

Article **One Stone Two Birds: Utilization of Solar Light for Simultaneous Selective Phenylcarbinol Oxidation and H² Production over 0D/2D-3D Pt/In2S³ Schottky Junction**

Huijun Zhang 1,†, Peipei Xiao 1,†, Sugang Meng 1,2,[*](https://orcid.org/0000-0002-2626-2637) , Baihua Long ³ , Qing Liu ¹ , Xiuzhen Zheng 1,2,*, Sujuan Zhang ¹ , Zhaohui Ruan ¹ and Shifu Chen 1,*

- ¹ Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
- ² State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
- ³ College of Material and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
- ***** Correspondence: mengsugang@126.com (S.M.); zhengxz@chnu.edu.cn (X.Z.); chshifu@chnu.edu.cn (S.C.); Tel.: +86-561-3802235 (S.M.)
- † These authors contributed equally to this work.

Abstract: Precise regulation and control solar-light-driven charges photoexcited on photocatalysts for separation-transfer and target redox reactions is an attractive and challenging pathway toward sustainability. Herein, $0D/2D-3D$ Pt $/In_2S_3$ Schottky junction was fabricated for simultaneous selective phenylcarbinol conversion into value-added aldehydes and production of clean energy H₂ by directly utilizing photoexcited holes and electrons in one reaction system under mild reaction conditions. In contrast to pure water splitting and pure In_2S_3 , the reaction thermodynamics and kinetics of H₂ evolution on the Pt/In₂S₃ were significantly enhanced. The optimized 0.3% Pt/In₂S₃ exhibited the highest and most stable photocatalytic activity with 22.1 mmol g^{-1} h⁻¹ of H₂ production rate and almost 100% selectivity of benzaldehyde production. Notably, this dual-function photocatalysis also exhibited superiority in contrast to sacrificial-agent H_2 evolution reactions such as lactic acid, Na₂S, methanol and triethanolamine. The turnover frequency (TOF) could reach up to ~2394 h⁻¹. The Pt clusters anchored at the electron location and strong metal-support interactions (SMSI) between Pt and $In₂S₃$ synergistically improved the spatial charge separation and directional transportation (~90.1% of the charge transport efficiency could be achieved over the Pt/In₂S₃ hybrid), and thus result in significant enhancement of photocatalytic H_2 evolution with simultaneous benzaldehyde production.

Keywords: photocatalytic H² production; selective oxidation; 2D nanosheets; photocatalytic organic synthesis; metal-support interactions

1. Introduction

Since Fujishima and Honda reported electrochemical photolysis of water for hydrogen $(H₂)$ production at a TiO₂ electrode in 1972 [\[1\]](#page-13-0), photocatalytic H₂ production (PHP), as one of the most promising strategies to address the severe issues of environment and energy, has attracted extensive and ongoing attention [\[2–](#page-13-1)[5\]](#page-13-2), because PHP can be driven by inexhaustible solar energy and the reaction conditions are not as rigorous as traditional industrial methods such as coal gasification and electrolytic processes [\[3](#page-13-3)[–7\]](#page-14-0). For instance, 15,364 scientists from 184 countries made a joint appeal to humans in 2017: "World Scientists' Warning to Humanity: A Second Notice". One of the noteworthy appeals was sustainable development [\[8\]](#page-14-1). Clean energy instead of fossil fuels is ineluctable in the future. More recently, European Union and other countries have made incentive schemes for green hydrogen fuel. However, PHP faces many challenges for practical application [\[9–](#page-14-2)[12\]](#page-14-3). Two

Citation: Zhang, H.; Xiao, P.; Meng, S.; Long, B.; Liu, Q.; Zheng, X.; Zhang, S.; Ruan, Z.; Chen, S. One Stone Two Birds: Utilization of Solar Light for Simultaneous Selective Phenylcarbinol Oxidation and H² Production over 0D/2D-3D Pt/In2S³ Schottky Junction. *Catalysts* **2023**, *13*, 461. [https://doi.org/10.3390/](https://doi.org/10.3390/catal13030461) [catal13030461](https://doi.org/10.3390/catal13030461)

Academic Editor: Weilin Dai

Received: 30 January 2023 Revised: 15 February 2023 Accepted: 20 February 2023 Published: 22 February 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license [\(https://](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) $4.0/$).

critical points are the design of efficient photocatalysts with high and stable quantum efficiency and the enhancement of output-input ratio. For photocatalytic overall water splitting into hydrogen (H_2) and oxygen (O_2) , a lot greater than zero of the Gibbs free energy change and the sluggish oxidation half-reaction both make PHP hard in terms of thermodynamics and kinetics [\[12–](#page-14-3)[14\]](#page-14-4). Although sacrificial-reagent PHP is in favor of improvements of both reaction thermodynamics and kinetics, sacrificial reagents simultaneously bring waste of the photoexcited holes, the increase in cost and the burden on the environment such as emissions of greenhouse-gas, inorganic salt and organic pollutants [\[14](#page-14-4)[–16\]](#page-14-5). Moreover, the charge carrier recombination is still one of the challenging limitations for the photocatalysis technologies [\[17–](#page-14-6)[24\]](#page-14-7). Recently, PHP coupled with organics transformation has held great attention [\[25–](#page-14-8)[30\]](#page-14-9). In this dual-function photoredox reaction system, not only can the photoexcited electrons be utilized for reducing H^+/H_2O into H_2 , the photoexcited holes can also be used for oxidizing organics into fine chemicals. For instance, aromatic aldehydes and H_2 can be simultaneously obtained by the photocatalytic splitting of aromatic alcohols in one reaction system [\[31](#page-14-10)[–33\]](#page-14-11). However, the photocatalysts suitable for this dual-function photoredox reaction system with efficient reaction kinetics still need to be explored.

To drive this dual-function photoredox reaction, choosing photocatalysts with a proper band gap and suitable band positions is the initial step. Among various photocatalysts, low-dimensional metal sulfides showed tremendous potential for this dual-function photoredox reaction because of their appealing optical–electrical characteristics and appropriate band structures [\[34–](#page-15-0)[36\]](#page-15-1). However, metal sulfides used as photocatalysts still face various problems: low utilization of visible light, photocorrosion and recommendation of photoexcited charge carriers, which significantly inhibit its reaction kinetics and stability [\[37](#page-15-2)[–39\]](#page-15-3). To address the problems, many approaches have been developed such as doping [\[40,](#page-15-4)[41\]](#page-15-5), noble-metal deposition [\[30](#page-14-9)[,42](#page-15-6)[,43\]](#page-15-7), cocatalysts [\[5](#page-13-2)[,31](#page-14-10)[,44\]](#page-15-8) and heterojunction composites [\[45](#page-15-9)[–47\]](#page-15-10). After modification, the photocatalytic activity and stability of the pristine metal sulfides ($Zn_3In_2S_6$, CdS, $Zn_xCd_{1-x}S$ and $ZnIn_2S_4$) both are improved. However, precise regulation and control solar-light-driven charges photoexcited on photocatalysts for separation-transfer and target redox reactions is still a challenge.

Herein, $0D/2D$ -3D Pt $/In₂S₃$ heterostructure was prepared by sequential hydrothermalphotodeposition methods and was applied for PHP with simultaneously selective phenylcarbinol conversion under simulated sunlight irradiation. In the previous study, $In₂S₃$ exhibited potential applications in photocatalytic pollutant degradation [\[48\]](#page-15-11), selective oxidation $[49,50]$ $[49,50]$, H₂ production $[22-24]$ $[22-24]$, etc. It may have been an alternative photocatalyst for this dual-function photoredox reaction. In addition, $In₂S₃$ possesses smaller band-gap energy (~2.0 eV) [\[51\]](#page-15-14) than $Zn_3In_2S_6$ (~2.9 eV) [\[14\]](#page-14-4), CdS (~2.4 eV) [\[52,](#page-15-15)[53\]](#page-15-16), $Zn_{0.5}Gd_{0.5}S$ (-2.6 eV) [\[45\]](#page-15-9) and ZnIn₂S₄ (~2.4 eV) [\[31,](#page-14-10)[54\]](#page-15-17), suggesting more and broad light absorption. The $0D/2D-3D$ Pt/In₂S₃ hierarchical structure has the following advantages: 2D nanosheets and 3D spheres of $In₂S₃$ hierarchical structure facilitate light harvesting via multi-layer reflection, 0D Pt deposition and close contact, and sedimentary separation from the reaction system. On the other hand, the exposed 0D Pt clusters can make full use of Pt atoms and save costs. Therefore, the 0D/2D-3D hierarchical structure is significant for PHP. Moreover, it has been demonstrated that the Schottky junction can improve charge separation [\[55\]](#page-15-18). In this study, 0D Pt clusters were anchored at the separated electron location of In_2S_3 by an in situ photoreduction process. The formed Pt/In_2S_3 Schottky junction coupled with strong metal–support interactions (SMSI) between 0D Pt clusters and 2D $In₂S₃$ nanosheets can improve the electron separation and transportation from $In₂S₃$ into Pt for PHP and reserve the holes at $In₂S₃$ for selective oxidation of phenylcarbinol, and thus result in significant enhancement of PHP with almost 100% selectivity of benzaldehyde production. Notably, benzaldehyde is important for chemical raw material, methylene reagents, perfume, herbicide intermediates, etc. In addition, the as-prepared $0D/2D-3D Pt/In₂S₃$ heterostructure exhibits superiority for PHP coupled with phenylcarbinol in contrast to sacrificial agents such as lactic acid, $Na₂S$, methanol and triethanolamine. Moreover, the photocatalytic mechanism was also studied profoundly by several recognized techniques such as the

photoelectrochemical (PEC) test, in situ electron paramagnetic resonance (EPR) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), etc. ϵ electron paramagnetic resonance (EPR) and in situ diffuse reflectance information information in ϵ σ ¹¹⁶⁶ second spectroscopy (DRIFT), etc.

2. Results and Discussion 2. Results and Discussion

2.1. Catalysts Characterization 2.1. Catalysts Characterization

The micro-structures of 2D-3D $In₂S₃$ and 0D/2D-3D Pt/ $In₂S₃$ were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and high-resolution TEM (HRTEM). As shown in Figure [1a](#page-2-0)–c, the In₂S₃ presented sphericallike morphology. The 3D sphere was further composed of many crisscross nanosheets. morphology. The 3D sphere was further composed of many crisscross nanosheets. Clearly, the as-prepared In_2S_3 possessed a 2D-3D hierarchical structure. Compared to the pervious reported 2D In₂S₃ nanosheets [49] [and](#page-15-12) 0D In₂S₃ nanocrystal [48], [the](#page-15-11) 2D-3D In₂S₃ can facilitate light harvesting via multi-layer reflection. It also has advantages with respect to the previous method of 2D-3D In_2S_3 preparation [50], in [whic](#page-15-13)h an amino acid (aspartic acid, serine or glycine) was necessary for assisting formation of 2D-3D hierarchical structure. Notably, the 2D-3D nanosheet-sphere structure of $\mathrm{In}_2\mathrm{S}_3$ was kept after loading Pt (Figure 1d–f). The Pt nanoparticles were not observed on the SEM image, which may Pt (Figur[e 1](#page-2-0)d–f). The Pt nanoparticles were not observed on the SEM image, which may have been caused by the small size of Pt. The micro-structures of In_2S_3 and Pt/In_2S_3 were further investigated by TEM and HRTEM images. As displayed in Figure [2a](#page-3-0),b, the nanosheet-sphere structure of 2D-3D In $_2S_3$ can be clearly observed and the nanosheets of In₂S₃ were uniform and homogeneous. Moreover, the unambiguous lattice fringes with the d-spacing value of 0.62 nm correspond to the (111) crystal plane of cubic In₂S₃ (Figure [2c](#page-3-0),d). After Pt photo-deposited on In₂S₃, the morphology of Pt/In₂S₃ was very similar to that of In₂S₃ (Figure [2e](#page-3-0)). In addition, small and distinguishable Pt clusters with a mean size of about 0.8 nm were observed on the nanosheets of In_2S_3 (Figure [2f](#page-3-0)). The d-spacing value of the distinct lattice fringes was also 0.62 nm, which was assigned to the (111) crystal plane of cubic In₂S₃ (Figure [2g](#page-3-0),h). The energy-dispersive X-ray spectrometer (EDX) results indicate that Pt/In₂S₃ was composed of Pt, In and S elements, and Pt was uniformly dispersed on the In₂S₃ (Figure [2i](#page-3-0),j).

Figure 1. SEM images of $(a-c)$ In₂S₃ and $(d-f)$ Pt/In₂S₃.

Figure 2. (a,b) TEM, (c) HRTEM and (d) corresponding FFT images of In₂S₃. (e,f) TEM and H_{H} and H_{H} (**h**) corresponding FFT images of H_{2} (**b**) H_{2} (**h**) corresponding H_{2} (**h**) H_{\text (g) HRTEM and (h) corresponding FFT images of Pt/In₂S₃ (the Pt clusters are shown in the purple circles). (**i**) EDX-mapping images and (**j**) EDX spectrum of Pt/In₂S₃.

The crystal phase, chemical composition and state were studied by powder X-ray The crystal phase, chemical composition and state were studied by powder X-ray diffraction (PXRD) and X-ray photoelectron spectroscopy (XPS). The Pt/In₂S₃ hybrid exhibited the similar PXRD pattern to the pristine $In₂S₃$ (Figure [3a](#page-4-0)), and the diffraction exhibited the similar PXRD pattern to the pristine $In₂S₃$ (Figure 3a), and the diffraction p eaks of In₂S₃ and Pt/In₂S₃ both can be indexed to cubic β-In₂S₃ with Fd-3m(227) space group (JCPDS No. 65-0459). No Pt diffraction peaks were observed in the PXRD pattern group (JCPDS No. 65-0459). No Pt diffraction peaks were observed in the PXRD pattern of $Pt/In₂S₃$. It was expected because of the cluster state of Pt, i.e., due to the dispersion and low content of Pt. The ICP-OES indicated that the practical weight ratio of Pt in 1% Pt/In₂S₃ was about 0.7%. The PXRD peaks located at about 14.2, 23.3, 27.4, 28.7, 33.2, 36.3, 41.0, was about 0.7%. The PXRD peaks located at about 14.2, 23.3, 27.4, 28.7, 33.2, 36.3, 41.0, 43.6, 47.7, 50.0, 55.9, 56.6, 59.3, 66.6, 69.7, 77.1 and 79.5° were attributed to the diffraction 43.6, 47.7, 50.0, 55.9, 56.6, 59.3, 66.6, 69.7, 77.1 and 79.5◦ were attributed to the diffraction of the (111), (220), (311), (222), (400), (331), (422), (511), (440), (531), (533), (622), (444), (731), (800), (662) and (840) crystal planes of cubic β-In₂S₃ (JCPDS No. 65-0459, a = b = c = Å), respectively. The PXRD results were consistent with the above HRTEM analysis 10.77 Å), respectively. The PXRD results were consistent with the above HRTEM analysis (Figure 2c,g). In the light of the above results, it can be seen that the 2D-3D morphology (Figure [2c](#page-3-0),g). In the light of the above results, it can be seen that the 2D-3D morphology and crystal phase of In_2S_3 did not change after the deposition of Pt clusters. These results also indicate the stability of Pt/In_2S_3 because Pt/In_2S_3 was obtained in the PHP process of In₂S₃ by reducing [PtCl₆]^{2−}. Figure 3b[–d](#page-4-0) presents the high-resolution XPS spectra of In 3d, S 2p and Pt 4f, respectively. For the pure In_2S_3 , two peaks of In 3d observed at 445.2 an[d](#page-4-0) 452.7 eV were attributed to In 3d5/2 and In 3d3/2 (Figure 3b), and two peaks of S 2p located at 161.9 and 163.1 eV belonged to S 2p3/2 and S 2p1/2 (Figure 3c), resp[ec](#page-4-0)tively.

Figure 3. (a) XRD patterns of In_2S_3 and Pt/In₂S₃. XPS spectra of (b) In 3d, (c) S 2p and (**d**) Pt 4f.

Moreover, the spin-orbit separations of In 3d and S 2p were 7.5 and 1.2 eV, Moreover, the spin-orbit separations of In 3d and S 2p were 7.5 and 1.2 eV, respectively. These results demonstrate that the chemical states of In and S in the as-prepared In₂S₃ were In³⁺ and S^{2−}. For the Pt/In₂S₃ hybrid, the XPS peaks of In 3d and S2p were similar to that of the pure In₂S₃. The Pt 4f exhibited two group peaks at 71.9 and 72.1 eV (4f_{7/2}), which corresponded to the Pt⁰ and Pt²⁺, respectively (Figure [3d](#page-4-0)). Of note, the binding energies of In 3d and S 2p of the Pt/In₂S₃ hybrid were shifted to high energy (0.1–0.2 eV) with $\frac{1}{100}$ respect to the pure In_2S_3 . It was demonstrated that the binding energy shift was derived from the electronic interaction between two contacted nanomaterials, and the positive and
the contact of the positive and the positiv negative shifts mean electrons were lost and gathered, respectively [\[31](#page-14-10)[,56](#page-15-19)[,57\]](#page-15-20). Thus, the
streng matel surmant interactions (CMCI) assumed in the Pt (In C, britaid, Cnasifically, often T photo-deposited on $In₂S₃$, the majority carriers (electrons for n-type semiconductors) of Specifically, after Pt photo-deposited on In2S3, the majority carriers (electrons for n-type In2S³ were migrated into Pt, and the Pt was electron enriched. The strong metal-support $s_{1/2}$ were migrated into $s_{1/2}$ were migrated into ρ and the Pt was electron enriched. The problem conduction enriched. interactions could result in photoexcited charge separation and H_2 evolution conveniently.
This is discussed further below. strong metal-support interactions (SMSI) occurred in the $Pt/In₂S₃$ hybrid. Specifically, after This is discussed further below.

The Brunauer–Emmett–Teller (BET) surface areas, optical properties and band-energy positions of $In₂S₃$ and $Pt/In₂S₃$ were studied by the nitrogen adsorption–desorption method, UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and Mott–Schottky (M-S) measurements. Both In₂S₃ and Pt/In₂S₃ presented type-IV isotherms with an H3 hysteresis loop (Figure [4a](#page-5-0)). This meant that the presence of porous structures resulted from the 2D-3D In₂S₃ hierarchical structure. Correspondingly, the average pore diameters of In₂S₃ and $Pt/In₂S₃$ were about 13.91 and 13.64 nm, respectively. The BJH cumulative volume of pores of In₂S₃ and Pt/In₂S₃ were approximately 0.41 and 0.30 cm³ g⁻¹, respectively. The BET surface areas of In₂S₃ and Pt/In₂S₃ were approximately 63.1 ± 2.1 and 63.3 ± 2.9 m² g^{-1} , respectively. Evidently, after Pt clusters were loaded on 2D-3D In₂S₃, the surface area change was negligible, while the pore volume and pore diameter were decreased. It is normal to observe these results because the 2D-3D In_2S_3 hierarchical structure was not altered when Pt clusters were loaded on the surfaces of In_2S_3 nanosheets. The UV-vis DRS spectra indicate that both In_2S_3 and Pt/In_2S_3 possessed well visible light absorption below 600 nm (Figure 4b). Based on DRS spectra, the band-gap energy (E_g) was determined by the Kubelka–Munk function: $(αhν)^2 = A(hν - E_g)$, where A, h, α, and ν are proportionality constant, Planck constant, absorption coefficient and frequency, respectively [[33,5](#page-14-11)[8\].](#page-15-21) Compared to the pure In_2S_3 , the light absorption of Pt/In₂S₃ diminished (Figure [4b](#page-5-0)), while the E_g of Pt/In₂S₃ showed no noticeable change (both about 2.1 eV, Figure [4c\)](#page-5-0). Moreover, the positive slops of M-S plots were observed on both $In₂S₃$ (Figure 4d) a[nd](#page-5-0) Pt/In₂S₃ (Figure 4e), ind[ica](#page-5-0)ting that the n-type property of $In₂S₃$ semiconductor had not changed after Pt deposition. Interestingly, the flat potential of $In₂S₃$ was negatively shifted from −0.25 to −0.51 V (vs NHE) after Pt deposition. Generally, for n-type semiconductors, the −0.51 V (vs NHE) after Pt deposition. Generally, for n-type semiconductors, the flat flat potential lies beneath the conduction band (CB) at about −0.1 eV [\[56\]](#page-15-19). Therefore, the CB of In₂S₃ and Pt/In₂S₃ was located at −0.35 and −0.61 eV, respectively. According to the function: $E_g = E_{VB} - E_{CB}$ (E_{VB} and E_{CB} were the valence band energy and the CB energy, respectively), the valence band (VB) of $In₂S₃$ and $Pt/In₂S₃$ lies at 1.75 and 1.49 eV, respectively. Evidently, with respect to the pure $In₂S₃$ (Figure [4f](#page-5-0)), VB and CB of Pt/In₂S₃ were uplifted by 0.26 and 0.26 eV, respectively, demonstrating that the photoexcited holes were uplifted by 0.26 and 0.26 eV, respectively, demonstrating that the photoexcited holes showed faster mobility, thus facilitating PHP reaction [\[31](#page-14-10)[,59\]](#page-15-22). The strong metal–support showed faster mobility, thus facilitating PHP reaction [31,59]. The strong metal–support interactions between Pt and In_2S_3 resulted in electron migration from In_2S_3 into Pt. Thus, the energy bands of $In₂S₃$ swept upward when $In₂S₃$ was contacted with Pt.

Figure 4. (a) Nitrogen adsorption-desorption isotherms, (b) UV-vis DRS spectra and (c) band-gap energies of In_2S_3 and Pt/In_2S_3 . M-S plots of (d) In_2S_3 and (e) Pt/In_2S_3 . (f) The relationships of band energy positions between $In₂S₃$ and Pt/In₂S₃.

To gain more insights into the charge carrier transportation between Pt and $In₂S₃$ over the Pt/In₂S₃ hybrid, the work function of In₂S₃ was measured by an ultraviolet photoelectron spectroscopy (UPS), As presented in Figure [5a](#page-6-0), the work function of In_2S_3 was 4.66 eV (21.22 – (16.77 – 0.21) = 4.66). It was smaller than the work function of Pt (5.65 eV) [\[14\]](#page-14-4). Moreover, the carrier densities (N_D) of In₂S₃ and Pt-modified In₂S₃ (Pt/In₂S₃) were detected from M-S plots via the function: $N_D = (2/e\epsilon\epsilon_0)[dU_{FL}/d(1/C^2)] = (2/e\epsilon\epsilon_0)$ ($1/k_{M-S}$). Here, e, ε_0 , ε , k_{M-S} , U_{FL} and C are elementary charge, vacuum permittivity, relative permittivity (8.4 for $In₂S₃$ [\[23\]](#page-14-13)), the slope of the M-S curve, Fermi level potential and capacitance, respectively. Evidently, after Pt deposition on $In₂S₃$, the carrier density of In₂S₃ was always reduced under different frequencies (Figure 5b[\). B](#page-6-0)ased on the results work function and carrier density, the metal–support interactions and consequential of work function and carrier density, the metal–support interactions and consequential electron transportation between Pt and $In₂S₃$ are illustrated in Figure [5](#page-6-0)c–e. The $In₂S₃$

possessed a higher Fermi level ($E_F = E_{vac} - W_F$, where W_F , E_{vac} and E_F are work function, vacuum level and Fermi level, respectively) than Pt (Figure 5c). Thus, the electrons were vacuum level and Fermi level, respectively) than Pt (Figur[e 5](#page-6-0)c). Thus, the electrons were transported from In₂S₃ into Pt, which resulted in a N_D decrease in In₂S₃ and the formation of the Schottky junction (Figure 5d). The Schottky barrier with height of 0.99 eV would of the Schottky junction (Figure [5](#page-6-0)d). The Schottky barrier with height of 0.99 eV would facilitate photoexcited electrons transportation from In₂S₃ into Pt and inhibit the backflow of electrons from Pt into In_2S_3 again (the barrier height is the difference of Fermi levels of In₂S₃ and Pt ($-4.66 - (-5.65) = 0.99$)). Simultaneously, the photoexcited holes left at In₂S₃ (Figure 5e). Co[nse](#page-6-0)quently, the photoexcited electron-hole pairs of In₂S₃ were separated spatially through Pt/In $_2$ S $_3$ Schottky junctions. In the light of the above analyses, the Pt/In_2S_3 hybrid may be fit for PHP.

Figure 5. (a) UPS spectrum of In_2S_3 . (b) Carrier densities of In_2S_3 before and after Pt modification. Energy level diagrams for In_2S_3 and Pt (c) before and (d) after interfacing. (e) Illustration of photoexcited electrons transfers from In₂S₃ into Pt over Pt/In₂S₃ interface under light irradiation.

2.2. Evalution of PHP Activity 2.2. Evalution of PHP Activity

The PHP activity was evaluated by photocatalytic selective oxidation of The PHP activity was evaluated by photocatalytic selective oxidation of phenylcarbinol (PhCH₂OH) under simulated sunlight. The two control groups (with photocatalyst in the dark and without photocatalyst under light irradiation) were firstly performed and showed no H₂ production. Then, we detected PHP activities of In_2S_3 and Pt/In_2S_3 composites with different content of Pt (0.1%, 0.3%, 0.5% and 1%). A[s d](#page-7-0)epicted in Figure 6a, the pure In₂S₃ exhibited low PHP activity (H₂: 0.9 mmol g⁻¹ h⁻¹). However, the PHP activity of the In₂S₃ was significantly enhanced by loading a low amount of Pt. The photocatalytic H₂ evolution rates of 0.1%, 0.3%, 0.5% and 1% Pt/In $_2$ S $_3$ hybrids were about 4.1, 22.1, 17.1 and 14.6 mmol g^{-1} h⁻¹, respectively. The PHP activities of these Pt/In₂S₃ hybrids appeared to have a volcano-like distribution. The 0.3% Pt/In₂S₃ hybrid exhibited the highest PHP activity, which was approximately 24.56 times that of the pure In $_2$ S $_3$. It indicates that the apparent PHP kinetics of In₂S₃ was meaningfully improved by loading Pt clusters. The as-synthesized Pt/In₂S₃ also exhibited a higher H₂ production rate (7.97 mmol g^{-1} h⁻¹) under visible light irradiation than the reported Pt/Zn₃In₂S₆ [\[14\]](#page-14-4), Pt/CdS [\[42\]](#page-15-6), etc [\[21](#page-14-14)[–24\]](#page-14-7). (Table [1\)](#page-7-1). Moreover, negligible PHP activity was detected for pure water splitting over 0.3% Pt/In_2S_3 because of the sluggish oxidation half-reaction and significant Gibbs free energy change (H₂O = H₂ + 1/2O₂, ∆G ≈ 238 kJ mol⁻¹ >> 0). Compared to PHP through overall water splitting, the thermodynamics of PHP was also remarkably ameliorated (PhCH₂OH)

= PhCHO + H_2 , $\Delta G \approx 28$ kJ mol⁻¹). It should also be noted that the oxidized products of phenylcarbinol over the 0.3% Pt/In₂S₃ hybrid were almost entirely benzaldehyde (the selectivity was nearly 100%). It may have been caused by the suitable oxidative potential of Pt/In_2S_3 for selectively oxidizing PhCH₂OH into PhCHO. Evidently, in the dual-function photoredox reaction system, $Pt/In₂S₃$ not only can selectively oxidize phenylcarbinol into fine value-added chemicals (benzaldehyde) with high selectivity but also can obtain clean energy (H₂) simultaneously. Moreover, the turnover number (TON) based on the amount of Pt was calculated to be about 9576 after 4 h. Notably, the corresponding turnover frequency (TOF) was about 2394 h⁻¹, which is comparable with the traditional thermal catalytic system (1109 h^{−1}) [\[27](#page-14-15)[,60\]](#page-16-0).

Figure 6. (a) The PHP activity of In_2S_3 and Pt/In_2S_3 with different Pt weight ratios for photocatalytic selective oxidation of phenylcarbinol and H2 production under simulated sunlight irradiation. (**b**) selective oxidation of phenylcarbinol and H² production under simulated sunlight irradiation. (**b**) The PHP activity of 0.3% Pt/In₂S₃ under monochromatic light irradiation with different wavelengths. wavelengths. (**c**) The PHP activity of 0.3% Pt/In2S3 under simulated sunlight irradiation for 5 (**c**) The PHP activity of 0.3% Pt/In2S³ under simulated sunlight irradiation for 5 recycles. (**d**) Comparison of 0.3% Pt/In₂S₃ PHP activity in different reaction systems (LA, NS, TA, MA and PhCH₂OH Mathematic activity in present and PhCH2OH presents and the experime (Engineering and the experimental and the experi presents aqueous solutions of lactic acid, Na₂S, triethanolamine, methanol and phenylcarbinol, respectively) under simulated sunlight irradiation.

Table 1. Comparison of photocatalytic performance over different photocatalysts for photocatalytic International *internation* in the state of photocatalytic International *international* state of the state of the state of f_2 production, and photoexcited charges $\frac{1}{2}$ and photoexcited charges are all photoexcited charges charges charges $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and H² production.

Figure [6b](#page-7-0) shows the PHP activity of 0.3% Pt/In₂S₃ under monochromatic light with different wavelengths. The 380 nm-light and 500 nm-light driven PHP activities were higher than 400 nm. It indicates that the PHP activity of Pt/In_2S_3 was not only dependent on its light absorption spectrum. It is comprehensible because the PHP activity was an overall effect of light absorption, incident light intensity and light energy. Pt/In_2S_3 was inactive under 600 nm light because it was longer than the excitation wavelength of In_2S_3 (590 nm). Nevertheless, the PHP activity of Pt/In₂S₃ under 500 nm light could still reach up to 3.2 mmol g^{-1} h⁻¹ with 3.72% of apparent quantum efficiency. In addition, the 0.3% Pt/In₂S₃ hybrid demonstrated good photocatalytic stability with little H₂ production decrease (0.5%) after five recycles (Figure [6c](#page-7-0)). To compare this dual-function photoredox reaction system with the sacrificial agent PHP, the classic sacrificial agents: lactic acid (LA), Na₂S (NS), triethanolamine (TA) and methanol (MA) were chosen [\[20\]](#page-14-16). Figure [6d](#page-7-0) depicts PHP comparisons between sacrificial agents and PhCH₂OH over 0.3% Pt/In₂S₃ under the same reaction conditions. Specifically, the PHP rates of 0.3% Pt/In₂S₃ only reached 1.1, 0.6, 0.5 and 0.003 mmol $\rm g^{-1}$ h $^{-1}$ when LA, NS, TA and MA were added into the reaction system, respectively. Clearly, the superior PHP rate of 0.3% Pt/In₂S₃ was achieved through using phenylcarbinol, which was about 20.1, 36.8, 44.2 and 7366.7 times higher than that using LA, Na₂S and TEOA, respectively. These results confirm the superiority of photocatalytic selective conversion organics coupled with photocatalytic H_2 production, in which organics were selectively transformed into high value-added chemicals and simultaneous H_2 with the enhanced production rate that could be obtained.

2.3. Photocatalytic Mechanism

The photocatalytic activity demonstrated that it was mainly influenced by three factors: light absorption, active sites (likely surface area) and photoexcited charges separation and transportation [\[61](#page-16-1)[–63\]](#page-16-2). Specifically, the photocatalysts are excited by the incident light to produce electron-hole pairs, which are then separated and transferred onto the active sites for redox reactions. Based on the above characterizations, after Pt clusters deposition on the 2D-3D In₂S₃, the light absorption did not become stronger (Figure [4b](#page-5-0)), and the surface area underwent a negligible change (Figure [4a](#page-5-0)). The surface area was not the main factor for the enhanced PHP activity, which is consistent with the reported Pt-loaded photocatalysts [\[64](#page-16-3)[,65\]](#page-16-4). Therefore, light absorption and surface area are not the main factors for the boosted PHP activity. However, the electron circulating and the uplifted energy bands were observed on Pt/In_2S_3 hybrid as the result of the strong metal– support interactions between $In₂S₃$ and Pt. To understand the reasons behind the enhanced photocatalytic activity, the photoexcited charge behaviors were investigated. As shown in Figure [7a](#page-9-0), the photocurrent of the Pt/In_2S_3 improved 2.08 times in contrast to the pure In2S³ under simulated sunlight illumination, suggesting efficient charge separation and transfer [\[66,](#page-16-5)[67\]](#page-16-6). In addition, the photocurrent of the Pt/In_2S_3 still increased 1.85 times when MVCl₂ was added into the bath solution as an electron scavenger (Figure [7b](#page-9-0)). Moreover, the charge transport efficiency (η_{tra}) can be evaluated by the function: $\eta_{\text{tra}} = J_{\text{H2O}}/J_{\text{MVCI2}}$ (J_{H2O}) and J_{MVC} are the photocurrent densities of the sample with and without MVCl₂, respectively) [\[68](#page-16-7)[–70\]](#page-16-8). As expected, 90.1% of the charge transport efficiency could be achieved over the Pt/In₂S₃ hybrid, which was approximately 1.13 times of the pure In₂S₃. These results indicate that the separation and transportation of $In₂S₃$ can be improved by loading Pt clusters. To further evaluate the impact of strong metal–support interactions on charge separation and transportation, the electrochemical impedance spectroscopy (EIS) [\[71\]](#page-16-9) and linear sweep voltammetry (LSV) tests were carried out [\[5](#page-13-2)[,14\]](#page-14-4). Pt/In₂S₃ exhibited a smaller arc radius than $In₂S₃$ (Figure [7c](#page-9-0)), and the charge transport resistance of Pt/In₂S₃ (30.5 Ω) was weaker than that of In₂S₃ (33.9 Ω). This means that the loaded Pt clusters can speed charge separation and transportation of In_2S_3 . This result is in line with the photocurrent analysis and can be further confirmed by LSV curves. As displayed in Figure [7d](#page-9-0), compared to the pure In_2S_3 , the current density of Pt/In₂S₃ exhibited a visible enhancement under light irradiation. In addition, the H_2 evolution overpotential

of Pt/In₂S₃ (−0.64 V) was 0.34 V lower than that of In₂S₃ (−0.98 V), which is conducive to H_2 evolution. Consequently, it can be concluded that the improved charge separationtransportation and the reduced H_2 evolution overpotential contribute to the efficient PHP activity of Pt/In₂S₃. component of Pt/In2S3 to reactive molecules of PhCH2OH. Thus, the efficient separation of Ft/ \ln_{2} 33 (-0.04 V) was 0.34 V lower than that of \ln_{2} 33 (-0.96 V), which is contribute

Figure 7. Transient photocurrent responses of catalysts (a) without and (b) with methyl viologen dichloride (MVCl₂). (c) EIS plots, (d) LSV curves, (e) TEMPO-e⁻ EPR spectra and (f) TEMPO-h⁺ EPR spectra of $In₂S₃$ and $Pt/In₂S₃$.

To understand the in-depth information behind these results, the utilization rates of photoexcited electrons (e⁻) and holes (h⁺) were studied through in situ electron paramagnetic resonance (EPR) measurements [\[68\]](#page-16-7). As the control group, photolysis refers to the reaction system without photocatalysts (Figure [7e](#page-9-0),f). In other words, the signal of photolysis is the intrinsic signal of the active TEMPO. The EPR signal intensity is reduced when TEMPO is captured by photoexcited electrons or holes [\[68\]](#page-16-7). When In_2S_3 or Pt/In₂S₃ was added into the reaction system, the EPR signals were both reduced for detecting electrons (Figure [7e](#page-9-0)) and holes (Figure [7f](#page-9-0)). This indicates that the photoexcited electrons and holes can be separated and transported on the surfaces of In_2S_3 and Pt/In_2S_3 . Notably, the EPR signal of Pt/In_2S_3 for photoexcited electrons was significantly lower than that of In₂S₃ (Figure [7e](#page-9-0)). This suggests efficient electron separation and transportation from In₂S₃ to Pt for reducing water/protons to H_2 . In addition, the weaker EPR signal of TEMPO on Pt/In₂S₃ was also observed than that on In₂S₃ in the presence of PhCH₂OH under simulated sunlight illumination (Figure [7f](#page-9-0)). This indicates efficient hole transportation from the In₂S₃ component of Pt/In₂S₃ to reactive molecules of PhCH₂OH. Thus, the efficient separation and transportation of the photogenerated holes and electrons contribute to the enhanced PHP activity of the $Pt/In₂S₃$ hybrid. The photoexcited holes can be fleetly consumed by PhCH₂OH to produce PhCHO. Simultaneously, the photoexcited electrons were spent by H^+/H_2O to produce H_2 .

To further inspect the conversion process of $PhCH₂OH$ in this dual-function photocatalysis system, the in situ EPR with the addition of DMPO and in situ DRIFT were carried out $[5,31,72-74]$ $[5,31,72-74]$ $[5,31,72-74]$ $[5,31,72-74]$. As presented in Figure [8a](#page-10-0), PhCH₂OH with DMPO under light irradiation could not produce EPR signals (photolysis). However, sextet peaks belonging to carbon-centered radicals (.CH(OH)Ph) [\[5,](#page-13-2)[68\]](#page-16-7) were observed on In_2S_3 and Pt/In₂S₃. This

means that the conversion process of PhCH₂OH is a free radical reaction. Moreover, the EPR intensity of Pt/In₂S₃ was more intense than In₂S₃, implying efficient charge separationtransportation and fast PhCH₂OH dehydrogenation on Pt/In₂S₃. In addition, one peak at 1703 cm−¹ (νC=O) fell to the carbonyl group (C=O) of benzaldehyde (PhCHO) and doublet 1703 cm−1 (νC=O) fell to the carbonyl group (C=O) of benzaldehyde (PhCHO) and doublet peaks at 2873 and 2935 cm⁻¹ (ν_{C-H}), attributed to the carbon–hydrogen bond (C-H) of the aldehyde group, were clearly observed on Pt/In₂S₃ under simulated sunlight (Figure [8b](#page-10-0)). These results indicate that PhCH2OH is selectively oxidized into PhCHO via a carbon-These results indicate that PhCH2OH is selectively oxidized into PhCHO via a carboncentered radical process. The effects of the reactive species on PHP were also investigated centered radical process. The effects of the reactive species on PHP were also investigated by the trapping experiments (Figure [8c](#page-10-0)). Triethanolamine (TA) and carbon tetrachloride (CTC) were used as trapping agents for photoexcited holes and electrons, respectively. (CTC) were used as trapping agents for photoexcited holes and electrons, respectively. When TA was added into the reaction system, the H_2 production rate decreased. This When TA was added into the reaction system, the $\rm H_2$ production rate decreased. This indicates that the dehydrogenation of PhCH₂OH to $\rm H_2$ production is restrained by TA. For the trapping agent CCI_4 , a relatively large decrease was observed in the H_2 production rate. This indicates that the photogenerated electrons are major reductive species for the rate. This indicates that the photogenerated electrons are major reductive species for the reduction in protons to H_2 . These results suggest that synergistic effect occurred between $PhCH₂OH$ dehydrogenation and $H₂$ production.

Figure 8. (a) EPR spectra of DMPO-CH(OH)Ph over different photocatalysts. (b) In situ DRIFTS spectra of the 0.3% Pt/In2S3 hybrid with the existence of PhCH2OH under simulated sunlight. (**c**) The spectra of the 0.3% Pt/In₂S₃ hybrid with the existence of PhCH₂OH under simulated sunlight. (**c**) The effect of the trapping agents on the PHP over the 0.3% Pt/In₂S₃ hybrid. (**d**) Illustration of the formation and photocatalytic mechanism of the $0D/2D-3D$ Pt/In₂S₃ heterostructure.

From the above analysis, the photocatalytic mechanism was proposed as depicted Figure 8c. Under simulated sunlight irradiation, the photoexcited electrons and holes in Figure [8c](#page-10-0). Under simulated sunlight irradiation, the photoexcited electrons and holes were generated on the $In₂S₃$ nanosheets. Then, on the one hand, PhCH₂OH was oxidized into . CH(OH)Ph, and the . CH(OH)Ph free radical was further oxidized into PhCHO by the into .CH(OH)Ph, and the .CH(OH)Ph free radical was further oxidized into PhCHO by the photoexcited holes located at In_2S_3 . On the other hand, the photoexcited electrons were first r
consumed by [PtCl₆]^{2−} to produce Pt clusters and were then separated and transported from In₂S₃ into Pt clusters efficiently to produce H₂ by reducing H⁺/H₂O. During this redox process, [PtCl₆]^{2−} was reduced by the photoexcited electrons on the surfaces of In₂S₃, and Pt⁰ was anchored at the separated electron location. Thus, the as-synthesized Pt/In₂S₃ heterostructure would facilitate the electron transportation from In₂S₃ into Pt and improve PHP activity. Due to the competing reactions of H_2 evolution, the Pt cluster was in the optimized state for H_2 production. During the coupled redox reaction of PhCH₂OH oxidation and H_2 evolution, one molecule of PhCH₂OH was oxidized into one molecule of PhCHO by consuming two photoexcited holes. Simultaneously, one molecule of H_2 was produced by expending two electrons. Thus, the efficient, stable and atom-economic

dual-function photocatalytic reaction system was achieved on the 0D/2D-3D Pt/In₂S₃ heterostructures.

analytical reagents and were used of the with no further purification.

 $(\mathcal{L}^{\mathcal{L}}\mathcal{L}^{\mathcal{L}}\mathcal{L}^{\mathcal{L}}\mathcal{L}^{\mathcal{L}}\mathcal{L}^{\mathcal{L}}\mathcal{L}^{\mathcal{L}}\mathcal{L}^{\mathcal{L}}\mathcal{L}^{\mathcal{L}}\mathcal{L}^{\mathcal{L}}\mathcal{L}^{\mathcal{L}}\mathcal{L}^{\mathcal{L}}\mathcal{L}^{\mathcal{L}}\mathcal{L}^{\mathcal{L}}\mathcal{L}^{\mathcal{L}}\mathcal{L}^{\mathcal{L}}\mathcal{L}^{\mathcal{L}}\mathcal{L}^{\mathcal{L$

3. Experiments and Methods *3.2. Preparation of 2D-3D In2S3 and 0D/2D-3D Pt/In2S3*

3.1. Materials The 0D-3D-3D-3D-3D Pt/In2O-3D-3D Pt/In2O-3D Pt/In2O-3D Pt/In2O-3D Pt/In2O-3D Pt/In2O-3D Pt/In2O-3D Pt/In2O-4D Pt

5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and 2,2,6,6-Tetramethylpiperidin-1-oxyl 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and 2,2,6,6-Tetramethylpiperidin-1-oxyl (TEMPO) for EPR-spectroscopy were purchased from Sigma-Aldrich. Indium chloride tetrahydrate (InCl₃·4H₂O, 99.9%), thioacetamide (C₂H₅NS, \geq 99.0%), chloroplatinic acid hexahydrate (H₂PtCl₆·6H₂O, Pt \geq 35.7%), potassium ferrocyanide trihydrate (K₄[Fe(CN)₆] \cdot 3H₂O, \geq 99.5%), phenylcarbinol (C₇H₈O, \geq 99.0%), lactic acid (C₃H₆O₃, 85%), triethanolamine $(C_6H_{15}NO_3, \geq 99.0\%)$, sodium sulfate (Na₂SO₄, $\geq 98\%$), potassium chloride (KCl, 99.8%), potassium ferricyanide $(K_3[Fe(CN)_6]$, 99%) and other used reagents were all analytical reagents and were used directly with no further purification. tetrahydrate (InCl₃·4H₂O, 99.9%), thioacetamide (C₂H₅NS, \geq 99.0%), chloroplatinic acid
hexahydrate (H₂PtCl₆·6H₂O, Pt \geq 35.7%), potassium ferrocyanide trihydrate (K₄[Fe(CN)₆]
·3H₂O, \geq 99.5%), p

3.2. Preparation of 2D-3D $In₂S₃$ *and 0D/2D-3D* $Pt/In₂S₃$ T . The parameter of $2D$ -SD m_2 s and $0D/2D$ -SD 1 μ_1 μ_2 s s

[The](#page-11-0) $\rm 0D/2D$ -3D Pt/In $\rm _2S_3$ heterostructure was prepared as depicted in Figure 9. Briefly, InCl₃ was wholly dissolved into acid solution and reacted with thioacetamide (TAA) to form $[\text{In(TAA)}_4]^{3+}$ and $[\text{In(TAA)}_6]^{3+}$ complexes via In-S bonds [\[75\]](#page-16-12). Then, these complexes underwent the hydrothermal process to produce 2D-3D In_2S_3 . In_2S_3 was easily formed because the solubility product constant (Ksp) of In₂S₃ was very small (5.7 \times 10⁻⁷⁴) [\[75\]](#page-16-12). Finally, Pt/In_2S_3 heterostructure was obtained by an in situ photodeposition process. Namely, the Pt/In₂S₃ was synthesized in the process of PHP coupled with simultaneously selective phenylcarbinol conversion.

Figure 9. The preparation procedure of the 0D/2D-3D Pt/In₂S₃ heterostructure.

In a typical synthesis, 1 mmol InCl₃·4H₂O was dissolved in deionized water, and the pH of the InCl $_3$ solution was adjusted to 1.0 by adding HCl to prevent InCl $_3$ hydrolysis. Then, 2.5 mmol C_2H_5NS was gradually added into the above solution and constantly stirred. The pH of the above solution was adjusted to 3.0 again by adding H_2O . The above solution was transferred to a 100 mL Teflon-lined stainless-steel reactor and held at 180 ◦C for 24 h. After natural cooling to 25 $°C$, the orange precipitate was collected and washed with distilled water and anhydrous ethanol several times. Finally, the sediments were dried in a vacuum oven at 60 °C for 2 h. The pure 2D-3D In₂S₃ was obtained. The 0D/2D-3D Pt/In₂S₃ heterostructure was obtained by an in situ photodeposition method in the process of photocatalytic selective conversion of phenylcarbinol into benzaldehyde and H_2 . The details are presented in the following section.

3.3. Photocatalytic Activity Test

The photocatalytic H_2 generation was carried out in a gas-tight Pyrex reactor. The 300 W Xenon lamp (PLS-SXE300D, Perfect Light Co., Beijing, China) was used as the simulated solar light. Typically, 10 mg $In₂S₃$ powders were dispersed in 10 mL phenylcarbinol solution and then different amounts of $H_2PtCl_6·6H_2O$ were added. After bubbling argon to remove dissolved oxygen, the suspension was irradiated for photocatalytic H_2 production. After irradiation for 2 h, the H_2 was quantified using a gas chromatograph spectrometer

(GC 9790II, Fuli, Wenling, China) equipped with a molecular sieve 5A column. The reaction liquor was detected by high performance liquid chromatography (HP-LC, watersE2695, MA, USA). The detector of the HP-LC was PDA 2998. The mobile phase consisted of 40% deionized water and 60% acetonitrile with a flow rate of 1 mL min $^{-1}$. Finally, the precipitate (Pt//In₂S₃) after light exposure was collected, washed with ethanol and dried at 60 °C for 2 h. Catalysts with different Pt content added were rewritten as $x\%$ Pt/In₂S₃ (x is a weight ratio of Pt in the Pt/In₂S₃ composite, $x = 0.1$, 0.3, 0.5, 1.0). For comparison, the pure In₂S₃ was also quantitatively analyzed for H₂ production without adding $H_2PtCl_6·6H_2O$. The apparent quantum efficiency (AQE) for H_2 evolution was obtained by the following equation: AQE = $(2 \times N_H/N_p) \times 100\%$, where N_H and N_p are the numbers of evolved H² molecules and incident photons, respectively. Turnover number (TON) was calculated based on the quantity of H₂ and Pt: TON = N_H/N_{pt} , where N_{pt} is the number of Pt. The turnover frequency (TOF) was measured via TON divided by reaction time. Benzaldehyde selectivity was calculated by the equation: Selectivity = $[C_{CHO}/(C_0-C_{OH}] \times 100\%$, where C_0 , C_{OH} and C_{CHO} are the concentrations of phenylcarbinol, the residual phenylcarbinol and the corresponding aldehydes, respectively.

3.4. Characterization

Powder X-ray diffraction (PXRD) pattern of the sample was determined by a Bruker D8 X-ray powder diffractometer using Ni-filtered Cu K α radiation. The microstructure and morphologies of the prepared samples were carried out by scanning electron microscope (SEM, Regulus 8200, Hitachi Limited, Tokyo, Japan) and transmission electron microscope (TEM, JEM2100, JEOL, Akishima-shi, Japan). Elemental mappings were measured using an energy-dispersive X-ray spectrometer (EDX). X-ray photoelectron spectroscopy (XPS, Thermo Scientific, Massachusetts, America) measurements were performed on Thermo Scientific ESCA Lab250 spectrometer. All the binding energies were referred to the C 1s peak at 284.6 eV of the surface adventitious carbon. UV-vis diffuse reflectance spectra (DRS) of the powders were obtained on a UV-vis spectrophotometer (Shimadzu UV-3600, Kyoto, Japan), with $BaSO₄$ used as a reference. Brunauer–Emmett–Teller (BET) surface areas were tested on a Micromeritics ASAP 2460 instrument. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) measurements were detected on a Nicolet 8700 FTIR spectrometer. The carbon-centered radicals and the photoexcited charges (electrons and holes) were in situ seen on an electron paramagnetic resonance (EPR, A300, Karlsruhe, Bruker, Germany) by DMPO and TEMPO as trapping agents, respectively. The work function of the $In₂S₃$ was obtained on an ultraviolet photoelectron spectroscopy (UPS, Thermo ESCALAB 250XI, (Waltham, MA, USA). The actual Pt content in the Pt/In_2S_3 sample was measured by an inductively coupled plasma optical emission spectrometry (ICP-OES, Agilent 5110, Santa Clara, CA, USA).

3.5. Photoelectrochemical Property Test

The photoelectrochemical (PEC) tests were carried out on a CHI-660E electrochemical workstation (CH Instruments, Bee Cave, TX, USA). An Ag/AgCl and a Pt wire were used as the reference electrode and the counter electrode, respectively. The sample powder was deposited on the FTO (50 mm \times 50 mm) as a working electrode. Typically, a uniform solution was obtained by ultrasonically dispersing 5 mg samples into 400 µL deionized water. Then, 20 µL of the above solution were deposited on the FTO substrate. The working electrode was obtained after drying at room temperature. The transient photocurrent responses, linear sweep voltammetry (LSV) plots and Mott–Schottky (M-S) plots were detected in a 0.2 M Na₂SO₄ aqueous solution. Electrochemical impedance spectroscopy (EIS) Nyquist plots were detected in 0.1 M KCl solution containing 0.1 M $K_3[Fe(CN)_6]/K_4[Fe(CN)_6]$.

4. Conclusions

In summary, a 2D-3D $In₂S₃$ hierarchical structure decorated by 0D Pt clusters was successfully fabricated by the sequential hydrothermal process and in situ photodeposition. The strong metal–support interactions (SMSI) of the $Pt/In₂S₃$ hybrid improved the charge separation and transportation. and thus. resulted in the significant enhancement of photocatalytic H₂ production. The optimized 0.3% Pt/In₂S₃ exhibited the highest and stable photocatalytic activity with 22.1 mmol g^{-1} h⁻¹ of H_2 evolution rate and almost 100% selectivity of benzaldehyde production. In addition, the turnover frequency of 0.3% Pt/In₂S₃ reached up to approximately 2394 h⁻¹, and 3.72% of apparent quantum efficiency was achieved under 500 nm light irradiation. Coupling phenylcarbinol conversion with H_2 evolution was superior to the traditional sacrificial agents. The H_2 production using phenylcarbinol was approximately 20.1, 36.8, 44.2 and 7366.7 times higher than that using lactic acid, $Na₂S$, triethanolamine and methanol as sacrificial agents under the same reaction condition, respectively. Notably, in this dual-function photocatalysis, the photoexcited holes located at the In_2S_3 were utilized for selective oxidizing phenylcarbinol into valueadded fine chemicals benzaldehyde; conversely, the photoexcited electrons on the $In₂S₃$ were used firstly for reducing $[PtCl_6]^2$ to fabricate Pt clusters anchored at the separated electron location and then transported from the $In₂S₃$ to the Pt clusters for $H₂$ production. The Pt clusters were stable, and the charge transport efficiency of In_2S_3 reached up to approximately 90.1% by the modification of the Pt clusters. Moreover, the synergistic effect occurred between PhCH₂OH dehydrogenation and H_2 production. This work is expected to aid the design of efficient and stable photocatalysts to simultaneously utilize photoexcited holes and electrons, thereby gaining the value-added fine chemicals and clean energy in one reaction system.

Author Contributions: H.Z.: investigation, data curation, writing—original draft preparation. P.X.: formal analysis, resources, writing—original draft preparation. B.L.: resources, methodology. Q.L.: software. X.Z.: resources, formal analysis, writing—review and editing. S.Z.: resources. Z.R.: validation. S.C.: funding acquisition, formal analysis, writing—review and editing, supervision. S.M.: Conceptualization, formal analysis, writing—review and editing, supervision, project administration, funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (NSFC, 52002142, 51972134, 52272297 and 52002142), the Foundation of Anhui Province for Distinguished Young Scholars (2022AH020038), the Foundation of Anhui Province for Outstanding Young Graduatestudent Advisors (2022yjsds036), Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment (SKLPEE-KF201804 and SKLPEE-KF202202) in Fuzhou University, the Natural Science Foundation of Anhui Province (2108085MB43), the University Natural Science Research Project of Anhui Province (KJ2021A0524).

Data Availability Statement: Data only available upon request from corresponding author.

Conflicts of Interest: The authors declared that there is no conflict of interest.

References

- 1. Fujishima, A.; Honda, K. Electrochemical Photocatalysis of Water at a Semiconductor Electtode. *Nature* **1972**, *238*, 37–38. [\[CrossRef\]](http://doi.org/10.1038/238037a0)
- 2. Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; Narushima, R.; et al. Photocatalytic solar hydrogen production from water on a 100-m² scale. *Nature* **2021**, *598*, 304–307. [\[CrossRef\]](http://doi.org/10.1038/s41586-021-03907-3)
- 3. Liu, L.; Du, S.; Guo, X.; Xiao, Y.; Yin, Z.; Yang, N.; Bao, Y.; Zhu, X.; Jin, S.; Feng, Z.; et al. Water-Stable Nickel Metal-Organic Framework Nanobelts for Cocatalyst-Free Photocatalytic Water Splitting to Produce Hydrogen. *J. Am. Chem. Soc.* **2022**, *144*, 2747–2754. [\[CrossRef\]](http://doi.org/10.1021/jacs.1c12179)
- 4. Rasool, M.A.; Sattar, R.; Anum, A.; Al-Hussain, S.A.; Ahmad, S.; Irfan, A.; Zaki, M.E. An Insight into Carbon Nanomaterial-Based Photocatalytic Water Splitting for Green Hydrogen Production. *Catalysts* **2023**, *13*, 66. [\[CrossRef\]](http://doi.org/10.3390/catal13010066)
- 5. Meng, S.; Chen, C.; Gu, X.; Wu, H.; Meng, Q.; Zhang, J.; Lei, W. Efficient Photocatalytic H₂ Evolution, CO₂ Reduction and N₂ Fixation Coupled with Organic Synthesis by Cocatalyst and Vacancies Engineering. *Appl. Catal. B Environ.* **2021**, *285*, 119789. [\[CrossRef\]](http://doi.org/10.1016/j.apcatb.2020.119789)
- 6. Cai, M.D.; Cao, S.Y.; Zhuo, Z.Z.; Wang, X.; Shi, K.Z.; Cheng, Q.; Xue, Z.M.; Du, X.; Shen, C.; Liu, X. Fabrication of Ni2P Cocatalyzed CdS Nanorods with a Well-Defined Heterointerface for Enhanced Photocatalytic H² Evolution. *Catalysts* **2022**, *12*, 417. [\[CrossRef\]](http://doi.org/10.3390/catal12040417)
- 7. Battula, V.R.; Jaryal, A.; Kailasam, K. Visible light-driven simultaneous H₂ production by water splitting coupled with selective oxidation of HMF to DFF catalyzed by porous carbon nitride. *J. Mater. Chem. A* **2019**, *7*, 5643–5649. [\[CrossRef\]](http://doi.org/10.1039/C8TA10926E)
- 8. Ripple, W.J.; Wolf, C.; Newsome, T.M.; Galetti, M.; Alamgir, M.; Crist, E.; Mahmoud, M.I.; Laurance, W.F. World Scientists' Warning to Humanity: A Second Notice. *BioScience* **2017**, *67*, 1026–1028. [\[CrossRef\]](http://doi.org/10.1093/biosci/bix125)
- 9. Xu, D.; Zhang, S.-N.; Chen, J.-S.; Li, X.-H. Design of the Synergistic Rectifying Interfaces in Mott-Schottky Catalysts. *Chem. Rev.* **2023**, *123*, 1–30. [\[CrossRef\]](http://doi.org/10.1021/acs.chemrev.2c00426)
- 10. Oshima, T.; Nishioka, S.; Kikuchi, Y.; Hirai, S.; Yanagisawa, K.; Eguchi, M.; Maeda, K. An Artificial Z-Scheme Constructed from Dye-Sensitized Metal Oxide Nanosheets for Visible Light-Driven Overall Water Splitting. *J. Am. Chem. Soc.* **2020**, *142*, 8412–8420. [\[CrossRef\]](http://doi.org/10.1021/jacs.0c02053)
- 11. Jin, X.X.; Wang, R.Y.; Zhang, L.X.; Si, R.; Shen, M.; Wang, M.; Tian, J.J.; Shi, J.L. Electron Configuration Modulation of Nickel Single Atoms for Elevated Photocatalytic Hydrogen Evolution. *Angew. Chem. Int. Ed.* **2020**, *59*, 6827–6831. [\[CrossRef\]](http://doi.org/10.1002/anie.201914565)
- 12. Zhu, Q.H.; Xu, Q.; Du, M.M.; Zeng, X.F.; Zhong, G.F.; Qiu, B.C.; Zhang, J.L. Recent progress of metal sulfide photocatalysts for solar energy conversion. *Adv. Mater.* **2022**, *34*, 2202929. [\[CrossRef\]](http://doi.org/10.1002/adma.202202929)
- 13. Zhang, F.; Li, J.M.; Wang, H.F.; Li, Y.P.; Liu, Y.; Qian, Q.; Zhang, G. Realizing Synergistic Effect of Electronic Modulation and Nanostructure Engineering over Graphitic Carbon Nitride for Highly Efficient Visible-Light H₂ Production Coupled with Benzyl Alcohol Oxidation. *Appl. Catal. B Environ.* **2020**, *269*, 118772. [\[CrossRef\]](http://doi.org/10.1016/j.apcatb.2020.118772)
- 14. Meng, S.; Ye, X.; Zhang, J.; Fu, X.; Chen, S. Effective use of photogenerated electrons and holes in a system: Photocatalytic selective oxidation of aromatic alcohols to aldehydes and hydrogen production. *J. Catal.* **2018**, *367*, 159–170. [\[CrossRef\]](http://doi.org/10.1016/j.jcat.2018.09.003)
- 15. Zong, X.; Yan, H.H.; Wu, G.P.; Ma, G.J.; Wen, F.Y.; Wang, L.; Li, C. Enhancement of photocatalytic H² evolution on CdS by loading MoS² as cocatalyst under visible light irradiation. *J. Am. Chem. Soc.* **2008**, *130*, 7176–7177. [\[CrossRef\]](http://doi.org/10.1021/ja8007825)
- 16. Fazil, M.; Ahmad, T. Pristine TiO₂ and Sr-Doped TiO₂ Nanostructures for Enhanced Photocatalytic and Electrocatalytic Water Splitting Applications. *Catalysts* **2023**, *13*, 93. [\[CrossRef\]](http://doi.org/10.3390/catal13010093)
- 17. AlSalka, Y.; Al-Madanat, O.; Hakki, A.; Bahnemann, D.W. Boosting the H_2 production efficiency via photocatalytic organic reforming: The role of additional hole scavenging system. *Catalysts* **2021**, *11*, 1423. [\[CrossRef\]](http://doi.org/10.3390/catal11121423)
- 18. Al-Madanat, O.; Alsalka, Y.; Curti, M.; Dillert, R.; Bahnemann, D.W. Mechanistic insights into hydrogen evolution by photocatalytic reforming of naphthalene. *ACS Catal.* **2020**, *10*, 7398–7412. [\[CrossRef\]](http://doi.org/10.1021/acscatal.0c01713)
- 19. Al-Madanat, O.; AlSalka, Y.; Ramadan, W.; Bahnemann, D.W. TiO₂ photocatalysis for the transformation of aromatic water pollutants into fuels. *Catalysts* **2021**, *11*, 317. [\[CrossRef\]](http://doi.org/10.3390/catal11030317)
- 20. Schneider, J.; Bahnemann, D.W. Undesired role of sacrificial reagents in photocatalysis. *J. Chem. Phys. Lett.* **2013**, *4*, 3479–3483. [\[CrossRef\]](http://doi.org/10.1021/jz4018199)
- 21. Zhou, P.; Lv, F.; Li, N.; Zhang, Y.L.; Mu, Z.J.; Tang, Y.H.; Guo, S. Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N⁴ for boosting photocatalytic H² production. *Nano Energy* **2019**, *56*, 127–137. [\[CrossRef\]](http://doi.org/10.1016/j.nanoen.2018.11.033)
- 22. Ma, X.H.; Li, W.J.; Li, H.D.; Dong, M.; Li, X.Y.; Geng, L.; Wang, T. Fabrication of novel and noble-metal-free MoP/In₂S₃ Schottky heterojunction photocatalyst with efficient charge separation for enhanced photocatalytic H₂ evolution under visible light. *J. Colloid Interf. Sci.* **2022**, *617*, 284–292. [\[CrossRef\]](http://doi.org/10.1016/j.jcis.2022.03.021)
- 23. Yang, L.F.; Li, A.Q.; Dang, T.; Wang, Y.F.; Liang, L.; Tang, J.; Zhang, Z. S-scheme In2S3/Zn3In2S6 microsphere for efficient photocatalytic H² evolution with simultaneous photodegradation of bisphenol A. *Appl. Surf. Sci.* **2023**, *612*, 155848. [\[CrossRef\]](http://doi.org/10.1016/j.apsusc.2022.155848)
- 24. Zhang, R.Y.; Jia, X.W.; Li, Y.R.; Yu, X.D.; Xing, Y. Oxidation co-catalyst modified In₂S₃ with efficient interfacial charge transfer for boosting photocatalytic H² evolution. *Int. J. Hydrogen Energ.* **2022**, *47*, 25300–25308. [\[CrossRef\]](http://doi.org/10.1016/j.ijhydene.2022.05.267)
- 25. Lin, Q.C.; Li, Z.H.; Lin, T.J.; Li, B.L.; Liao, X.C.; Yu, H.Q.; Yu, C.L. Controlled preparation of P-doped g-C3N⁴ nanosheets for efficient photocatalytic hydrogen production. *Chin. J. Chem. Eng.* **2020**, *28*, 2677–2688. [\[CrossRef\]](http://doi.org/10.1016/j.cjche.2020.06.037)
- 26. Chen, X.B.; Shen, S.H.; Guo, L.J.; Mao, S.S. Semiconductor-based photocatalytic hydrogen generation. *Chem. Rev.* **2010**, *110*, 6503–6570. [\[CrossRef\]](http://doi.org/10.1021/cr1001645)
- 27. Chai, Z.G.; Zeng, T.T.; Li, Q.; Lu, L.Q.; Xiao, W.J.; Xu, D.S. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst. *J. Am. Chem. Soc.* **2016**, *138*, 10128–10131. [\[CrossRef\]](http://doi.org/10.1021/jacs.6b06860)
- 28. Xiong, Z.; Hou, Y.D.; Yuan, R.S.; Ding, Z.X.; Ong, W.J.; Wang, S.B. Hollow NiCo₂S₄ nanospheres as a cocatalyst to support ZnIn₂S₄ nanosheets for visible-light-driven hydrogen production. *Acta. Phys.-Chim. Sin.* **2022**, *38*, 2111021.
- 29. Li, S.C.; Shi, M.Y.; Yu, J.H.; Li, S.J.; Lei, S.L.; Lin, L.G.; Wang, J.J. Two-dimensional blue-phase CX (X = S, Se) monolayers with high carrier mobility and tunable photocatalytic water splitting capability. *Chin. Chem. Lett.* **2021**, *32*, 1977–1982. [\[CrossRef\]](http://doi.org/10.1016/j.cclet.2020.09.056)
- 30. Yuan, L.; Li, Y.H.; Tang, Z.R.; Gong, J.L.; Xu, Y.J. Defect-promoted visible light-driven CC coupling reactions pairing with CO² reduction. *J. Catal.* **2020**, *390*, 244–250. [\[CrossRef\]](http://doi.org/10.1016/j.jcat.2020.07.036)
- 31. Meng, S.; Wu, H.; Cui, Y.; Zheng, X.; Wang, H.; Chen, S.; Fu, X. One-step synthesis of 2D/2D-3D NiS/Zn $_3$ In $_2$ S $_6$ hierarchical structure toward solar-to-chemical energy transformation of biomass-relevant alcohols. *Appl. Catal. B Environ.* **2020**, *266*, 118617. [\[CrossRef\]](http://doi.org/10.1016/j.apcatb.2020.118617)
- 32. Qi, M.Y.; Conte, M.; Anpo, M.; Tang, Z.R.; Xu, Y.J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. *Chem. Rev.* **2021**, *121*, 13051–13085. [\[CrossRef\]](http://doi.org/10.1021/acs.chemrev.1c00197)
- 33. Fu, X.; Zhang, L.; Liu, L.; Li, H.; Meng, S.; Ye, X.; Chen, S. In situ photodeposition of MoS_x on CdS nanorods as a highly efficient cocatalyst for photocatalytic hydrogen production. *J. Mater. Chem. A* **2017**, *5*, 15287–15293. [\[CrossRef\]](http://doi.org/10.1039/C7TA04814A)
- 34. Shen, R.C.; Ren, D.D.; Ding, Y.N.; Guan, Y.T.; Ng, Y.H.; Zhang, P.; Li, X. Nanostructured CdS for efficient photocatalytic H₂ evolution: A review. *Sci. China Mater.* **2020**, *63*, 2153–2188. [\[CrossRef\]](http://doi.org/10.1007/s40843-020-1456-x)
- 35. Li, L.; Guo, C.F.; Ning, J.Q.; Zhong, Y.J.; Chen, D.L.; Hu, Y. Oxygen-vacancy-assisted construction of FeOOH/CdS heterostructure as an efficient bifunctional photocatalyst for CO₂ conversion and water oxidation. *Appl. Catal. B Environ.* **2021**, 293, 120203. [\[CrossRef\]](http://doi.org/10.1016/j.apcatb.2021.120203)
- 36. Han, G.Q.; Jin, Y.H.; Burgess, R.A.; Dickenson, N.E.; Cao, X.M.; Sun, Y.J. Visible-Light-Driven Valorization of Biomass Intermediates Integrated with H² Production Catalyzed by Ultrathin Ni/CdS Nanosheets. *J. Am. Chem. Soc.* **2017**, *139*, 15584–15587. [\[CrossRef\]](http://doi.org/10.1021/jacs.7b08657)
- 37. Liu, M.C.; Chen, Y.B.; Su, J.Z.; Shi, J.W.; Wang, X.X.; Guo, L.J. Photocatalytic Hydrogen Production using Twinned Nanocrystals and an Unanchored NiSx Co-Catalyst. *Nat. Energy* **2016**, *1*, 16151. [\[CrossRef\]](http://doi.org/10.1038/nenergy.2016.151)
- 38. Li, S.J.; Cai, M.J.; Liu, Y.P.; Wang, C.C.; Yan, R.Y.; Chen, X.B. Constructing Cd_{0.5}Zn_{0.5}S/Bi₂WO₆ S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction. *Adv. Powder Mater.* **2023**, *2*, 100073. [\[CrossRef\]](http://doi.org/10.1016/j.apmate.2022.100073)
- 39. Dong, Y.J.; Han, Q.; Hu, Q.Y.; Xu, C.J.; Dong, C.Z.; Peng, Y.; Lan, Y. Carbon quantum dots enriching molecular nickel polyoxometalate over CdS semiconductor for photocatalytic water splitting. *Appl. Catal. B* **2021**, *293*, 120214. [\[CrossRef\]](http://doi.org/10.1016/j.apcatb.2021.120214)
- 40. Ye, H.F.; Shi, R.; Yang, X.; Fu, W.F.; Chen, Y. P-doped $Zn_xCd_{1-x}S$ solid solutions as photocatalysts for hydrogen evolution from water splitting coupled with photocatalytic oxidation of 5-hydroxymethylfurfural. *Appl. Catal. B Environ.* **2018**, *233*, 70–79. [\[CrossRef\]](http://doi.org/10.1016/j.apcatb.2018.03.060)
- 41. Yang, Y.; Ren, W.; Zheng, X.; Meng, S.; Cai, C.; Fu, X.; Chen, S. Decorating $Zn_{0.5}Cd_{0.5}S$ with C, N Co-Doped CoP: An Efficient Dual-Functional Photocatalyst for H² Evolution and 2,5-Diformylfuran Oxidation. *ACS Appl. Mater. Inter.* **2022**, *14*, 54649–54661. [\[CrossRef\]](http://doi.org/10.1021/acsami.2c13859)
- 42. Zhu, Z.; Zhang, S.; Chen, G.; Meng, S.; Zheng, X.; Chen, S.; Zhang, F. Minimized Pt deposition on CdS simultaneously maximizes the performance of hydrogen production and aromatic alcohols oxidation. *Appl. Surf. Sci.* **2021**, *564*, 150446. [\[CrossRef\]](http://doi.org/10.1016/j.apsusc.2021.150446)
- 43. Shi, X.W.; Dai, C.; Wang, X.; Hu, J.Y.; Zhang, J.Y.; Zheng, L.; Zhu, M. Protruding Pt single-sites on hexagonal ZnIn₂S₄ to accelerate photocatalytic hydrogen evolution. *Nat. Commun.* **2022**, *13*, 1287. [\[CrossRef\]](http://doi.org/10.1038/s41467-022-28995-1)
- 44. Andreou, E.K.; Koutsouroubi, E.D.; Vamvasakis, I.; Armatas, G.S. Ni2P-modified P-Doped Carbon Nitride Hetero-Nanostructures for Efficient Photocatalytic Aqueous Cr(VI) Reduction. *Catalysts* **2023**, *13*, 437. [\[CrossRef\]](http://doi.org/10.3390/catal13020437)
- 45. Yang, Y.; Zheng, X.Z.; Liu, J.F.; Qi, Z.L.; Su, T.Y.; Cai, C.; Chen, S. Efficient H₂ evolution on Co₃S₄/Zn_{0.5}Cd_{0.5}S nanocomposites by photocatalytic synergistic reaction. *Inorg. Chem. Front.* **2022**, *9*, 1943–1955. [\[CrossRef\]](http://doi.org/10.1039/D1QI01617B)
- 46. Shen, R.C.; Ding, Y.N.; Li, S.B.; Zhang, P.; Xiang, Q.J.; Ng, Y.H.; Li, X. Constructing low-cost Ni3C/twin-crystal Zn_{0.5}Cd_{0.5}S heterojunction/homojunction nanohybrids for efficient photocatalytic H₂ evolution. *Chin. J. Catal.* **2021**, 42, 25-36. [\[CrossRef\]](http://doi.org/10.1016/S1872-2067(20)63600-2)
- 47. Li, K.; Chai, B.; Peng, T.Y.; Mao, J.; Zan, L. Preparation of AgIn₅S₈/TiO₂ heterojunction nanocomposite and its enhanced photocatalytic H² production property under visible light. *ACS Catal.* **2013**, *3*, 170–177. [\[CrossRef\]](http://doi.org/10.1021/cs300724r)
- 48. He, Y.; Li, D.; Xiao, G.; Chen, W.; Chen, Y.; Sun, M.; Huang, H.; Fu, X. A New Application of Nanocrystal In $_2$ S $_3$ in Efficient Degradation of Organic Pollutants under Visible Light Irradiation. *J. Phys. Chem. C* **2009**, *113*, 5254–5262. [\[CrossRef\]](http://doi.org/10.1021/jp809028y)
- 49. Sun, X.; Luo, X.; Zhang, X.; Xie, J.; Jin, S.; Wang, H.; Zheng, X.; Wu, X.; Xie, Y. Enhanced Superoxide Generation on Defective Surfaces for Selective Photooxidation. *J. Am. Chem. Soc.* **2019**, *141*, 3797–3801. [\[CrossRef\]](http://doi.org/10.1021/jacs.8b13051)
- 50. Li, T.; Zhang, S.; Meng, S.; Ye, X.; Fu, X.; Chen, S. Amino acid-assisted synthesis of In₂S₃ hierarchical architectures for selective oxidation of aromatic alcohols to aromatic aldehydes. *RSC Adv.* **2017**, *7*, 6457–6466. [\[CrossRef\]](http://doi.org/10.1039/C6RA28560K)
- 51. Meng, S.; Ye, X.; Ning, X.; Xie, M.; Fu, X.; Chen, S. Selective oxidation of aromatic alcohols to aromatic aldehydes by BN/metal sulfide with enhanced photocatalytic activity. *Appl. Catal. B Environ.* **2016**, *182*, 356–368. [\[CrossRef\]](http://doi.org/10.1016/j.apcatb.2015.09.030)
- 52. Meng, S.; Cui, Y.; Wang, H.; Zheng, X.; Fu, X.; Chen, S. Noble metal-free 0D-1D NiSx/CdS nanocomposites toward highly efficient photocatalytic contamination removal and hydrogen evolution under visible light. *Dalton T.* **2018**, *47*, 12671–12683. [\[CrossRef\]](http://doi.org/10.1039/C8DT02406E)
- 53. Cheng, T.T.; Gao, H.J.; Liu, G.R.; Pu, Z.S.; Wang, S.F.; Yi, Z.; Yang, H. Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto $Bi_4Ti_3O_{12}$ hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr (VI) ions. *Colloid. Surf. A* **2022**, *633*, 127918. [\[CrossRef\]](http://doi.org/10.1016/j.colsurfa.2021.127918)
- 54. Li, W.J.; Lin, Z.Y.; Yang, G.W. A 2D self-assembled MoS₂/Znln₂S₄ heterostructure for efficient photocatalytic hydrogen evolution. *Nanoscale* **2017**, *9*, 18290–18298. [\[CrossRef\]](http://doi.org/10.1039/C7NR06755K)
- 55. Pasupuleti, K.S.; Reddeppa, M.; Park, B.-G.; Oh, J.-E.; Kim, S.-G.; Kim, M.-D. Efficient Charge Separation in Polypyrrole/GaN-Nanorod-Based Hybrid Heterojunctions for High-Performance Self-Powered UV Photodetection. *Phys. Status Solidi-Rapid Res. Lett.* **2021**, *15*, 2000518. [\[CrossRef\]](http://doi.org/10.1002/pssr.202000518)
- 56. Wu, H.; Meng, S.; Zhang, J.; Zheng, X.; Wang, Y.; Chen, S.; Fu, X. Construction of two-dimensionally relative p-n heterojunction for efficient photocatalytic redox reactions under visible light. *Appl. Surf. Sci.* **2020**, *505*, 144638. [\[CrossRef\]](http://doi.org/10.1016/j.apsusc.2019.144638)
- 57. Deng, H.Z.; Fei, X.G.; Yang, Y.; Fan, J.J.; Yu, J.G.; Cheng, B.; Zhang, L.Y. S-scheme heterojunction based on p-type ZnMn₂O₄ and n-type ZnO with improved photocatalytic CO² reduction activity. *Chem. Eng. J.* **2021**, *409*, 127377. [\[CrossRef\]](http://doi.org/10.1016/j.cej.2020.127377)
- 58. Liu, D.N.; Chen, D.Y.; Li, N.J.; Xu, Q.F.; Li, H.; He, J.H.; Lu, J.M. Surface engineering of g-C₃N₄ by stacked BiOBr sheets rich in oxygen vacancies for boosting photocatalytic performance. *Angew. Chem. Int. Ed.* **2020**, *59*, 4519–4524. [\[CrossRef\]](http://doi.org/10.1002/anie.201914949)
- 59. Yang, W.L.; Zhang, L.; Xie, J.F.; Zhang, X.D.; Liu, Q.H.; Yao, T.; Xie, Y. Enhanced photoexcited carrier separation in oxygen-doped ZnIn2S⁴ nanosheets for hydrogen evolution. *Angew. Chem. Int. Edit.* **2016**, *55*, 6716–6720. [\[CrossRef\]](http://doi.org/10.1002/anie.201602543)
- 60. Nielsen, M.; Kammer, A.; Cozzula, D.; Junge, H.; Gladiali, S.; Beller, M. Efficient hydrogen production from alcohols under mild reaction conditions. *Angew. Chem., Int. Ed.* **2011**, *50*, 9593. [\[CrossRef\]](http://doi.org/10.1002/anie.201104722)
- 61. Zheng, X.Z.; Zhang, Z.; Meng, S.; Wang, Y.X.; Li, D. Regulating charge transfer over 3D Au/ZnO hybrid inverse opal toward efficiently photocatalytic degradation of bisphenol A and photoelectrochemical water splitting. *Chem. Eng. J.* **2020**, *393*, 124676. [\[CrossRef\]](http://doi.org/10.1016/j.cej.2020.124676)
- 62. Khan, I.; Saeed, K.; Ali, N.; Khan, I.; Zhang, B.; Sadiq, M. Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters. *J. Environ. Chem. Eng.* **2020**, *8*, 104364. [\[CrossRef\]](http://doi.org/10.1016/j.jece.2020.104364)
- 63. Ahmad, S.; Almehmadi, M.; Janjuhah, H.T.; Kontakiotis, G.; Abdulaziz, O.; Saeed, K.; Ahmad, H.; Allahyani, M.; Aljuaid, A.; Alsaiari, A.A.; et al. The Effect of Mineral Ions Present in Tap Water on Photodegradation of Organic Pollutants: Future Perspectives. *Water* **2023**, *15*, 175. [\[CrossRef\]](http://doi.org/10.3390/w15010175)
- 64. Al-Madanat, O.; AlSalka, Y.; Dillert, R.; Bahnemann, D.W. Photocatalytic H₂ production from naphthalene by various TiO₂ photocatalysts: Impact of Pt loading and formation of intermediates. *Catalysts* **2021**, *11*, 107. [\[CrossRef\]](http://doi.org/10.3390/catal11010107)
- 65. Al-Madanat, O.; Curti, M.; Günnemann, C.; AlSalka, Y.; Dillert, R.; Bahnemann, D.W. TiO₂ photocatalysis: Impact of the platinum loading method on reductive and oxidative half-reactions. *Catal. Today* **2021**, *380*, 3–15. [\[CrossRef\]](http://doi.org/10.1016/j.cattod.2021.07.013)
- 66. Pasupuleti, K.S.; Chougule, S.S.; Jung, N.; Yu, Y.J.; Oh, J.-E.; Kim, M.-D. Plasmonic Pt nanoparticles triggered efficient charge separation in TiO₂/GaN NRs hybrid heterojunction for the high performance self-powered UV photodetectors. *Appl. Surf. Sci.* **2022**, *594*, 153474. [\[CrossRef\]](http://doi.org/10.1016/j.apsusc.2022.153474)
- 67. Pasupuleti, K.S.; Reddeppa, M.; Park, B.-G.; Peta, K.R.; Oh, J.-E.; Kim, S.-G.; Kim, M.-D. Ag nanowire-plasmonic-assisted charge separation in hybrid heterojunctions of Ppy-PEDOT: PSS/GaN nanorods for enhanced UV photodetection. *ACS Appl. Mater. Interfaces* **2020**, *12*, 54181–54190. [\[CrossRef\]](http://doi.org/10.1021/acsami.0c16795)
- 68. Wan, J.; Liu, L.; Wu, Y.; Song, J.R.; Liu, J.Q.; Song, R.; Xiong, Y. Exploring the polarization photocatalysis of ZnIn2S4 material toward hydrogen evolution by integrating cascade electric fields with hole transfer vehicle. *Adv. Funct. Mater.* **2022**, *32*, 2203252. [\[CrossRef\]](http://doi.org/10.1002/adfm.202203252)
- 69. Wan, J.; Yang, W.J.; Liu, J.Q.; Sun, K.L.; Liu, L.; Fu, F. Enhancing an internal electric field by a solid solution strategy for steering bulk-charge flow and boosting photocatalytic activity of Bi24O31ClxBr10-x. *Chin. J. Catal.* **2022**, *43*, 485–496. [\[CrossRef\]](http://doi.org/10.1016/S1872-2067(21)63897-4)
- 70. Hu, Z.F.; Yuan, L.Y.; Liu, Z.F.; Shen, Z.R.; Yu, J.C. An Elemental Phosphorus Photocatalyst with a Record High Hydrogen Evolution Efficiency. *Angew. Chem. Int. Ed.* **2016**, *55*, 9793. [\[CrossRef\]](http://doi.org/10.1002/anie.201605031)
- 71. Pasupuleti, K.S.; Ghosh, S.; Jayababu, N.; Kang, C.J.; Cho, H.D.; Kim, S.-G.; Kim, M.-D. Boron doped g-C3N⁴ quantum dots based highly sensitive surface acoustic wave NO₂ sensor with faster gas kinetics under UV light illumination. *Sensor. Actuat. B Chem.* **2023**, *378*, 133140. [\[CrossRef\]](http://doi.org/10.1016/j.snb.2022.133140)
- 72. Nowicka, E.; Hofmann, J.P.; Parker, S.F.; Sankar, M.; Lari, G.M.; Kondrat, S.A.; Knight, D.W.; Bethell, D.; Weckhuysen, B.M.; Hutchings, G.J. In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol. *Phys. Chem. Chem. Phys.* **2013**, *15*, 12147–12155. [\[CrossRef\]](http://doi.org/10.1039/c3cp50710f)
- 73. Sun, Z.; Yang, X.; Yu, X.-F.; Xia, L.; Peng, Y.; Li, Z.; Zhang, Y.; Cheng, J.; Zhang, K.; Yu, J. Surface oxygen vacancies of Pd/Bi2MoO_{6-x} acts as "Electron Bridge" to promote photocatalytic selective oxidation of alcohol. *Appl. Catal. B Environ.* **2021**, *285*, 119790. [\[CrossRef\]](http://doi.org/10.1016/j.apcatb.2020.119790)
- 74. Al-Madanat, O.; Nunes, B.N.; AlSalka, Y.; Hakki, A.; Curti, M.; Patrocinio, A.O.T.; Bahnemann, D.W. Application of EPR spectroscopy in TiO² and Nb2O⁵ photocatalysis. *Catalysts* **2021**, *11*, 1514. [\[CrossRef\]](http://doi.org/10.3390/catal11121514)
- 75. Chen, Z.X.; Li, D.Z.; Zhang, W.J.; Chen, C.; Li, W.J.; Sun, M.; Fu, X. Low-temperature and template-free synthesis of ZnIn₂S₄ microspheres. *Inorg. Chem.* **2008**, *47*, 9766–9772. [\[CrossRef\]](http://doi.org/10.1021/ic800752t)

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.