Highly Efficient Au/ZnO−ZrO2 Catalysts for CO Oxidation at Low Temperature
Abstract
:1. Introduction
2. Results
2.1. Crystalline Structure
2.2. Morphology
2.3. Reducibility of the Catalysts
2.4. DRIFTS CO Oxidation
2.5. Surface Evolution by XPS
2.6. Catalytic Activity
2.6.1. Effect of Pretreatment Gas and Gold Loading
2.6.2. Effect of Using Hydrogen or Air in the CO Oxidation
2.6.3. Impact of the ZnO-ZrO2 Composition
3. Materials and Methods
3.1. Synthesis of the Nanostructured ZrO2 and ZnO−ZrO2 Oxides
3.2. Synthesis of Au Nanoparticles on the ZrO2, ZnO, and ZnO−ZrO2 Oxides
3.3. Catalytic Evaluation
3.4. In Situ Characterization Techniques
3.5. Ex Situ Characterization Techniques
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okumura, M.; Fujitani, T.; Huang, J.; Ishida, T. A Career in Catalysis: Masatake Haruta. ACS Catal. 2015, 5, 4699–4707. [Google Scholar] [CrossRef]
- Christmann, K.; Schwede, S.; Schubert, S.; Kudernatsch, W. Model Studies on CO Oxidation Catalyst Systems: Titania and Gold Nanoparticles. ChemPhysChem 2010, 11, 1344–1363. [Google Scholar] [CrossRef]
- Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M.J.; Delmon, B. Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4. J. Catal. 1993, 144, 175–192. [Google Scholar] [CrossRef]
- Chen, S.; Abdel-Mageed, A.M.; Hauble, A.; Ishida, T.; Murayama, T.; Parlinska-Wojtan, M.; Jürgen, B.R. Performance of Au/ZnO catalysts in CO2 reduction to methanol: Varying the Au loading/Au particle size. Appl. Catal. A Gen. 2021, 624, 118318. [Google Scholar] [CrossRef]
- Ishida, T.; Kinoshita, N.; Okatsu, H.; Akita, T.; Takei, T.; Haruta, M. Influence of the Support and the Size of Gold Clusters on Catalytic Activity for Glucose Oxidation. Angew. Chem. Int. Ed. 2008, 47, 9265–9268. [Google Scholar] [CrossRef]
- Carabineiro, S.A.C.; Machado, B.F.; Bacsa, R.R.; Serp, P.; Dražić, G.; Faria, J.L.; Figueiredo, J.L. Catalytic performance of Au/ZnO nanocatalysts for CO oxidation. J. Catal. 2010, 273, 191–198. [Google Scholar] [CrossRef]
- Ueda, A.; Oshima, T.; Haruta, M. Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides. Appl. Catal. B Environ. 1997, 12, 81–93. [Google Scholar] [CrossRef]
- Al-Sayari, S.; Carley, A.; Taylor, S.; Hutchings, G. Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature: Comments on the effect of synthesis conditions on the preparation of high activity catalysts. Top. Catal. 2007, 44, 123–128. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide-From Synthesis to Application: A Review. Materials 2014, 9, 2833–2881. [Google Scholar] [CrossRef] [Green Version]
- Qian, K.; Huang, W.; Fang, J.; Lv, S.; He, B.; Jiang, Z.; Wei, S. Low-temperature CO oxidation over Au/ZnO/SiO2 catalysts: Some mechanism insights. J. Catal. 2008, 255, 269–278. [Google Scholar] [CrossRef]
- Boccuzzi, F.; Chiorino, A.; Tsubota, S.; Haruta, M. FTIR study of carbon monoxide oxidation and scrambling at room temperature over gold supported on ZnO and TiO2. J. Phys. Chem. 1996, 100, 3625–3631. [Google Scholar] [CrossRef]
- Wang, G.Y.; Zhang, W.X.; Lian, H.L.; Jiang, D.Z.; Wu, T.H. Effect of calcination temperatures and precipitant on the catalytic performance of Au/ZnO catalysts for CO oxidation at ambient temperature and in humid circumstances. Appl. Catal. A Gen. 2003, 239, 1–10. [Google Scholar] [CrossRef]
- Hutchings, G.J.; Siddiqui, M.R.H.; Burrows, A.; Kiely, C.J.; Whyman, R.J. High-activity Au/CuO–ZnO catalysts for the oxidation of carbon monoxide at ambient temperature. Chem. Soc. Faraday Trans. 1997, 93, 187–188. [Google Scholar] [CrossRef]
- Sagar, T.V.; Zavašnik, J.; Finšgar, M.; Novak-Tušar, N.; Pintar, A. Evaluation of Au/ZrO2 Catalysts Prepared via Post synthesis Methods in CO2 Hydrogenation to Methanol. Catalysts 2022, 12, 218. [Google Scholar] [CrossRef]
- Derrouiche, S.; La Fontaine, C.; Thrimurtulu, G.; Casale, S.; Delannoy, L. Unusual behaviour of Au/ZnO catalysts in selective hydrogenation of butadiene due to the formation of a AuZn nanoalloy. Catal. Sci. Technol. 2016, 6, 6794–6805. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Qin, Z.; Ji, H.; Su, T. Synthesis of Dimethyl Ether from CO2 and H2 Using a Cu–Fe–Zr/HZSM-5 Catalyst System. Ind. Eng. Chem. Res. 2013, 52, 16648–16655. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, H.; Xu, B.Q. Catalysis by Gold: Isolated Surface Au3+ Ions are Active Sites for Selective Hydrogenation of 1,3-Butadiene over Au/ZrO2 Catalysts. Angew. Chem. Int. Ed. 2005, 44, 7132. [Google Scholar] [CrossRef]
- Huang, H.Y.; Chen, H.I.; Huang, Y.J. The Promotional Effects of ZrO2 and Au on the CuZnO Catalyst Regarding the Durability and Activity of the Partial Oxidation of Methanol. Catalysts 2018, 8, 345. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Wang, W.W.; Fu, X.P.; Li, S.Q.; Jia, C.J. The effect of reactants adsorption and products desorption for Au/TiO2 in catalyzing CO oxidation. J. Catal. 2019, 376, 134–145. [Google Scholar] [CrossRef]
- Bailey, S.; Froment, G.F.; Snoeck, J.W.; Waugh, K.C. A DRIFTS study of the morphology and surface adsorbate composition of an operating methanol synthesis catalyst. Catal. Lett. 1995, 30, 99. [Google Scholar] [CrossRef]
- Medina, J.C.; Figueroa, M.; Manrique, R.; Rodríguez Pereira, J.; Srinivasan, P.D.; Bravo-Suárez, J.J.; Baldovino Medrano, V.G.; Jiménez, R.; Karelovic, A. Catalytic consequences of Ga promotion on Cu for CO2 hydrogenation to metanol. Catal. Sci. Technol. 2017, 7, 3375. [Google Scholar] [CrossRef]
- Kunkes, E.L.; Studt, F.; Abild-Pedersen, F.; Schlögl, R.; Behrens, M. Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: Is there a common intermediate or not? J. Catal. 2015, 328, 43. [Google Scholar] [CrossRef] [Green Version]
- Saussey, J.; Lavalley, J.C. An in situ FT-IR study of adsorbed species on a Cu-ZnAl2O4 methanol catalyst under 1 MPa pressure and at 525 K: Effect of the H2/CO/CO2 feed stream composition. J. Mol. Catal. 1989, 50, 343. [Google Scholar] [CrossRef]
- Edwards, J.F.; Schrader, G.L. In Situ FT-IR Spectroscopy of the Adsorption of CO on Methanol Catalysts. Appl. Spectrosc. 1981, 35, 559. [Google Scholar] [CrossRef]
- Edwards, J.F.; Schrader, G.L. Infrared spectroscopy of copper/zinc oxide catalysts for the water-gas shift reaction and methanol synthesis. J. Phys. Chem. 1984, 88, 5620. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J., Ed.; Perkin-Elmer Corporation, Physical Electronics Division: Chanhassen, MN, USA, 1992; ISBN 0-9627026-2-5. [Google Scholar]
- NIST. X-ray Photoelectron Spectroscopy Database; Version 4.1; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2000; Version 4.1, Last Update to Data Content: 2012. [Google Scholar]
- Li, X.; Han, C.; Lu, D.; Shao, C.; Li, X.; Liu, Y. Highly electron-depleted ZnO/ZnFe2O4/Au hollow meshes as an advanced material for gas sensing application. Sens. Actuators B 2019, 297, 126769. [Google Scholar] [CrossRef]
- Bai, S.; Chen, L.; Chen, S.; Luo, R.; Li, D.; Chen, A.; Liu, C.C. Reverse microemulsion in situ crystallizing growth of ZnO nanorods and application for NO2 sensor. Sens. Actuators B Chemical 2014, 190, 760–767. [Google Scholar] [CrossRef]
- Villa, A.; Dimitratos, N.; Chan-Thaw, C.E.; Hammond, C.; Veith, G.M.; Wang, D.; Manzoli, M.; Prati, L.; Hutchings, G.J. Characterisation of gold catalysts. Chem. Soc. Rev. 2016, 45, 4953–4994. [Google Scholar] [CrossRef] [Green Version]
- Gan, J.; Lu, X.; Wu, J.; Xie, S.; Zhai, T.; Yu, M.; Zhang, Z.; Mao, Y.; Wang, S.C.I.; Shen, Y. Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Sci. Rep. 2013, 3, 1021. [Google Scholar] [CrossRef] [Green Version]
- Menegazzo, F.; Signoretto, M.; Damiano, M.; Pinna, F.; Manzoli, M. Structure–activity relationships of Au/ZrO2 catalysts for 5-hydroxymethylfurfural oxidative esterification: Effects of zirconia sulphation on gold dispersion, position and shape. J. Catal. 2015, 326, 1–8. [Google Scholar] [CrossRef]
- Corro, G.; Cebada, S.; Pal, U.; Fierro, J.L.G. Au0–Au3+ bifunctional site mediated enhanced catalytic activity of Au/ZnO composite in diesel particulate matter oxidation. J. Catal. 2017, 347, 148–156. [Google Scholar] [CrossRef]
- Ilieva, L.; Dimitrov, D.; Kolentsova, E.; Venezia, A.M.; Karashanova, D.; Avdeev, G.; Petrova, P.; State, R.; Tabakova, T. Gold-Based Catalysts for Complete Formaldehyde Oxidation: Insights into the Role of Support Composition. Catalysts 2022, 12, 705. [Google Scholar] [CrossRef]
- Kim, M.Y.; Kamata, T.; Masui, T.; Imanaka, N. Complete Toluene Oxidation on Pt/CeO2-ZrO2-ZnO Catalysts. Catalysts 2013, 3, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Güttel, R.; Paul, M.; Galeano, C.; Schüth, F. Au,@ZrO2 yolk–shell catalysts for CO oxidation: Study of particle size effect by ex-post size control of Au cores. J. Catal. 2012, 289, 100–104. [Google Scholar] [CrossRef]
- Liu, W.; Liu, H.; Liu, Y.; Dong, Z.; Luo, L. Surface Plane Effect of ZnO on the Catalytic Performance of Au/ZnO for the CO Oxidation Reaction. J. Phys. Chem. C 2022, 126, 14155–14162. [Google Scholar] [CrossRef]
- Konova, P.; Naydenov, A.; Tabakova, T.; Mehandjiev, D. Deactivation of nanosize gold supported on zirconia in CO oxidation. Catal. Commun. 2004, 5, 537–542. [Google Scholar] [CrossRef]
Property | 3Au/ZrO2 | 3Au/ZnO | 3Au/5ZnO−ZrO2 |
---|---|---|---|
Nominal Au content, wt. % | 3 | 3 | 3 |
Actual Au content, wt. % | 2.85 | 2.7 | 2.92 |
SBET, m2/g | 95 | 59 | 157 |
Crystallite size, nm | 10 | 18 | 12 |
Activation energy (Ea), kJ/mol | 33.6 | 48.5 | 21.7 |
Au particle size, nm | 2.8 | 3.5 | 2.2 |
Au dispersion, % | 48 | 38 | 56 |
Rate, molCO/molAu•s * | 0.003 | 0.0015 | 0.006 |
Turnover frequency, TOF (h−1) * | 38 | 12.4 | 70.4 |
Catalyst | Au0 (% Atom) | Au1+ (% Atom) | OI(S-O) (% Atom) | OII(O-H) (% Atom) | OIII(H2O) (% Atom) | OIV(M-O) (% Atom) |
---|---|---|---|---|---|---|
3Au/ZrO2 | 87 | 13 | 47 | 30 | 23 | 0 |
3Au/ZnO | 100 | 0 | 55 | 20 | 18 | 5 |
3Au/5ZnO−ZrO2 | 84 | 26 | 49 | 27 | 15 | 7 |
Catalyst | T10 Air | T50 Air | T90 Air | T10 H2 | T50 H2 | T90 H2 |
---|---|---|---|---|---|---|
3Au/ZrO2 | −5 | 45 | 178 | <−5 | 43 | 155 |
3Au/ZnO | 18 | 220 | 260 | −5 | 120 | 170 |
1Au/5ZnO−ZrO2 | <−5 | 1 | 47 | −5 | 16 | 117 |
2Au/5ZnO−ZrO2 | <−5 | −1 | 30 | <−5 | 2 | 32 |
3Au/5ZnO−ZrO2 | <−5 | <−5 | 5 | <−5 | <−5 | 66 |
3Au/3ZnO−ZrO2 | <−5 | −3 | 83 | -- | -- | -- |
3Au/10ZnO−ZrO2 | <−5 | <−5 | 36 | -- | -- | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camposeco, R.; Maturano-Rojas, V.; Zanella, R. Highly Efficient Au/ZnO−ZrO2 Catalysts for CO Oxidation at Low Temperature. Catalysts 2023, 13, 590. https://doi.org/10.3390/catal13030590
Camposeco R, Maturano-Rojas V, Zanella R. Highly Efficient Au/ZnO−ZrO2 Catalysts for CO Oxidation at Low Temperature. Catalysts. 2023; 13(3):590. https://doi.org/10.3390/catal13030590
Chicago/Turabian StyleCamposeco, Roberto, Viridiana Maturano-Rojas, and Rodolfo Zanella. 2023. "Highly Efficient Au/ZnO−ZrO2 Catalysts for CO Oxidation at Low Temperature" Catalysts 13, no. 3: 590. https://doi.org/10.3390/catal13030590
APA StyleCamposeco, R., Maturano-Rojas, V., & Zanella, R. (2023). Highly Efficient Au/ZnO−ZrO2 Catalysts for CO Oxidation at Low Temperature. Catalysts, 13(3), 590. https://doi.org/10.3390/catal13030590