Cationic Covalent Triazine Network: A Metal-Free Catalyst for Effective Acetylene Hydrochlorination
Abstract
:1. Introduction
2. Results
2.1. Catalytic Performance of cCTN-700
2.2. Structure–Activity Relationship
2.3. Active Sites and Mechanism of Catalytic Acetylene Hydrochlorination
3. Materials and Methods
3.1. Catalyst Precursor Synthesis
3.1.1. Synthesis of Precursor Catalyst cCTN:Cl
3.1.2. Synthesis of Precursor Covalent Triazine Networks (CTN) [30,31]
3.1.3. Preparation of Catalyst cCTN-700
3.1.4. Preparation of Catalyst CTF-700
3.2. Catalyst Characterization
3.3. Catalytic Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, S.; Xu, H.; Fan, Y.; Liu, Z.; Hong, Q.; Huang, W.; Qu, Z.; Yan, N. Construction of a Thermally Stable Low-HgCl2 Catalyst via Chalcogen Bonding and Its Enhanced Activity in Acetylene Hydrochlorination. Ind. Eng. Chem. Res. 2022, 61, 17057–17064. [Google Scholar] [CrossRef]
- Chao, S.; Zou, F.; Wan, F.; Dong, X.; Wang, Y.; Wang, Y.; Guan, Q.; Wang, G.; Li, W. Nitrogen-doped Carbon Derived from ZIF-8 as a High-performance Metal-free Catalyst for Acetylene Hydrochlorination. Sci. Rep. 2017, 7, 39789. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Dai, B.; Wang, X.; Xu, L.; Zhu, M. Hydrochlorination of Acetylene to Vinyl Chloride Monomer over Bimetallic Au–La/SAC Catalysts. J. Ind. Eng. Chem. 2012, 18, 49–54. [Google Scholar] [CrossRef]
- Hutchings, G.J.; Haruta, M. A Golden Age of Catalysis: A Perspective. Appl. Catal. A 2005, 291, 2–5. [Google Scholar] [CrossRef]
- Li, G.B.; Li, W.; Zhang, J.L. Non-mercury Catalytic Acetylene Hydrochlorination over Activated Carbon-Supported Au Catalysts Promoted by CeO2. Catal. Sci. Technol. 2016, 6, 1821–1828. [Google Scholar] [CrossRef]
- Huang, C.; Zhu, M.; Kang, L.; Li, X.; Dai, B. Active Carbon Supported TiO2-AuCl3/AC Catalyst with Excellent Stability for Acetylene Hydrochlorination Reaction. Chem. Eng. J. 2014, 242, 69–75. [Google Scholar] [CrossRef]
- Huang, C.F.; Zhu, M.Y.; Kang, L.H.; Dai, B. A Novel High-Stability Au(III)/Schiff-Based Catalyst for Acetylene Hydrochlorination Reaction. Cat. Commun. 2014, 54, 61–65. [Google Scholar] [CrossRef]
- Zhao, J.; Gu, S.C.; Xu, X.L.; Zhang, T.T.; Yu, Y.; Di, X.X.; Ni, J.; Pan, Z.Y.; Li, X.N. Supported Ionic-Liquid-Phase-Stabilized Au(III) Catalyst for Acetylene Hydrochlorination. Catal. Sci. Technol. 2016, 6, 3263–3270. [Google Scholar] [CrossRef]
- Hu, J.Y.; Yang, Q.W.; Yang, L.F.; Zhang, Z.G.; Su, B.G.; Bao, Z.B.; Ren, Q.L.; Xing, H.B.; Dai, S. Confining Noble Metal (Pd, Au, Pt) Nanoparticles in Surfactant Ionic Liquids: Active Non-mercury Catalysts for Hydrochlorination of Acetylene. ACS Catal. 2015, 5, 6724–6731. [Google Scholar] [CrossRef]
- Zhang, H.; Dai, B.; Wang, X.; Li, W.; Han, Y.; Gu, J.; Zhang, J. Non-mercury Catalytic Acetylene Hydrochlorination over Bimetallic Au-Co (III)/SAC Catalysts for Vinyl Chloride Monomer Production. Green Chem. 2013, 15, 829–836. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Li, W.; Li, X.Q.; Zhao, W.; Gu, J.J.; Qi, X.Y.; Dong, Y.Z.; Dai, B.; Zhang, J.L. Non-mercury Catalytic Acetylene Hydrochlorination over Bimetallic Au-Ba (II)/AC Catalysts. Catal. Sci. Technol. 2015, 5, 1870–1877. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Li, W.; Jin, Y.H.; Sheng, W.; Hu, M.C.; Wang, X.Q.; Zhang, J.L. Ru-Co (III)-Cu(II)/SAC Catalyst for Acetylene Hydrochlorination. Appl. Catal. B-Environ. 2016, 189, 56–64. [Google Scholar] [CrossRef]
- Zhao, W.L.; Zhu, M.Y.; Dai, B. The Preparation of Cu-g-C3N4/AC Catalyst for Acetylene Hydrochlorination. Catalysts. 2016, 6, 193. [Google Scholar] [CrossRef] [Green Version]
- Hu, D.; Wang, F.; Wang, J. Bi/AC Modified with Phosphoric Acid as Catalyst in the Hydrochlorination of Acetylene. RSC Adv. 2017, 7, 7567–7575. [Google Scholar] [CrossRef]
- Qi, H.; Li, Q.; Mo, Z.S.; Zhang, X.T.; Song, L.J. MCl2 (M = Hg, Cd, Zn, Mn) Catalysed Hydrochlorination of Acetylene—A Density Functional Theory Study. Mol. Simul. 2017, 43, 28–33. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, Q.; Chen, K.; Wang, Y.; Huang, C.; Dai, H.; Yu, F.; Kang, L.; Dai, B. Development of a Heterogeneous Non-Mercury Catalyst for Acetylene Hydrochlorination. ACS Catal. 2015, 5, 5306–5316. [Google Scholar] [CrossRef]
- Yang, Y.; Lan, G.J.; Wang, X.L.; Li, Y. Direct Synthesis of Nitrogen-Doped Mesoporous Carbons for Acetylene Hydrochlorination. Chin. J. Catal. 2016, 37, 1242–1248. [Google Scholar] [CrossRef]
- Zhang, T.T.; Zhao, J.; Xu, J.T.; Xu, J.H.; Di, X.X.; Li, X.N. Oxygen and Nitrogen-Doped Metal-Free Carbon Catalysts for Hydrochlorination of Acetylene. Chin. J. Chem. Eng. 2016, 24, 484–490. [Google Scholar] [CrossRef]
- Li, X.Y.; Pan, X.L.; Bao, X.H. Nitrogen Doped Carbon Catalyzing Acetylene Conversion to Vinyl Chloride. J. Energy Chem. 2014, 23, 131–135. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, Y.; Zhu, M.Y.; Kang, L.H. C-Doped Boron Nitride Fullerene as a Novel Catalyst for Acetylene Hydrochlorination: A DFT Study. RSC Adv. 2015, 5, 56348–56355. [Google Scholar] [CrossRef]
- Zhang, C.L.; Kang, L.H.; Zhu, M.Y.; Dai, B. Nitrogen-Doped Active Carbon as a Metal-Free Catalyst for Acetylene Hydrochlorination. RSC Adv. 2015, 5, 7461–7468. [Google Scholar] [CrossRef]
- Dai, B.; Chen, K.; Wang, Y.; Kang, L.H.; Zhu, M.Y. Boron and Nitrogen Doping in Graphene for the Catalysis of Acetylene Hydrochlorination. ACS Catal. 2015, 5, 2541–2547. [Google Scholar] [CrossRef]
- Wang, X.; Dai, B.; Wang, Y.; Yu, F. Nitrogen-Doped Pitch-Based Spherical Active Carbon as a Nonmetal Catalyst for Acetylene Hydrochlorination. ChemCatChem 2014, 6, 2339–2344. [Google Scholar] [CrossRef]
- Li, X.; Pan, X.; Yu, L.; Ren, P.; Wu, X.; Sun, L.; Jiao, F.; Bao, X. Silicon Carbide-Derived Carbon Nanocomposite as a Substitute for Mercury in the Catalytic Hydrochlorination of Acetylene. Nat. Commun. 2014, 5, 3688. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Li, B.; Zhang, Q.; Huang, J.Q.; Tian, G.L.; Jia, J.C.; Zhao, M.Q.; Luo, G.H.; Su, D.S.; Wei, F. The Catalytic Pathways of Hydrohalogenation over Metal-Free Nitrogen-Doped Carbon Nanotubes. ChemSusChem 2014, 7, 723–728. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Kang, L.; Zhu, M.; Dai, B. A Novel, Non-metallic Graphitic Carbon Nitride Catalyst for Acetylene Hydrochlorination. J. Catal. 2014, 311, 288–294. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, P.L.; Zhang, Y.G.; Wang, L.L.; Zhang, L.T.; Zhang, L.; Xu, L.; Liu, L. Biomass Based Nitrogen-Doped Structure-Tunable Versatile Porous Carbon Materials. J. Mater. Chem. A 2017, 5, 12958–12968. [Google Scholar] [CrossRef]
- Buyukcakir, O.; Je, S.H.; Talapaneni, S.N.; Kim, D.; Coskun, A. Charged Covalent Triazine Frameworks for CO2 Capture and Conversion. ACS Appl. Mater. Interfaces 2017, 9, 7209–7216. [Google Scholar] [CrossRef]
- Peng, L.Z.; Liu, P.; Cheng, Q.Q.; Hu, W.J.; Liu, Y.A.; Li, J.S.; Jiang, B.; Jia, X.S.; Yang, H.; Wen, K. Highly Effective Electrosynthesis of Hydrogen Peroxide from Oxygen on a Redox-Active Cationic Covalent Triazine Network. Chem. Commun. 2018, 54, 4433–4436. [Google Scholar] [CrossRef]
- Niyogi, S.; Bekyarova, E.; Itkis, M.E.; Zhang, H.; Shepperd, K.; Hicks, J.; Sprinkle, M.; Berger, C.; Lau, C.N.; de Heer, W.A.; et al. Spectroscopy of Covalently Functionalized Graphene. Nano Lett. 2010, 10, 4061–4066. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, P.; Pan, X.; Ma, H.; Bao, X. Deactivation Mechanism and Regeneration of Carbon Nanocomposite Catalyst for Acetylene Hydrochlorination. Appl. Catal. B Environ. 2017, 210, 116–120. [Google Scholar] [CrossRef]
Sample | C% a | O% a | H% a | N% a | SBET b(m2/g) | D Average c (nm) | Nitrogen–Carbon Ratio |
---|---|---|---|---|---|---|---|
cCTN:Cl | 59.6 | 11.4 | 4.7 | 14.2 | / | / | 0.24 |
CTF | 65.5 | 9.5 | 4.1 | 18.7 | / | / | 0.29 |
cCTN-700 | 79.4 | 3.8 | 1.8 | 11.3 | 17.0 | 5–10 | 0.21 |
CTF-700 | 82.3 | 2.9 | 1.6 | 12.3 | 5.7 | 30–40 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Z.; Xing, P.; Wen, K.; Jiang, B. Cationic Covalent Triazine Network: A Metal-Free Catalyst for Effective Acetylene Hydrochlorination. Catalysts 2023, 13, 432. https://doi.org/10.3390/catal13020432
Shen Z, Xing P, Wen K, Jiang B. Cationic Covalent Triazine Network: A Metal-Free Catalyst for Effective Acetylene Hydrochlorination. Catalysts. 2023; 13(2):432. https://doi.org/10.3390/catal13020432
Chicago/Turabian StyleShen, Zhaobing, Ping Xing, Ke Wen, and Biao Jiang. 2023. "Cationic Covalent Triazine Network: A Metal-Free Catalyst for Effective Acetylene Hydrochlorination" Catalysts 13, no. 2: 432. https://doi.org/10.3390/catal13020432
APA StyleShen, Z., Xing, P., Wen, K., & Jiang, B. (2023). Cationic Covalent Triazine Network: A Metal-Free Catalyst for Effective Acetylene Hydrochlorination. Catalysts, 13(2), 432. https://doi.org/10.3390/catal13020432