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Abstract: Organic semiconductors are promising materials for the photocatalytic treatment of pollu-
tants and organic synthesis. Herein, MIL-53(Fe)@perylene diimide (PDI) organic heterojunctions were
constructed by ultrasonic assembly using PDI as the co-catalyst, and PDI organic supramolecular
material was uniformly distributed on the surfaces of MIL-53(Fe). The most effective M53@PDI-20
organic heterojunctions achieved 72.7% photodegradation of rhodamine B (10 mg/L) within 50 min
and a 99.9% reduction in Cr(VI) (10 mg/L) for 150 min, and the corresponding apparent degradation
rate constants were higher than a single component. Meanwhile, the conversion rate of benzyl
alcohol over M53@PDI-20 achieved 91.5% for 5 h with a selectivity of above 90% under visible light
exposure, which was more than double that of PDI. The well-matched band structures and the
strong π–π bonding interactions between MIL-53(Fe) and PDI can increase the electron delocalization
effect to facilitate the transfer and separation of photogenerated carriers. Lots of oxidative reactive
species (h+, •O2− and •OH) also played a great contribution to the strong oxidation capacity over
the heterojunctions system. This work suggests that MIL-53(Fe)@PDI organic heterojunctions may be
a promising material for pollutant removal and organic synthesis.

Keywords: MIL-53(Fe); PDI; Rhodamine B degradation; Cr(VI) reduction; selective oxidation of
benzyl alcohol

1. Introduction

The rapid technological boom of recent decades has led to a significant increase in
environmental pollution problems, accompanied by a wide range of pollutants that are
difficult to treat [1]. As a renewable source of energy, solar energy is clean and environmen-
tally friendly, making it one of the most promising options for future development. Thus,
scientific research on the efficient utilization, fast conversion, and storage of solar energy
is an important issue [2–4]. Semiconductor photocatalysis systems have gained attention
because of their energy efficiency, low cost, and environmental friendliness. The advances
in science and technology have used the reaction process of photocatalysts that develops
light energy (sunlight) to transform some chemical reactions under the harsh conditions
of operable reactions under relatively mild conditions [5,6]. The photogenerated carriers
{electrons (e−) and holes (h+)} produced on semiconductors can transform light energy
into oxidation and reduction energy. For example, the photocatalytic degradations of
toxic, hazardous organic dyes and inorganic heavy metal hazardous chemicals are suitable
candidates for the removal of pollutants from water [7–9].

Organic semiconductor materials have emerged as a new area for research in photocatalysis.
Organic supramolecular materials such as perylene diimide (PDI) have shown enormous
potential by their self-assembly techniques for photocatalytic applications [10,11]. In particular,
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typical n-type PDI organic supramolecular semiconductors are gaining attention and being
more widely developed in the field of photocatalysis due to their superior optical properties and
high stability [12]. Zhu et al. [13] reported the synthesis of supramolecular materials with the
introduction of carboxyl groups on the acyl of PDI, giving it higher photocatalytic property and
stability, and good charge mobility and electron affinity [14]. As early as 1997, PDI molecules
were found to be able to open the rings of certain phenolic organic pollutants by photocatalysis
under alkaline conditions [15]. It has also been used in photocatalytic oxygen production [16,17],
the degradation of organic pollutants [10,18], and the mineralization of phenols [19]. With
their special electronic and photophysical properties, they have also been used for optical and
electronic applications with chemical modifications [20,21]. However, PDI still suffers from the
defect that the photogenerated carriers are more prone to recombination, resulting in their low
photocatalytic performance.

Metal–organic frameworks (MOFs) are appropriate for the construction of heterojunc-
tions’ photocatalytic materials with various active substances due to their variable structure,
simple synthesis, and high stability, which are commonly used for the degradation of vari-
ous pollutants and heavy metal ions in the environment [22]. The units are connected by
an organic framework linking units to form metal ion nodes, which form porous materials
through coordination [23], and MOFs have a wide range of applications in catalysis [24,25].
MIL-53(Fe), as a typical iron-based MOF material, is considered to be a three-dimensional
porous iron-based material composed of Fe(III) centers and terephthalic acid, which has
a stable, ordered structure, functional ability, porosity, and multiple active sites [26,27].
Meanwhile, MIL-53 (iron) can also absorb visible light from 420 to 800 nm, which is a wider
absorption range than other MOF materials [28–30]. In addition, the valence change in the
metal center renders the catalytic activity. However, the quickly photogenerated electrons
and hole recombination remain an obstacle for MIL-53(Fe) to overcome. Therefore, the
construction of heterostructures with other photocatalysts is an efficient approach [31,32].

Stimulated by the above discussion, all-organic heterojunction materials were con-
structed by introducing PDI organic supramolecular into the MIL-53(Fe) framework struc-
ture, which exhibited excellent removals of rhodamine B (RhB) and Cr(VI) in an aqueous
solution. These pollutants in wastewater have a deleterious effect on environmental
health [32]. MIL-53(Fe)@PDI all-organic heterojunctions also achieve an exceptional pho-
tocatalytic performance in the selective oxidation of benzyl alcohol to aldehydes. It is
ascribed to the strong interactions of Z-scheme interfacial charge transfer and migration by
π–π bonds, providing a possible transfer mechanism for MIL-53(Fe)@PDI heterojunctions.

2. Results and Discussion
2.1. Structural Characterizations

To determine the successful synthesis of MIL-53(Fe)@PDI, the physical phase structure
was analyzed using XRD. As displayed in Figure 1a, the characteristic diffraction peaks
corresponding to MIL-53(Fe) in the XRD pattern of MIL-53(Fe) appear at around 9.3◦, 12.7◦

and 25.7◦, which is in agreement with the crystal structure of MIL-53(Fe) reported in the
literature [33,34]. The diffraction peaks of PDI supramolecular material range from 5◦ to
30◦ [10], and the characteristic diffraction peaks between 24◦ and 28◦ are considered to
be characteristic of π–π stacking structures [35,36], which facilitate the transfer of charge
carriers. MIL-53(Fe)@PDI heterojunctions show approximately the same XRD patterns
as the original MIL-53(Fe). However, the diffraction peaks corresponding to PDI are not
evident in the M53@PDI-5 spectra, probably because the PDI content is highly coated on
the surfaces of MIL-53(Fe). As the loading of PDI increases, PDI diffraction peaks in the
range 24–28◦ can be seen, indicating the successful bonding of MIL-53(Fe) with PDI to form
the heterojunctions.
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Figure 1. XRD patterns (a) and FT-IR spectra (b) of PDI, MIL-53(Fe) and MIL-53(Fe)@PDI heterojunctions.

To examine the functional groups over MIL-53(Fe)@PDI materials in detail and analyze their
surfaces’ chemical structures, the IR spectra of the PDI, MIL-53(Fe), and MIL-53(Fe)@PDI samples
are shown in Figure 1b. Whilst 1597 cm−1 is assigned to the benzene ring backbone stretching
vibrational peak of MIL-53(Fe), the two strong absorption peaks at 1505 cm−1 and 1390 cm−1

correspond to the asymmetric and symmetric vibrational peaks of MIL-53(Fe), respectively, in
agreement with the previous report [37]. The absorption peak at 1662 cm−1 is due to the stretching
of the C=O bond. The peak at 748 cm−1 is ascribed to the bending vibration of the C–H bond
on the benzene ring (organic linker) [38] and the characteristic absorption peak at 538 cm−1 is
derived from the Fe–O bond between Fe(III) and terephthalic acid, indicating the formation of
Fe-oxo clusters between the inorganic metal and the carboxylate group of the organic linker [33],
and the presence of a dicarboxylate linkage in the framework. The absorption peaks of the PDI
supramolecule are mainly located at 1691 cm−1 (C=O) and 1652 cm−1 (C=C), while a series of
different ratios of MIL-53(Fe)@PDI can be observed with the characteristic vibrational peaks in the
same position as that of both PDI and MIL-53(Fe), which is further evidence of the formation of
organic heterojunctions.

X-ray photoelectron spectra were used to determine the elemental compositions of
the samples. From the full spectra of MIL-53(Fe) and M53@PDI-20 samples in Figure S2,
it can be seen that the elements of C, O, N, and Fe are all present in the M53@PDI-20
heterojunction material and the obvious N element is only present in M53@PDI-20. In
Figure 2a, the peaks with binding energies of 284.8 eV and 288.7 eV correspond to C=C on
the benzoic acid ring and C=O on terephthalic acid [39]. In addition, the binding energy of
285.8 eV on M53@PDI-20 is attributed to the C–N signal peak. The Fe 2p in Figure 2b shows
two peaks at 725.8 and 711.9 eV for Fe 2p1/2 and Fe 2p3/2, respectively. The distance
between these two peaks is approximately 13.9 eV, and there is also a neutral peak at 717.3
eV, which is unique to MIL-53(Fe) [40], thus further demonstrating the successful synthesis
of MIL-53 (Fe). In the O 1s spectrum (Figure 2c), two peaks at 531.9 and 530.5 eV are
attributed to the oxygen component of the H2BDC and Fe–O bond on the organic bond of
MIL-53(Fe) [3]. Additionally, in the O spectrum of M53@PDI-20, the peaks at 529.4, 530.1,
531.5 and 532.8 eV, where 529.4 and 532.8 eV correspond to C–O bonds in surfaces which
adsorbed H2O and PDI [41], respectively, while 530.1 and 531.5 eV are consistent with
Fe–O, C=O in MIL-53(Fe) and the binding energy is shifted towards lower binding energy
shift. At the same time, the position of Fe 2p of M53@PDI-20 is shifted by 0.5 eV in the
direction of the decreasing binding energy, indicating an increase in the electron cloud
density on the Fe element and a strong interaction between MIL-53(Fe) and M53@PDI-20.
In addition, there is a clear peak of N 1s on the M53@PDI-20 in Figure 2d, and the element
N is specific to PDI, so MIL-53(Fe) and PDI were successfully integrated together to form
the heterojunction.
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Figure 2. XPS spectra of MIL-53(Fe) and M53@PDI-20: (a) C 1s; (b) Fe 2p; (c) O 1s; (d) N 1s.

2.2. Morphological Analysis

Sample morphologies were investigated with SEM and TEM. The result of Figure 3a
reveals that MIL-53(Fe) shows a polyhedral shuttle structure, which is in line with what was
previously observed for MIL-53(Fe) [17], while the self-assembled PDI is the small-sized
willow-like nanofibers from the TEM of Figure 3b. A clear interface between MIL-53(Fe)
and PDI can be observed in the TEM of Figure 3c–d. The PDI supramolecule is grown on
the surfaces of the polyhedral MIL-53(Fe) (Figure S3). This is also a direct indication of the
successful MIL-53(Fe)@PDI heterojunctions. Figure 3e–h show the elemental distributions
on M53@PDI-20, where C, N, O, and Fe are uniformly spread out. It can be speculated
that PDI is tightly wrapped around MIL-53(Fe), which greatly enhances both the charge
transfer and separation.
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2.3. UV–Vis DRS Analysis

As shown in Figure 4a, both PDI and MIL-53(Fe) have strong absorption in the UV–visible
region. MIL-53(Fe)@PDI heterojunctions show the wide range of visible light absorption and
the absorption values of MIL-53(Fe) increase with the loading of PDI. The absorption edge of
PDI is located at approximately 750 nm, which is significantly wider than that of MIL-53(Fe).
Due to the interaction between PDI and MIL-53(Fe), the introduction of PDI gives rise to a new
absorption at 420–700 nm in the heterojunction, thus enhancing the visible light absorption
range. The bandgap energy (Eg) can be estimated using the tangent intercept of the (αhv)1/2 pair
of photon energy (hv) as the following formula. Figure 4b,c show the (ahv)1/2 vs. (hv) figure of
the band gap. Eg values for PDI, MIL-53(Fe), M53@PDI-50, M53@PDI-20, and M53@PDI-5 were
evaluated to be approximately 1.70 eV, 2.72 eV, 2.15 eV, 2.62 eV, and 2.73 eV. In comparison with
MIL-53(Fe), the Eg of MIL-53(Fe)@PDI is reduced, which could generate more carriers under
visible light excitation.

(αhv)1/2 = A(hv − Eg)n (1)
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2.4. Photocatalytic Performances
2.4.1. Photocatalytic Degradation of RhB and Cr(VI) Pollutants

The photocatalytic performances were evaluated by the RhB degradation and Cr(VI)
reduction. As shown in Figure 5a,c,g, MIL-53(Fe)@PDI heterojunctions for degrading 10 mg/L
and 20 mg/L RhB exhibited excellent photocatalytic capabilities under 400 W metal halide lamp
irradiation and the comparisons of activities were M53@PDI-20 > M53@PDI-5 > M53@PDI-50
> MIL-53(Fe) > PDI. The degradation rate for 10 mg/L RhB over M53@PDI-20 can increase
from 42.4% to approximately 72.7% within 50 min of photocatalytic reaction, and while its
degradation rate for 20 mg/L RhB increases from 37.5% to approximately 47.1%. As shown
in the fitted curves of Figure 5b,d, the pseudo primary kinetic constant for the degradation of
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M53@PDI-20 heterojunctions for 10 mg/L RhB is 2.6 and 2.3 times higher than those for PDI
and MIL-53(Fe), respectively, and 3.0 and 1.2 times higher than those for PDI and MIL-53(Fe)
for 20 mg/L RhB, respectively. These results indicate that the heterojunctions constructed by a
small amount of PDI and MIL-53(Fe) could significantly improve the photocatalytic capabilities
(Figure 5e). Furthermore, M53@PDI-20 exhibits benign stability for the degradation of 10 mg/L
RhB in three consecutive cycles (Figure 5f). Meanwhile, after the photocatalytic reaction of
150 min, M53@PDI-20 heterojunctions significantly improve the reduction in the Cr(VI) solution,
achieving 99.9% reduction for 10 mg/L Cr(VI), and its pseudo primary kinetic constant for the
reduction of 10 mg/L Cr(VI) is higher than those of PDI and MIL-53(Fe) by a factor of 15.2 and
1.4 (Figure 5h).
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2.4.2. Evaluation of the Selective Oxidation of Benzyl Alcohol

Furthermore, according to Figure 6, the photocatalytic effects of MIL-53(Fe) and PDI
on the selective oxidation of benzyl alcohol are relatively weak, with conversions of only
44.7% and 40.2%, probably due to its low charge separation efficiencies. After loading
the PDI organic supramolecule into MIL-53(Fe), the heterojunctions show a substantial
increase in the photocatalytic rate for benzyl alcohol, and the conversion rate of benzyl
alcohol over M53@PDI-20 organic heterojunctions increases to 91.5%. Additionally, the
selectivities of these samples are all above 90%, also corresponding to the previous analysis,
and M53@PDI-20 reaches a maximum selectivity of 99%.
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2.5. Photoelectrochemical and Optical Properties

The efficiency of interfacial charge separation was further tested through EIS Nyquist
plots, as shown in Figure 7a. In comparison with MIL-53(Fe), the arc radii of M53@PDI-5,
M53@PDI-20, and M53@PDI-50 heterojunctions are smaller, and the order of the arc radii is
from smallest to largest: M53@PDI-20 < M53@PDI-50 < M53@PDI-5 < MIL-53(Fe) < PDI.
This indicates that the introduction of PDI is conducive to the charge transfer on the
surfaces of the heterojunctions, and the shorter the arc diameter is, the lower the charge
transfer resistance is [42]. The photogenerated carriers for photocatalytic reactions can be
effectively separated by M53@PDI-20, reducing the charge transfer resistance. Similarly, the
transient photocurrent response is an essential technique for studying the behavior of the
photogenerated charge transfer and separation. Typically, the higher photocurrent response
implies that photogenerated charges can be efficiently separated to achieve excellent photo-
catalytic activity [43]. The higher π–π stacking and strong π–π interaction can facilitate the
formation of electron leaving domains, which facilitating the transport of photoelectrons
and improving the separation of photogenerated carriers [44]. According to Figure 7b, the
transient photocurrent of M53@PDI-20 is improved and superior to those of M53@PDI-5,
M53@PDI-50, PDI, and MIL-53(Fe), which indicates that the construction of heterojunctions
enhances the separation of photogenerated electrons and holes. Additionally, this result
corresponds to the photocatalytic activity.



Catalysts 2023, 13, 471 8 of 15Catalysts 2023, 13, x FOR PEER REVIEW 10 of 18 
 

 

 

Figure 7. (a) EIS Nyquist plots and (b) transient photocurrent responses of the samples, Mott–

Schottky plots of (c) MIL-53(Fe), (d) PDI and (e) M53@PDI-20 and (f) the steady-state photolumi-

nescence (PL) spectra. 

2.6. Contact Angle Analysis 

In general, the higher surface energies and smaller contact angles reflect a greater 

hydrophilic capability. From Figure 8a–d, it can be observed that M53@PDI-20 exhibits a 

smaller contact angle compared with MIL-53(Fe) under different contaminant droplets, 

and while the surfaces energies of M53@PDI-20 are 59.76 mN/m on 10 mg/L of RhB solu-

tion (Figure 8b) and 43.47 mN/m on 10 mg/L of Cr(IV) solution (Figure 8d), respectively, 

these are higher than the solid surfaces energies of the MIL-53(Fe) sample (18.75 mN/m 

(Figure 8a) for 10 mg/L of RhB and 22.31 mN/m(Figure 8c) for 10 mg/L of Cr(IV)). This 

indicates that the modification of PDI makes MIL-53(Fe) prompt the adsorption and acti-

vation of pro-contaminant solutions, where M53@PDI-20 could adsorb more contami-

nants to facilitate its elimination.  

Figure 7. (a) EIS Nyquist plots and (b) transient photocurrent responses of the samples, Mott–Schottky plots
of (c) MIL-53(Fe), (d) PDI and (e) M53@PDI-20 and (f) the steady-state photoluminescence (PL) spectra.

In addition, the Mott-Schottky (M-S) test was carried out to further demonstrate the
effect of PDI on the energy level structure of MIL-53(Fe). As can be seen from Mott–Schottky
of the PDI and MIL-53(Fe) in Figure 7c–e, the slopes by the linear fits of the curves are
positive, indicating that PDI and MIL-53(Fe) are all typical n-type semiconductors. The flat-
band potentials of MIL-53(Fe), PDI, andM53@PDI-20 in a neutral electrolyte of 0.1 mol/L
Na2SO4 with respect to a standard hydrogen electrode (NHE) are 0.277 V, −0.143 V, and
0.127 V, respectively, relative to 0.08 eV, −0.34 eV, and −0.07 eV for Ag/AgCl electrodes.
The conversion formula of the Ag/AgCl electrode and NHE is ENHE = EAg/AgCl + 0.197.
An n-type semiconductor has a conduction band that is roughly 0.1–0.2 eV lower than a
flat-band semiconductor [30]. Thus, the conduction band positions of MIL-53(Fe) and PDI
vs. NHE are −0.077 eV and −0.343 eV, respectively. From the band gaps of MIL-53(Fe)
and PDI of UV–Vis DRS (Figure 4a) and the empirical formula (EVB = ECB + Eg) [45], the
valence bands of MIL-53(Fe) and PDI are calculated to be 2.643 V and 1.357 V, respec-
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tively. To further confirm the accuracy of the band structure, we also consider directly
using the VB-XPS method. The VB-XPS diagram was used to obtain the valence band
potential (EVB-XPS). The corresponding EVB and XPS of MIL-53 (Fe) and PDI were mea-
sured to be 2.86 and 1.55 eV, respectively (Figure S7a,b). Then, the EVB responding to the
standard hydrogen electrode (EVB) can be calculated according to the following formula:
EVB = ϕ + EVB-XPS − 4.44 [46], where ϕ is the work function of the instrument (4.2 eV).
Therefore, the EVB of MIL-53 (Fe) and PDI are calculated to be 2.62 and 1.31 eV, which is
basically the same as that estimated by the Mott–Schottky equation.

Photoluminescence spectra can be used to analyze the carrier transfer over the het-
erojunctions, where the ineffective charge separation provides the greatest recombination,
which can be converted into thermal energy or fluorescence emission during the process.
The higher intensity of its emission peak signifies the lower separation efficiency of the
photogenerated electrons/holes [47]. Figure 7f shows the MIL-53(Fe) > M53@PDI-100 >
M53@PDI-5 > M53@PDI-20 intensity sequential fluorescence spectra. The formation of
M53@PDI-20 heterostructures between PDI and MIL-53(Fe) exhibits the lowest electron and
hole complexation rates, which realizes excellent charge transfer properties in agreement
with the results of the photocatalytic activities.

2.6. Contact Angle Analysis

In general, the higher surface energies and smaller contact angles reflect a greater
hydrophilic capability. From Figure 8a–d, it can be observed that M53@PDI-20 exhibits
a smaller contact angle compared with MIL-53(Fe) under different contaminant droplets,
and while the surfaces energies of M53@PDI-20 are 59.76 mN/m on 10 mg/L of RhB solu-
tion (Figure 8b) and 43.47 mN/m on 10 mg/L of Cr(IV) solution (Figure 8d), respectively,
these are higher than the solid surfaces energies of the MIL-53(Fe) sample (18.75 mN/m
(Figure 8a) for 10 mg/L of RhB and 22.31 mN/m (Figure 8c) for 10 mg/L of Cr(IV)). This
indicates that the modification of PDI makes MIL-53(Fe) prompt the adsorption and activa-
tion of pro-contaminant solutions, where M53@PDI-20 could adsorb more contaminants to
facilitate its elimination.
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2.7. Active Species Capturing Experiments and Possible Mechanism

To explore the major reactive species in this degradation reaction of the RhB solution
over M53@PDI-20, 1 mmol/L of trapping agent was added into the 10 mg/L RhB substrate
prior to the dark reaction to capture the major reactive species. Of these, tert-butanol was
used to capture hydroxyl radicals (·OH), p-benzoquinone (p-BZQ) captured the superoxide
radicals (•O2

−), and EDTA-2Na captured the photogenerated holes (h+) [48]. As from
Figure 9, it can be seen that the degradation of RhB over M53@PDI-20 significantly decreases
from 72.7% to 42.3% with the addition of EDTA-2Na. The result indicates that h+ has the
highest degradation effect on RhB pollutants, followed by -OH and •O2

−.
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According to the above analysis, an electron transfer mechanism based on the Z-scheme
is proposed as shown in Figure 10 and Table S1. MIL-53(Fe) and PDI can be simultaneously
photoexcited under visible light irradiation. Due to the suitable band alignment and close
contact between MIL-53(Fe) and PDI, the electrons in the conduction band of MIL-53(Fe)
could migrate to PDI to recombinase with holes on its valence band. Therefore, the electron
aggregation on the PDI conduction band with substantial reducing property can reduce
Cr(VI) and reduce O2 to •O2

−, while the holes on the valence band of MIL-53(Fe) could
oxidize RhB and benzyl alcohol (1.88 eV vs. NHE). The stability is also improved by the
effective charge separation and transfer of Z-scheme heterojunctions.
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3. Experimental Section

All chemicals were of analytical grade and used without further purification.

3.1. Synthesis of MIL-53(Fe)

A quantity of FeCl3-6H2O and terephthalic acid (H2BDC) was weighed into a 100 mL
beaker and a quantity of N, N-dimethylformamide (DMF) was added. The molar ratio
was 1:1:280. The solution was stirred for 1 h until the solid was fully dissolved into
a clarified solution, after which it was transferred to a 100 mL reactor liner containing
polytetrafluoroethylene and hydrothermally reacted at 150 ◦C for 24 h. After the reaction
was completed, the product was washed by centrifugation with DMF and anhydrous
ethanol several times to obtain a pale yellow powder, which was then activated at 100 ◦C
for 10 h in a blast oven [31].

3.2. Synthesis of PDI

A combination of 3.50 mmol of 3,4,9,10-tetracarboxylic acid dianhydride, 28 mmol of
β-amino acid, and 18 g of imidazole was mixed into an oil bath at 100 ◦C and stirred under
nitrogen for 4 h. The product was then left to cool to 25 ◦C. A total of 100 mL of anhydrous
ethanol and 300 mL of 2.0 M hydrochloric acid (HCl) were added and stirred for 12 h. The
suspension was filtered through an aqueous membrane (0.45 µm) and repeatedly washed
with deionized water until the supernatant was neutral. The product was dried at 60 ◦C for
24 h to give the crude PDI product [14].

Subsequently, 0.54 g of the dried PDI crude product was placed in 200 mL of deionized
water. The organic base triethylamine TEA (800 µL) was added under stirring and stirred
for 1 h. Then, 35 mL hydrochloric acid (4.0 M) was added and stirred for 3 h. Dark-red solid
PDI nanofibers were formed and dried under vacuum at 70 ◦C for 12 h after extraction to
obtain the PDI supramolecular material.

3.3. Synthesis of PDI/MIL-53(Fe) All-Organic Heterojunctions

A certain amount of MIL-53(Fe) and PDI was weighed together and placed in a
polytetrafluoroethylene liner, and the corresponding amount of anhydrous ethanol was
added to ultrasonically disperse the product for 30 min. The samples were labeled as
M53@PDI-5, M53@PDI-20, and M53@PDI-50 according to the mass percentage of PDI
material (5%, 20%, and 50%). A schematic illustration of the synthesis procedure for
MIL-53(Fe)@PDI is shown in Scheme 1.
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3.4. Photocatalytic Performances
3.4.1. Photocatalytic Degradations of the Simulated Pollutants

The photocatalytic activity of 10 (or 20) mg/L RhB was tested using a metal halide
lamp (400 W). Its optical power is 83.1 mW. The photochemical reactor was cooled with
circulating condensate to ensure that the experiments were carried out at 25 ◦C. Disperse
25 mg of the sample into 50 mL of 10 or 20 mg/L RhB solution and add to a quartz tube. The
solution was darkly reacted for 40 min before illumination to achieve equilibrium between
physisorption and desorption, after which a 400 W metal halide lamp was switched on and
3–5 mL of suspension was picked up in a centrifuge tube every 10 min. The suspension
was centrifuged at high speed and the supernatant was taken for the absorbance testing
of RhB. Using the following equation, we calculated the degradation rate D1 based on the
concentration change,

D1 = (1 − C0/C) × 100% = (1 − A0/A) × 100% (2)

where C0 and C are the initial concentrations of the pollutant and the concentration at the
moment after degradation, respectively, and A0 and A represent the absorbance of the
pollutant at the starting moment and moment t after degradation, respectively.

3.4.2. Photocatalytic Cr(VI) Reduction

The photocatalytic reduction of the Cr(VI) solution was carried out using a 400 W
metal halide lamp as the simulated light source. Disperse 25 mg of the sample into
50 mL of 10 mg/L Cr(VI) solution and add to a quartz tube. At the end of the dark
reaction for 40 min, the metal halide lamp was switched on and 3–5 mL of suspension
was taken in a centrifuge tube at 30 min intervals. The suspensions were separated in a
high-speed centrifuge. The absorbance of Cr(VI) was spectrophotometrically determined
by diphenylcarbonyldihydrazide: 1 mL of supernatant was taken with a pipette into
a 10 mL volumetric flask, which was then fixed with dilute sulphury acid (0.2 mol/L)
to the graduated line of the flask and finally 300 L of GB 7467-87 color developer was
added dropwise for the chromogenic reaction. It was shaken well and held for 3–5 min
until the color development is complete. The absorbance of Cr(VI) can be measured by
a UV spectrophotometer at a wavelength of approximately λ = 554 nm, where the Cr(VI)
reduction rate can be calculated.

3.4.3. Photocatalytic Selective Oxidation of Benzyl Alcohol

The selective catalytic oxidation of benzyl alcohol was carried out in the visible light of a
500 W xenon lamp (500 W xenon lamp λ > 420 nm). Twenty milligrams of catalyst was added
to a quartz reactor with 10 µL of benzyl alcohol and 2 mL of trifluoro toluene. Oxygen was
introduced for 15 min while the reactor was fed with circulating condensate to ensure that the
experiment was carried out at 25 ◦C To bring the benzyl alcohol substrate into full contact with
the catalyst, the reaction was mixed under dark conditions for 30 min. Reaction occurred under
light conditions for 4 h. The suspension was filtered to remove the catalyst and the supernatant
was taken for analysis. The calibration of the benzyl alcohol oxidation baseline was 2 µL, 4 µL,
6 µL, 8 µL or 10 µL of benzyl alcohol or benzaldehyde and 2 mL of trifluoro toluene was added
into the reactor, whilst other conditions remained unchanged (no light for 30 min and lighting
for 4 h). The standard curves were made by gas chromatography analysis (Agilent Technologies
GC 7820A, Santa Clara, CA, USA) (Figure S1).

3.5. Characterization

The main characterization tools in this work are as follows. X-ray powder diffraction
(XRD, Bruker, Billerica, MA, USA) was acquired by Model Bruker D8 Advance polycrys-
talline (powder) diffractometer with X-ray tube (Cu target, Kα rays = 0.15418 nm) and a
scanning speed 10◦/min. Fourier transform infrared spectra (FT-IR) were measured with
a Nicolet-470 infrared Fourier spectrometer. X-ray photoelectron spectra (XPS) could be
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acquired from the Thermos Scientific™ K-Alpha™ X-ray photoelectron spectrometer. The
scanning electron microscope (SEM, FEI, Hillsboro, OR, USA) was from Model MLA650F
from FEI, USA. Transmission electron microscopy (TEM, FEI, Hillsboro, OR, USA) was
carried out using a Talos F200S. Ultraviolet–visible diffuse reflectance spectra (UV–Vis
DRS, SHIMADZU UV-2600, Kyoto, Japan) were obtained with a Shimadzu Japan UV-2600
UV–Vis spectrophotometer and the fluorescence spectra (PL) were analyzed with an FLS980
fluorescence spectrometer at an excitation wavelength of λ = 280 nm. The photoelectro-
chemical properties of the samples such as photoinduced current (IT), electrochemical
impedance (EIS, CHENHUA, Shanghai, China), and Mott–Schottky (M-S) were performed
using the CHI660E electrochemical workstation. For the tests, the working electrode was
that some sample was pre-coated onto an indium tin oxide glass sheet, Ag/AgCl was as
the reference electrode and the Pt plate was as the auxiliary electrode. The electrolyte for
IT and M-S tests was 0.1 mol/L Na2SO4, and the electrolyte for EIS was 0.1 mol/L K3Fe
(CN)6 and K4Fe (CN)6 buffer solution.

4. Conclusions

As a result, MIL-53(Fe)@PDI heterojunctions with high redox capacities from MIL-53(Fe)
and PDI supramolecular materials were synthesized by ultrasonic assembly method. The
optimized M53@PDI-20 indicated the improvement in the degrading Rh B, in which the rate
constant of 10 mg/L Rh B removal was 2.6 and 2.3 times higher than that of PDI and MIL-53(Fe),
respectively. The rate constant in the degrading 20 mg/L was 3.0 and 1.2 times higher than that
of PDI and MIL-53(Fe) RhB, respectively. The reactive species (h+, •O2− and •OH) generated in
the photocatalytic process could greatly improve the oxidation ability. For the Cr(VI) reduction
(10 mg/L) and selective oxidation of benzyl alcohol, M53@PDI-20 exhibited the complete Cr(VI)
reduction and efficient benzyl alcohol selective oxidation. This suggests that the addition of PDI
organic supramolecules greatly improved the redox effect of MIL-53(Fe), which was attributed
to all-organic heterojunctions to enhance the solar light utilization and effectively promote the
charge separation and transfer via π–π interaction. This provides a new idea for improving the
photocatalytic performance of MOF materials.
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