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Abstract: Precise regulation and control solar-light-driven charges photoexcited on photocatalysts
for separation-transfer and target redox reactions is an attractive and challenging pathway toward
sustainability. Herein, 0D/2D-3D Pt/In2S3 Schottky junction was fabricated for simultaneous se-
lective phenylcarbinol conversion into value-added aldehydes and production of clean energy H2

by directly utilizing photoexcited holes and electrons in one reaction system under mild reaction
conditions. In contrast to pure water splitting and pure In2S3, the reaction thermodynamics and
kinetics of H2 evolution on the Pt/In2S3 were significantly enhanced. The optimized 0.3% Pt/In2S3

exhibited the highest and most stable photocatalytic activity with 22.1 mmol g−1 h−1 of H2 pro-
duction rate and almost 100% selectivity of benzaldehyde production. Notably, this dual-function
photocatalysis also exhibited superiority in contrast to sacrificial-agent H2 evolution reactions such
as lactic acid, Na2S, methanol and triethanolamine. The turnover frequency (TOF) could reach up to
~2394 h−1. The Pt clusters anchored at the electron location and strong metal-support interactions
(SMSI) between Pt and In2S3 synergistically improved the spatial charge separation and directional
transportation (~90.1% of the charge transport efficiency could be achieved over the Pt/In2S3 hy-
brid), and thus result in significant enhancement of photocatalytic H2 evolution with simultaneous
benzaldehyde production.

Keywords: photocatalytic H2 production; selective oxidation; 2D nanosheets; photocatalytic organic
synthesis; metal-support interactions

1. Introduction

Since Fujishima and Honda reported electrochemical photolysis of water for hydrogen
(H2) production at a TiO2 electrode in 1972 [1], photocatalytic H2 production (PHP), as
one of the most promising strategies to address the severe issues of environment and
energy, has attracted extensive and ongoing attention [2–5], because PHP can be driven by
inexhaustible solar energy and the reaction conditions are not as rigorous as traditional
industrial methods such as coal gasification and electrolytic processes [3–7]. For instance,
15,364 scientists from 184 countries made a joint appeal to humans in 2017: “World Sci-
entists’ Warning to Humanity: A Second Notice”. One of the noteworthy appeals was
sustainable development [8]. Clean energy instead of fossil fuels is ineluctable in the future.
More recently, European Union and other countries have made incentive schemes for green
hydrogen fuel. However, PHP faces many challenges for practical application [9–12]. Two
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critical points are the design of efficient photocatalysts with high and stable quantum effi-
ciency and the enhancement of output-input ratio. For photocatalytic overall water splitting
into hydrogen (H2) and oxygen (O2), a lot greater than zero of the Gibbs free energy change
and the sluggish oxidation half-reaction both make PHP hard in terms of thermodynamics
and kinetics [12–14]. Although sacrificial-reagent PHP is in favor of improvements of both
reaction thermodynamics and kinetics, sacrificial reagents simultaneously bring waste of
the photoexcited holes, the increase in cost and the burden on the environment such as
emissions of greenhouse-gas, inorganic salt and organic pollutants [14–16]. Moreover, the
charge carrier recombination is still one of the challenging limitations for the photocatalysis
technologies [17–24]. Recently, PHP coupled with organics transformation has held great
attention [25–30]. In this dual-function photoredox reaction system, not only can the pho-
toexcited electrons be utilized for reducing H+/H2O into H2, the photoexcited holes can
also be used for oxidizing organics into fine chemicals. For instance, aromatic aldehydes
and H2 can be simultaneously obtained by the photocatalytic splitting of aromatic alcohols
in one reaction system [31–33]. However, the photocatalysts suitable for this dual-function
photoredox reaction system with efficient reaction kinetics still need to be explored.

To drive this dual-function photoredox reaction, choosing photocatalysts with a proper
band gap and suitable band positions is the initial step. Among various photocatalysts,
low-dimensional metal sulfides showed tremendous potential for this dual-function pho-
toredox reaction because of their appealing optical–electrical characteristics and appropriate
band structures [34–36]. However, metal sulfides used as photocatalysts still face vari-
ous problems: low utilization of visible light, photocorrosion and recommendation of
photoexcited charge carriers, which significantly inhibit its reaction kinetics and stabil-
ity [37–39]. To address the problems, many approaches have been developed such as
doping [40,41], noble-metal deposition [30,42,43], cocatalysts [5,31,44] and heterojunction
composites [45–47]. After modification, the photocatalytic activity and stability of the pris-
tine metal sulfides (Zn3In2S6, CdS, ZnxCd1-xS and ZnIn2S4) both are improved. However,
precise regulation and control solar-light-driven charges photoexcited on photocatalysts
for separation-transfer and target redox reactions is still a challenge.

Herein, 0D/2D-3D Pt/In2S3 heterostructure was prepared by sequential hydrothermal-
photodeposition methods and was applied for PHP with simultaneously selective phenyl-
carbinol conversion under simulated sunlight irradiation. In the previous study, In2S3
exhibited potential applications in photocatalytic pollutant degradation [48], selective oxi-
dation [49,50], H2 production [22–24], etc. It may have been an alternative photocatalyst
for this dual-function photoredox reaction. In addition, In2S3 possesses smaller band-
gap energy (~2.0 eV) [51] than Zn3In2S6 (~2.9 eV) [14], CdS (~2.4 eV) [52,53], Zn0.5Cd0.5S
(~2.6 eV) [45] and ZnIn2S4 (~2.4 eV) [31,54], suggesting more and broad light absorption.
The 0D/2D-3D Pt/In2S3 hierarchical structure has the following advantages: 2D nanosheets
and 3D spheres of In2S3 hierarchical structure facilitate light harvesting via multi-layer
reflection, 0D Pt deposition and close contact, and sedimentary separation from the reaction
system. On the other hand, the exposed 0D Pt clusters can make full use of Pt atoms and
save costs. Therefore, the 0D/2D-3D hierarchical structure is significant for PHP. Moreover,
it has been demonstrated that the Schottky junction can improve charge separation [55]. In
this study, 0D Pt clusters were anchored at the separated electron location of In2S3 by an in
situ photoreduction process. The formed Pt/In2S3 Schottky junction coupled with strong
metal–support interactions (SMSI) between 0D Pt clusters and 2D In2S3 nanosheets can
improve the electron separation and transportation from In2S3 into Pt for PHP and reserve
the holes at In2S3 for selective oxidation of phenylcarbinol, and thus result in significant
enhancement of PHP with almost 100% selectivity of benzaldehyde production. Notably,
benzaldehyde is important for chemical raw material, methylene reagents, perfume, herbi-
cide intermediates, etc. In addition, the as-prepared 0D/2D-3D Pt/In2S3 heterostructure
exhibits superiority for PHP coupled with phenylcarbinol in contrast to sacrificial agents
such as lactic acid, Na2S, methanol and triethanolamine. Moreover, the photocatalytic
mechanism was also studied profoundly by several recognized techniques such as the
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photoelectrochemical (PEC) test, in situ electron paramagnetic resonance (EPR) and in situ
diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), etc.

2. Results and Discussion
2.1. Catalysts Characterization

The micro-structures of 2D-3D In2S3 and 0D/2D-3D Pt/In2S3 were characterized
by scanning electron microscope (SEM), transmission electron microscope (TEM) and
high-resolution TEM (HRTEM). As shown in Figure 1a–c, the In2S3 presented spherical-
like morphology. The 3D sphere was further composed of many crisscross nanosheets.
Clearly, the as-prepared In2S3 possessed a 2D-3D hierarchical structure. Compared to
the pervious reported 2D In2S3 nanosheets [49] and 0D In2S3 nanocrystal [48], the 2D-3D
In2S3 can facilitate light harvesting via multi-layer reflection. It also has advantages with
respect to the previous method of 2D-3D In2S3 preparation [50], in which an amino acid
(aspartic acid, serine or glycine) was necessary for assisting formation of 2D-3D hierarchical
structure. Notably, the 2D-3D nanosheet-sphere structure of In2S3 was kept after loading
Pt (Figure 1d–f). The Pt nanoparticles were not observed on the SEM image, which may
have been caused by the small size of Pt. The micro-structures of In2S3 and Pt/In2S3
were further investigated by TEM and HRTEM images. As displayed in Figure 2a,b, the
nanosheet-sphere structure of 2D-3D In2S3 can be clearly observed and the nanosheets of
In2S3 were uniform and homogeneous. Moreover, the unambiguous lattice fringes with the
d-spacing value of 0.62 nm correspond to the (111) crystal plane of cubic In2S3 (Figure 2c,d).
After Pt photo-deposited on In2S3, the morphology of Pt/In2S3 was very similar to that
of In2S3 (Figure 2e). In addition, small and distinguishable Pt clusters with a mean size of
about 0.8 nm were observed on the nanosheets of In2S3 (Figure 2f). The d-spacing value of
the distinct lattice fringes was also 0.62 nm, which was assigned to the (111) crystal plane of
cubic In2S3 (Figure 2g,h). The energy-dispersive X-ray spectrometer (EDX) results indicate
that Pt/In2S3 was composed of Pt, In and S elements, and Pt was uniformly dispersed on
the In2S3 (Figure 2i,j).
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The crystal phase, chemical composition and state were studied by powder X-ray
diffraction (PXRD) and X-ray photoelectron spectroscopy (XPS). The Pt/In2S3 hybrid
exhibited the similar PXRD pattern to the pristine In2S3 (Figure 3a), and the diffraction
peaks of In2S3 and Pt/In2S3 both can be indexed to cubic β-In2S3 with Fd-3m(227) space
group (JCPDS No. 65-0459). No Pt diffraction peaks were observed in the PXRD pattern of
Pt/In2S3. It was expected because of the cluster state of Pt, i.e., due to the dispersion and
low content of Pt. The ICP-OES indicated that the practical weight ratio of Pt in 1% Pt/In2S3
was about 0.7%. The PXRD peaks located at about 14.2, 23.3, 27.4, 28.7, 33.2, 36.3, 41.0,
43.6, 47.7, 50.0, 55.9, 56.6, 59.3, 66.6, 69.7, 77.1 and 79.5◦ were attributed to the diffraction
of the (111), (220), (311), (222), (400), (331), (422), (511), (440), (531), (533), (622), (444),
(731), (800), (662) and (840) crystal planes of cubic β-In2S3 (JCPDS No. 65-0459, a = b = c =
10.77 Å), respectively. The PXRD results were consistent with the above HRTEM analysis
(Figure 2c,g). In the light of the above results, it can be seen that the 2D-3D morphology
and crystal phase of In2S3 did not change after the deposition of Pt clusters. These results
also indicate the stability of Pt/In2S3 because Pt/In2S3 was obtained in the PHP process of
In2S3 by reducing [PtCl6]2−. Figure 3b–d presents the high-resolution XPS spectra of In
3d, S 2p and Pt 4f, respectively. For the pure In2S3, two peaks of In 3d observed at 445.2
and 452.7 eV were attributed to In 3d5/2 and In 3d3/2 (Figure 3b), and two peaks of S 2p
located at 161.9 and 163.1 eV belonged to S 2p3/2 and S 2p1/2 (Figure 3c), respectively.
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Moreover, the spin-orbit separations of In 3d and S 2p were 7.5 and 1.2 eV, respectively.
These results demonstrate that the chemical states of In and S in the as-prepared In2S3 were
In3+ and S2−. For the Pt/In2S3 hybrid, the XPS peaks of In 3d and S2p were similar to that
of the pure In2S3. The Pt 4f exhibited two group peaks at 71.9 and 72.1 eV (4f7/2), which
corresponded to the Pt0 and Pt2+, respectively (Figure 3d). Of note, the binding energies
of In 3d and S 2p of the Pt/In2S3 hybrid were shifted to high energy (0.1–0.2 eV) with
respect to the pure In2S3. It was demonstrated that the binding energy shift was derived
from the electronic interaction between two contacted nanomaterials, and the positive and
negative shifts mean electrons were lost and gathered, respectively [31,56,57]. Thus, the
strong metal-support interactions (SMSI) occurred in the Pt/In2S3 hybrid. Specifically, after
Pt photo-deposited on In2S3, the majority carriers (electrons for n-type semiconductors) of
In2S3 were migrated into Pt, and the Pt was electron enriched. The strong metal-support
interactions could result in photoexcited charge separation and H2 evolution conveniently.
This is discussed further below.

The Brunauer–Emmett–Teller (BET) surface areas, optical properties and band-energy
positions of In2S3 and Pt/In2S3 were studied by the nitrogen adsorption–desorption
method, UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and Mott–Schottky (M-S)
measurements. Both In2S3 and Pt/In2S3 presented type-IV isotherms with an H3 hysteresis
loop (Figure 4a). This meant that the presence of porous structures resulted from the 2D-3D
In2S3 hierarchical structure. Correspondingly, the average pore diameters of In2S3 and
Pt/In2S3 were about 13.91 and 13.64 nm, respectively. The BJH cumulative volume of
pores of In2S3 and Pt/In2S3 were approximately 0.41 and 0.30 cm3 g−1, respectively. The
BET surface areas of In2S3 and Pt/In2S3 were approximately 63.1 ± 2.1 and 63.3 ± 2.9 m2

g−1, respectively. Evidently, after Pt clusters were loaded on 2D-3D In2S3, the surface area
change was negligible, while the pore volume and pore diameter were decreased. It is
normal to observe these results because the 2D-3D In2S3 hierarchical structure was not
altered when Pt clusters were loaded on the surfaces of In2S3 nanosheets. The UV-vis DRS
spectra indicate that both In2S3 and Pt/In2S3 possessed well visible light absorption below
600 nm (Figure 4b). Based on DRS spectra, the band-gap energy (Eg) was determined by
the Kubelka–Munk function: (αhν)2 = A(hν − Eg), where A, h, α, and ν are proportion-
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ality constant, Planck constant, absorption coefficient and frequency, respectively [33,58].
Compared to the pure In2S3, the light absorption of Pt/In2S3 diminished (Figure 4b), while
the Eg of Pt/In2S3 showed no noticeable change (both about 2.1 eV, Figure 4c). Moreover,
the positive slops of M-S plots were observed on both In2S3 (Figure 4d) and Pt/In2S3
(Figure 4e), indicating that the n-type property of In2S3 semiconductor had not changed
after Pt deposition. Interestingly, the flat potential of In2S3 was negatively shifted from
−0.25 to −0.51 V (vs NHE) after Pt deposition. Generally, for n-type semiconductors, the
flat potential lies beneath the conduction band (CB) at about −0.1 eV [56]. Therefore, the
CB of In2S3 and Pt/In2S3 was located at −0.35 and −0.61 eV, respectively. According to
the function: Eg = EVB − ECB (EVB and ECB were the valence band energy and the CB
energy, respectively), the valence band (VB) of In2S3 and Pt/In2S3 lies at 1.75 and 1.49 eV,
respectively. Evidently, with respect to the pure In2S3 (Figure 4f), VB and CB of Pt/In2S3
were uplifted by 0.26 and 0.26 eV, respectively, demonstrating that the photoexcited holes
showed faster mobility, thus facilitating PHP reaction [31,59]. The strong metal–support
interactions between Pt and In2S3 resulted in electron migration from In2S3 into Pt. Thus,
the energy bands of In2S3 swept upward when In2S3 was contacted with Pt.
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To gain more insights into the charge carrier transportation between Pt and In2S3
over the Pt/In2S3 hybrid, the work function of In2S3 was measured by an ultraviolet
photoelectron spectroscopy (UPS), As presented in Figure 5a, the work function of In2S3
was 4.66 eV (21.22 − (16.77 − 0.21) = 4.66). It was smaller than the work function of Pt
(5.65 eV) [14]. Moreover, the carrier densities (ND) of In2S3 and Pt-modified In2S3 (Pt/In2S3)
were detected from M-S plots via the function: ND = (2/eεε0)[dUFL/d(1/C2)] = (2/eεε0)
(1/kM-S). Here, e, ε0, ε, kM-S, UFL and C are elementary charge, vacuum permittivity,
relative permittivity (8.4 for In2S3 [23]), the slope of the M-S curve, Fermi level potential
and capacitance, respectively. Evidently, after Pt deposition on In2S3, the carrier density
of In2S3 was always reduced under different frequencies (Figure 5b). Based on the results
of work function and carrier density, the metal–support interactions and consequential
electron transportation between Pt and In2S3 are illustrated in Figure 5c–e. The In2S3
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possessed a higher Fermi level (EF = Evac − WF, where WF, Evac and EF are work function,
vacuum level and Fermi level, respectively) than Pt (Figure 5c). Thus, the electrons were
transported from In2S3 into Pt, which resulted in a ND decrease in In2S3 and the formation
of the Schottky junction (Figure 5d). The Schottky barrier with height of 0.99 eV would
facilitate photoexcited electrons transportation from In2S3 into Pt and inhibit the backflow
of electrons from Pt into In2S3 again (the barrier height is the difference of Fermi levels
of In2S3 and Pt (−4.66 − (−5.65) = 0.99)). Simultaneously, the photoexcited holes left
at In2S3 (Figure 5e). Consequently, the photoexcited electron-hole pairs of In2S3 were
separated spatially through Pt/In2S3 Schottky junctions. In the light of the above analyses,
the Pt/In2S3 hybrid may be fit for PHP.
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2.2. Evalution of PHP Activity

The PHP activity was evaluated by photocatalytic selective oxidation of phenylcarbinol
(PhCH2OH) under simulated sunlight. The two control groups (with photocatalyst in the
dark and without photocatalyst under light irradiation) were firstly performed and showed
no H2 production. Then, we detected PHP activities of In2S3 and Pt/In2S3 composites
with different content of Pt (0.1%, 0.3%, 0.5% and 1%). As depicted in Figure 6a, the pure
In2S3 exhibited low PHP activity (H2: 0.9 mmol g−1 h−1). However, the PHP activity of the
In2S3 was significantly enhanced by loading a low amount of Pt. The photocatalytic H2
evolution rates of 0.1%, 0.3%, 0.5% and 1% Pt/In2S3 hybrids were about 4.1, 22.1, 17.1 and
14.6 mmol g−1 h−1, respectively. The PHP activities of these Pt/In2S3 hybrids appeared
to have a volcano-like distribution. The 0.3% Pt/In2S3 hybrid exhibited the highest PHP
activity, which was approximately 24.56 times that of the pure In2S3. It indicates that the
apparent PHP kinetics of In2S3 was meaningfully improved by loading Pt clusters. The
as-synthesized Pt/In2S3 also exhibited a higher H2 production rate (7.97 mmol g−1 h−1)
under visible light irradiation than the reported Pt/Zn3In2S6 [14], Pt/CdS [42], etc [21–24].
(Table 1). Moreover, negligible PHP activity was detected for pure water splitting over 0.3%
Pt/In2S3 because of the sluggish oxidation half-reaction and significant Gibbs free energy
change (H2O = H2 + 1/2O2, ∆G ≈ 238 kJ mol−1 >> 0). Compared to PHP through overall
water splitting, the thermodynamics of PHP was also remarkably ameliorated (PhCH2OH
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= PhCHO + H2, ∆G ≈ 28 kJ mol−1). It should also be noted that the oxidized products
of phenylcarbinol over the 0.3% Pt/In2S3 hybrid were almost entirely benzaldehyde (the
selectivity was nearly 100%). It may have been caused by the suitable oxidative potential of
Pt/In2S3 for selectively oxidizing PhCH2OH into PhCHO. Evidently, in the dual-function
photoredox reaction system, Pt/In2S3 not only can selectively oxidize phenylcarbinol into
fine value-added chemicals (benzaldehyde) with high selectivity but also can obtain clean
energy (H2) simultaneously. Moreover, the turnover number (TON) based on the amount of
Pt was calculated to be about 9576 after 4 h. Notably, the corresponding turnover frequency
(TOF) was about 2394 h−1, which is comparable with the traditional thermal catalytic
system (1109 h−1) [27,60].
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Table 1. Comparison of photocatalytic performance over different photocatalysts for photocatalytic
H2 production.

Photocatalyst Light Source Reagents H2 Evolution
(mmol g−1 h−1) Ref.

Pt/In2S3 λ ≥ 420 nm PhCH2OH 7.97 This Work
Pt/CdS λ > 420 nm PhCH2OH 4.9 [42]

Pt/Zn3In2S6 λ ≥ 420 nm PhCH2OH 0.9 [14]
Pt/g-C3N4 λ > 420 nm TEOA 3.02 [21]
MoP/In2S3 λ ≥ 420 nm Lactic acid 0.5 [22]

Zn3In2S6In2S3 λ > 400 nm bisphenol A 0.08 [23]
PdS/In2S3 λ > 420 nm Na2S/Na2SO3 3.6 [24]
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Figure 6b shows the PHP activity of 0.3% Pt/In2S3 under monochromatic light with
different wavelengths. The 380 nm-light and 500 nm-light driven PHP activities were
higher than 400 nm. It indicates that the PHP activity of Pt/In2S3 was not only dependent
on its light absorption spectrum. It is comprehensible because the PHP activity was an
overall effect of light absorption, incident light intensity and light energy. Pt/In2S3 was
inactive under 600 nm light because it was longer than the excitation wavelength of In2S3
(<590 nm). Nevertheless, the PHP activity of Pt/In2S3 under 500 nm light could still
reach up to 3.2 mmol g−1 h−1 with 3.72% of apparent quantum efficiency. In addition, the
0.3% Pt/In2S3 hybrid demonstrated good photocatalytic stability with little H2 production
decrease (<0.5%) after five recycles (Figure 6c). To compare this dual-function photoredox
reaction system with the sacrificial agent PHP, the classic sacrificial agents: lactic acid (LA),
Na2S (NS), triethanolamine (TA) and methanol (MA) were chosen [20]. Figure 6d depicts
PHP comparisons between sacrificial agents and PhCH2OH over 0.3% Pt/In2S3 under the
same reaction conditions. Specifically, the PHP rates of 0.3% Pt/In2S3 only reached 1.1, 0.6,
0.5 and 0.003 mmol g−1 h−1 when LA, NS, TA and MA were added into the reaction system,
respectively. Clearly, the superior PHP rate of 0.3% Pt/In2S3 was achieved through using
phenylcarbinol, which was about 20.1, 36.8, 44.2 and 7366.7 times higher than that using
LA, Na2S and TEOA, respectively. These results confirm the superiority of photocatalytic
selective conversion organics coupled with photocatalytic H2 production, in which organics
were selectively transformed into high value-added chemicals and simultaneous H2 with
the enhanced production rate that could be obtained.

2.3. Photocatalytic Mechanism

The photocatalytic activity demonstrated that it was mainly influenced by three factors:
light absorption, active sites (likely surface area) and photoexcited charges separation
and transportation [61–63]. Specifically, the photocatalysts are excited by the incident
light to produce electron-hole pairs, which are then separated and transferred onto the
active sites for redox reactions. Based on the above characterizations, after Pt clusters
deposition on the 2D-3D In2S3, the light absorption did not become stronger (Figure 4b),
and the surface area underwent a negligible change (Figure 4a). The surface area was
not the main factor for the enhanced PHP activity, which is consistent with the reported
Pt-loaded photocatalysts [64,65]. Therefore, light absorption and surface area are not
the main factors for the boosted PHP activity. However, the electron circulating and the
uplifted energy bands were observed on Pt/In2S3 hybrid as the result of the strong metal–
support interactions between In2S3 and Pt. To understand the reasons behind the enhanced
photocatalytic activity, the photoexcited charge behaviors were investigated. As shown
in Figure 7a, the photocurrent of the Pt/In2S3 improved 2.08 times in contrast to the pure
In2S3 under simulated sunlight illumination, suggesting efficient charge separation and
transfer [66,67]. In addition, the photocurrent of the Pt/In2S3 still increased 1.85 times when
MVCl2 was added into the bath solution as an electron scavenger (Figure 7b). Moreover,
the charge transport efficiency (ηtra) can be evaluated by the function: ηtra = JH2O/JMVCl2
(JH2O and JMVCl2 are the photocurrent densities of the sample with and without MVCl2,
respectively) [68–70]. As expected, 90.1% of the charge transport efficiency could be
achieved over the Pt/In2S3 hybrid, which was approximately 1.13 times of the pure In2S3.
These results indicate that the separation and transportation of In2S3 can be improved by
loading Pt clusters. To further evaluate the impact of strong metal–support interactions
on charge separation and transportation, the electrochemical impedance spectroscopy
(EIS) [71] and linear sweep voltammetry (LSV) tests were carried out [5,14]. Pt/In2S3
exhibited a smaller arc radius than In2S3 (Figure 7c), and the charge transport resistance
of Pt/In2S3 (30.5 Ω) was weaker than that of In2S3 (33.9 Ω). This means that the loaded
Pt clusters can speed charge separation and transportation of In2S3. This result is in line
with the photocurrent analysis and can be further confirmed by LSV curves. As displayed
in Figure 7d, compared to the pure In2S3, the current density of Pt/In2S3 exhibited a
visible enhancement under light irradiation. In addition, the H2 evolution overpotential
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of Pt/In2S3 (−0.64 V) was 0.34 V lower than that of In2S3 (−0.98 V), which is conducive
to H2 evolution. Consequently, it can be concluded that the improved charge separation-
transportation and the reduced H2 evolution overpotential contribute to the efficient PHP
activity of Pt/In2S3.
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To understand the in-depth information behind these results, the utilization rates of
photoexcited electrons (e−) and holes (h+) were studied through in situ electron param-
agnetic resonance (EPR) measurements [68]. As the control group, photolysis refers to
the reaction system without photocatalysts (Figure 7e,f). In other words, the signal of
photolysis is the intrinsic signal of the active TEMPO. The EPR signal intensity is reduced
when TEMPO is captured by photoexcited electrons or holes [68]. When In2S3 or Pt/In2S3
was added into the reaction system, the EPR signals were both reduced for detecting
electrons (Figure 7e) and holes (Figure 7f). This indicates that the photoexcited electrons
and holes can be separated and transported on the surfaces of In2S3 and Pt/In2S3. Notably,
the EPR signal of Pt/In2S3 for photoexcited electrons was significantly lower than that of
In2S3 (Figure 7e). This suggests efficient electron separation and transportation from In2S3
to Pt for reducing water/protons to H2. In addition, the weaker EPR signal of TEMPO
on Pt/In2S3 was also observed than that on In2S3 in the presence of PhCH2OH under
simulated sunlight illumination (Figure 7f). This indicates efficient hole transportation from
the In2S3 component of Pt/In2S3 to reactive molecules of PhCH2OH. Thus, the efficient
separation and transportation of the photogenerated holes and electrons contribute to
the enhanced PHP activity of the Pt/In2S3 hybrid. The photoexcited holes can be fleetly
consumed by PhCH2OH to produce PhCHO. Simultaneously, the photoexcited electrons
were spent by H+/H2O to produce H2.

To further inspect the conversion process of PhCH2OH in this dual-function pho-
tocatalysis system, the in situ EPR with the addition of DMPO and in situ DRIFT were
carried out [5,31,72–74]. As presented in Figure 8a, PhCH2OH with DMPO under light
irradiation could not produce EPR signals (photolysis). However, sextet peaks belonging
to carbon-centered radicals (.CH(OH)Ph) [5,68] were observed on In2S3 and Pt/In2S3. This
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means that the conversion process of PhCH2OH is a free radical reaction. Moreover, the
EPR intensity of Pt/In2S3 was more intense than In2S3, implying efficient charge separation-
transportation and fast PhCH2OH dehydrogenation on Pt/In2S3. In addition, one peak at
1703 cm−1 (νC=O) fell to the carbonyl group (C=O) of benzaldehyde (PhCHO) and doublet
peaks at 2873 and 2935 cm−1 (νC-H), attributed to the carbon–hydrogen bond (C-H) of the
aldehyde group, were clearly observed on Pt/In2S3 under simulated sunlight (Figure 8b).
These results indicate that PhCH2OH is selectively oxidized into PhCHO via a carbon-
centered radical process. The effects of the reactive species on PHP were also investigated
by the trapping experiments (Figure 8c). Triethanolamine (TA) and carbon tetrachloride
(CTC) were used as trapping agents for photoexcited holes and electrons, respectively.
When TA was added into the reaction system, the H2 production rate decreased. This
indicates that the dehydrogenation of PhCH2OH to H2 production is restrained by TA. For
the trapping agent CCl4, a relatively large decrease was observed in the H2 production
rate. This indicates that the photogenerated electrons are major reductive species for the
reduction in protons to H2. These results suggest that synergistic effect occurred between
PhCH2OH dehydrogenation and H2 production.
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From the above analysis, the photocatalytic mechanism was proposed as depicted
in Figure 8c. Under simulated sunlight irradiation, the photoexcited electrons and holes
were generated on the In2S3 nanosheets. Then, on the one hand, PhCH2OH was oxidized
into .CH(OH)Ph, and the .CH(OH)Ph free radical was further oxidized into PhCHO by the
photoexcited holes located at In2S3. On the other hand, the photoexcited electrons were first
consumed by [PtCl6]2− to produce Pt clusters and were then separated and transported
from In2S3 into Pt clusters efficiently to produce H2 by reducing H+/H2O. During this
redox process, [PtCl6]2− was reduced by the photoexcited electrons on the surfaces of
In2S3, and Pt0 was anchored at the separated electron location. Thus, the as-synthesized
Pt/In2S3 heterostructure would facilitate the electron transportation from In2S3 into Pt and
improve PHP activity. Due to the competing reactions of H2 evolution, the Pt cluster was
in the optimized state for H2 production. During the coupled redox reaction of PhCH2OH
oxidation and H2 evolution, one molecule of PhCH2OH was oxidized into one molecule
of PhCHO by consuming two photoexcited holes. Simultaneously, one molecule of H2
was produced by expending two electrons. Thus, the efficient, stable and atom-economic



Catalysts 2023, 13, 461 12 of 17

dual-function photocatalytic reaction system was achieved on the 0D/2D-3D Pt/In2S3
heterostructures.

3. Experiments and Methods
3.1. Materials

5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and 2,2,6,6-Tetramethylpiperidin-1-oxyl
(TEMPO) for EPR-spectroscopy were purchased from Sigma-Aldrich. Indium chloride
tetrahydrate (InCl3·4H2O, 99.9%), thioacetamide (C2H5NS, ≥99.0%), chloroplatinic acid
hexahydrate (H2PtCl6·6H2O, Pt ≥35.7%), potassium ferrocyanide trihydrate (K4[Fe(CN)6]
·3H2O, ≥99.5%), phenylcarbinol (C7H8O, ≥99.0%), lactic acid (C3H6O3, 85%), triethanolamine
(C6H15NO3, ≥99.0%), sodium sulfate (Na2SO4, ≥98%), potassium chloride (KCl, 99.8%),
potassium ferricyanide (K3[Fe(CN)6], 99%) and other used reagents were all analytical
reagents and were used directly with no further purification.

3.2. Preparation of 2D-3D In2S3 and 0D/2D-3D Pt/In2S3

The 0D/2D-3D Pt/In2S3 heterostructure was prepared as depicted in Figure 9. Briefly,
InCl3 was wholly dissolved into acid solution and reacted with thioacetamide (TAA) to
form [In(TAA)4]3+ and [In(TAA)6]3+ complexes via In-S bonds [75]. Then, these complexes
underwent the hydrothermal process to produce 2D-3D In2S3. In2S3 was easily formed
because the solubility product constant (Ksp) of In2S3 was very small (5.7 × 10−74) [75].
Finally, Pt/In2S3 heterostructure was obtained by an in situ photodeposition process.
Namely, the Pt/In2S3 was synthesized in the process of PHP coupled with simultaneously
selective phenylcarbinol conversion.
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In a typical synthesis, 1 mmol InCl3·4H2O was dissolved in deionized water, and the
pH of the InCl3 solution was adjusted to 1.0 by adding HCl to prevent InCl3 hydrolysis.
Then, 2.5 mmol C2H5NS was gradually added into the above solution and constantly
stirred. The pH of the above solution was adjusted to 3.0 again by adding H2O. The above
solution was transferred to a 100 mL Teflon-lined stainless-steel reactor and held at 180 ◦C
for 24 h. After natural cooling to 25 ◦C, the orange precipitate was collected and washed
with distilled water and anhydrous ethanol several times. Finally, the sediments were dried
in a vacuum oven at 60 ◦C for 2 h. The pure 2D-3D In2S3 was obtained. The 0D/2D-3D
Pt/In2S3 heterostructure was obtained by an in situ photodeposition method in the process
of photocatalytic selective conversion of phenylcarbinol into benzaldehyde and H2. The
details are presented in the following section.

3.3. Photocatalytic Activity Test

The photocatalytic H2 generation was carried out in a gas-tight Pyrex reactor. The
300 W Xenon lamp (PLS-SXE300D, Perfect Light Co., Beijing, China) was used as the simu-
lated solar light. Typically, 10 mg In2S3 powders were dispersed in 10 mL phenylcarbinol
solution and then different amounts of H2PtCl6·6H2O were added. After bubbling argon to
remove dissolved oxygen, the suspension was irradiated for photocatalytic H2 production.
After irradiation for 2 h, the H2 was quantified using a gas chromatograph spectrometer
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(GC 9790II, Fuli, Wenling, China) equipped with a molecular sieve 5A column. The reaction
liquor was detected by high performance liquid chromatography (HP-LC, watersE2695,
MA, USA). The detector of the HP-LC was PDA 2998. The mobile phase consisted of 40%
deionized water and 60% acetonitrile with a flow rate of 1 mL min−1. Finally, the precipitate
(Pt//In2S3) after light exposure was collected, washed with ethanol and dried at 60 ◦C
for 2 h. Catalysts with different Pt content added were rewritten as x% Pt/In2S3 (x is a
weight ratio of Pt in the Pt/In2S3 composite, x = 0.1, 0.3, 0.5, 1.0). For comparison, the pure
In2S3 was also quantitatively analyzed for H2 production without adding H2PtCl6·6H2O.
The apparent quantum efficiency (AQE) for H2 evolution was obtained by the following
equation: AQE = (2 × NH/Np) × 100%, where NH and Np are the numbers of evolved
H2 molecules and incident photons, respectively. Turnover number (TON) was calculated
based on the quantity of H2 and Pt: TON = NH/Npt, where Npt is the number of Pt. The
turnover frequency (TOF) was measured via TON divided by reaction time. Benzaldehyde
selectivity was calculated by the equation: Selectivity = [CCHO/(C0-COH] × 100%, where
C0, COH and CCHO are the concentrations of phenylcarbinol, the residual phenylcarbinol
and the corresponding aldehydes, respectively.

3.4. Characterization

Powder X-ray diffraction (PXRD) pattern of the sample was determined by a Bruker
D8 X-ray powder diffractometer using Ni-filtered Cu Kα radiation. The microstructure and
morphologies of the prepared samples were carried out by scanning electron microscope
(SEM, Regulus 8200, Hitachi Limited, Tokyo, Japan) and transmission electron microscope
(TEM, JEM2100, JEOL, Akishima-shi, Japan). Elemental mappings were measured using
an energy-dispersive X-ray spectrometer (EDX). X-ray photoelectron spectroscopy (XPS,
Thermo Scientific, Massachusetts, America) measurements were performed on Thermo
Scientific ESCA Lab250 spectrometer. All the binding energies were referred to the C 1s
peak at 284.6 eV of the surface adventitious carbon. UV-vis diffuse reflectance spectra (DRS)
of the powders were obtained on a UV-vis spectrophotometer (Shimadzu UV-3600, Kyoto,
Japan), with BaSO4 used as a reference. Brunauer–Emmett–Teller (BET) surface areas
were tested on a Micromeritics ASAP 2460 instrument. In situ diffuse reflectance infrared
Fourier transform spectroscopy (DRIFT) measurements were detected on a Nicolet 8700
FTIR spectrometer. The carbon-centered radicals and the photoexcited charges (electrons
and holes) were in situ seen on an electron paramagnetic resonance (EPR, A300, Karlsruhe,
Bruker, Germany) by DMPO and TEMPO as trapping agents, respectively. The work
function of the In2S3 was obtained on an ultraviolet photoelectron spectroscopy (UPS,
Thermo ESCALAB 250XI, (Waltham, MA, USA). The actual Pt content in the Pt/In2S3
sample was measured by an inductively coupled plasma optical emission spectrometry
(ICP-OES, Agilent 5110, Santa Clara, CA, USA).

3.5. Photoelectrochemical Property Test

The photoelectrochemical (PEC) tests were carried out on a CHI-660E electrochemical
workstation (CH Instruments, Bee Cave, TX, USA). An Ag/AgCl and a Pt wire were used as
the reference electrode and the counter electrode, respectively. The sample powder was de-
posited on the FTO (50 mm × 50 mm) as a working electrode. Typically, a uniform solution
was obtained by ultrasonically dispersing 5 mg samples into 400 µL deionized water. Then,
20 µL of the above solution were deposited on the FTO substrate. The working electrode
was obtained after drying at room temperature. The transient photocurrent responses,
linear sweep voltammetry (LSV) plots and Mott–Schottky (M-S) plots were detected in a
0.2 M Na2SO4 aqueous solution. Electrochemical impedance spectroscopy (EIS) Nyquist
plots were detected in 0.1 M KCl solution containing 0.1 M K3[Fe(CN)6]/K4[Fe(CN)6].

4. Conclusions

In summary, a 2D-3D In2S3 hierarchical structure decorated by 0D Pt clusters was
successfully fabricated by the sequential hydrothermal process and in situ photodeposition.
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The strong metal–support interactions (SMSI) of the Pt/In2S3 hybrid improved the charge
separation and transportation. and thus. resulted in the significant enhancement of
photocatalytic H2 production. The optimized 0.3% Pt/In2S3 exhibited the highest and
stable photocatalytic activity with 22.1 mmol g−1 h−1 of H2 evolution rate and almost
100% selectivity of benzaldehyde production. In addition, the turnover frequency of 0.3%
Pt/In2S3 reached up to approximately 2394 h−1, and 3.72% of apparent quantum efficiency
was achieved under 500 nm light irradiation. Coupling phenylcarbinol conversion with
H2 evolution was superior to the traditional sacrificial agents. The H2 production using
phenylcarbinol was approximately 20.1, 36.8, 44.2 and 7366.7 times higher than that using
lactic acid, Na2S, triethanolamine and methanol as sacrificial agents under the same reaction
condition, respectively. Notably, in this dual-function photocatalysis, the photoexcited
holes located at the In2S3 were utilized for selective oxidizing phenylcarbinol into value-
added fine chemicals benzaldehyde; conversely, the photoexcited electrons on the In2S3
were used firstly for reducing [PtCl6]2- to fabricate Pt clusters anchored at the separated
electron location and then transported from the In2S3 to the Pt clusters for H2 production.
The Pt clusters were stable, and the charge transport efficiency of In2S3 reached up to
approximately 90.1% by the modification of the Pt clusters. Moreover, the synergistic
effect occurred between PhCH2OH dehydrogenation and H2 production. This work is
expected to aid the design of efficient and stable photocatalysts to simultaneously utilize
photoexcited holes and electrons, thereby gaining the value-added fine chemicals and clean
energy in one reaction system.
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