] |
Porous Pd/CeO2/Al2O3 | 15 | 43 | 2.2 | 1 | 0.5 | 200,000 | 250 | 300 | [98] |
Pd/meso-Co3O4 | 13.6 | 108.1 | 4.5 | 1.58 | 2.5 | 20,000 | 288 | 334 | [28] |
Au/meso-Co3O4 | 13.4 | 109.6 | 2.7 | 1.48 | 2.5 | 20,000 | 312 | 378 | [28] |
AuPd/meso-Co3O4 | 13.5 | 114.5 | 3.5 | 1.94 | 2.5 | 20,000 | 280 | 324 | [28] |
Pd/meso-Mn2O3 | 9.3 | 89.9 | 2.8 | 1.40 | 2.5 | 20,000 | 380 | 460 | [100] |
Pt/meso-Mn2O3 | 9.9 | 83.5 | 2.5 | 1.42 | 2.5 | 20,000 | 400 | 495 | [100] |
1.41PdPt/meso-Mn2O3 | 9.6 | 85.1 | 2.5 | 1.42 | 2.5 | 20,000 | 345 | 425 | [100] |
Au/meso-Mn2O3 | 10.1 | 100.6 | 2–5 | 0.49 | 2.5 | 20,000 | 480 | 580 | [54] |
Ru/meso-Mn2O3 | 10.0 | 99.7 | 2–5 | 0.48 | 2.5 | 20,000 | 465 | 530 | [54] |
AuRu/meso-Mn2O3 | 9.9 | 98.8 | 2–5 | 0.97 | 2.5 | 20,000 | 470 | 540 | [54] |
AuPd1.95/3DOM CoCr2O4 | 120–180 | 34.9 | 3.3 | 1.93 | 2.5 | 20,000 | 353 | 394 | [48] |
Au/3DOM La0.6Sr0.4MnO3 | 130–145 | 32.6 | 2.4 | 0.94 | 5.0 | 50,000 | 375 | 402 | [49] |
Pd/3DOM La0.6Sr0.4MnO3 | 135–150 | 32.0 | 2.3 | 0.85 | 5.0 | 50,000 | 358 | 378 | [49] |
AuPd/3DOM La0.6Sr0.4MnO3 | 128–135 | 33.8 | 2.2 | 2.92 | 5.0 | 50,000 | 314 | 336 | [49] |
Pt/3DOM LaMnAl11O19 | 113 | 27.6 | 4.4 | 0.94 | 2.5 | 20,000 | 437 | 515 | [20] |
PdPt/3DOM LaMnAl11O19 | 107 | 28.9 | 4.3 | 1.14 | 2.5 | 20,000 | 487 | 549 | [20] |
Pd/3DOM LaMnAl11O19 | 97 | 28.8 | 2–5 | 0.97 | 2.5 | 20,000 | 308 | 343 | [50] |
Pt/MnOx/3DOM CoFe2O4 | 83–123 | 19 | 2.3 | 0.93 | 2.5 | 20,000 | 420 | 527 | [51] |
Pd/MnOx/3DOM CoFe2O4 | 83–123 | 19.8 | 2.2 | 0.89 | 2.5 | 20,000 | 409 | 491 | [51] |
PdPt/MnOx/3DOM CoFe2O4 | 83–123 | 27.8 | 3.0 | 2.10 | 2.5 | 20,000 | 301 | 372 | [51] |
Au–Pd/3DOM Mn2O3 | 180–195 | 37.7 | 3.7 | 1.97 | 2.5 | 40,000 | 393 | 440 | [25] |
Au–Pd–Co/3DOM Mn2O3 | 175–205 | 38.1 | 3.6 | 1.94 | 2.5 | 40,000 | 365 | 442 | [25] |
Au–Pd/3DOM Co3O4 | 115–135 | 35 | 2.6 | 1.99 | 2.5 | 20,000 | 337 | 379 | [26] |
Au–Pd–CoO/3DOM Co3O4 | 130–140 | 35 | 2.7 | 1.99 | 2.5 | 20,000 | 312 | 341 | [26] |
Au–Pd–CoO/3DOM Mn2O3 | 175–185 | 47 | 3.1 | 1.97 | 2.5 | 20,000 | 430 | 500 | [26] |
Au–Pd–CoO/3DOM Al2O3 | 150–160 | 27 | 3.0 | 1.95 | 2.5 | 20,000 | 543 | 625 | [26] |
Co/3DOM CeO2 | 150–165 | 37.9 | 3.5 | 0.71 | 2.5 | 40,000 | 590 | >600 | [27] |
CoPd/3DOM CeO2 | 150–160 | 36.7 | 4.1 | 0.77 | 2.5 | 40,000 | 430 | 480 | [27] |
Ag/3DOM La0.6Sr0.4MnO3 | 101 | 41.5 | 3.2 | 3.63 | 2.0 | 30,000 | 454 | 524 | [47] |
AuPd/Co3O4/3DOM MnCo2O4 | 180–200 | 53.1 | 4.6 | 1.98 | 2.5 | 40,000 | 340 | 408 | [59] |
Pd/3DOM La0.6Sr0.4MnO3 | 175–185 | 23.6 | 5.5 | 1.18 | 2.5 | 40,000 | 489 | 583 | [65] |
Pt/3DOM Ce0.6Zr0.3Y0.1O2 | 120–147 | 84–95 | 2v5 | 0.6 | 2.0 | 30,000 | 489 | 543 | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Liu, Y.; Deng, J.; Jing, L.; Dai, H. Methane Combustion over the Porous Oxides and Supported Noble Metal Catalysts. Catalysts 2023, 13, 427. https://doi.org/10.3390/catal13020427
Lin H, Liu Y, Deng J, Jing L, Dai H. Methane Combustion over the Porous Oxides and Supported Noble Metal Catalysts. Catalysts. 2023; 13(2):427. https://doi.org/10.3390/catal13020427
Chicago/Turabian StyleLin, Hongxia, Yuxi Liu, Jiguang Deng, Lin Jing, and Hongxing Dai. 2023. "Methane Combustion over the Porous Oxides and Supported Noble Metal Catalysts" Catalysts 13, no. 2: 427. https://doi.org/10.3390/catal13020427
APA StyleLin, H., Liu, Y., Deng, J., Jing, L., & Dai, H. (2023). Methane Combustion over the Porous Oxides and Supported Noble Metal Catalysts. Catalysts, 13(2), 427. https://doi.org/10.3390/catal13020427