The Combined Impact of Ni-Based Catalysts and a Binary Carbonate Salts Mixture on the CO2 Gasification Performance of Olive Kernel Biomass Fuel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization (XRD Analysis)
2.2. Morphological Characterization (SEM, HR-SEM, EDS Mapping, and TEM)
2.3. Redox Behavior (H2-TPR Analysis)
2.4. Catalyst-Aided CO2 Gasification Experiments under Batch Mode of Operation
3. Materials and Methods
3.1. Fuel Feedstock
3.2. Catalyst Preparation
3.3. Experimental Apparatus for the Olive Kernel Catalytic Gasification Studies
3.4. Gasification Performance Indicators
3.5. Physicochemical Characterizations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brown, R.C. The Role of Pyrolysis and Gasification in a Carbon Negative Economy. Processes 2021, 9, 882. [Google Scholar] [CrossRef]
- Varvoutis, G.; Lampropoulos, A.; Mandela, E.; Konsolakis, M. Recent Advances on CO2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H2. Energies 2022, 15, 4790. [Google Scholar] [CrossRef]
- Zhang, X. Essential Scientific Mapping of the Value Chain of Thermochemically Converted Second-Generation Bio-Fuels. Green Chem. 2016, 18, 5086–5117. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Upadhyay, R.K. Review on Biomass Gasification: Gasifiers, Gasifying Mediums, and Operational Parameters. Mater. Sci. Energy Technol. 2021, 4, 329–340. [Google Scholar] [CrossRef]
- Di Giuliano, A.; Funcia, I.; Pérez-Vega, R.; Gil, J.; Gallucci, K. Novel Application of Pretreatment and Diagnostic Method Using Dynamic Pressure Fluctuations to Resolve and Detect Issues Related to Biogenic Residue Ash in Chemical Looping Gasification. Processes 2020, 8, 1137. [Google Scholar] [CrossRef]
- Narnaware, S.L.; Panwar, N.L. Biomass Gasification for Climate Change Mitigation and Policy Framework in India: A Review. Bioresour. Technol. Reports 2022, 17, 100892. [Google Scholar] [CrossRef]
- Allesina, G.; Pedrazzi, S. Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers. Energies 2021, 14, 6711. [Google Scholar] [CrossRef]
- Ongen, A.; Ozgu, C.; Ayol, A. ScienceDirect Biomass Gasification for Sustainable Energy Production: A Review. Int. J. Hydrog. Energy 2022, 47, 15419–15433. [Google Scholar] [CrossRef]
- Pio, D.T.; Tarelho, L.A.C. Industrial Gasification Systems (>3 MWth) for Bioenergy in Europe: Current Status and Future Perspectives. Renew. Sustain. Energy Rev. 2021, 145, 111108. [Google Scholar] [CrossRef]
- Situmorang, Y.A.; Zhao, Z.; Yoshida, A.; Abudula, A.; Guan, G. Small-Scale Biomass Gasification Systems for Power Generation (<200 kW Class): A Review. Renew. Sustain. Energy Rev. 2020, 117, 109486. [Google Scholar] [CrossRef]
- Aravani, V.P.; Sun, H.; Yang, Z.; Liu, G.; Wang, W.; Anagnostopoulos, G.; Syriopoulos, G.; Charisiou, N.D.; Goula, M.A.; Kornaros, M.; et al. Agricultural and Livestock Sector’s Residues in Greece & China: Comparative Qualitative and Quantitative Characterization for Assessing Their Potential for Biogas Production. Renew. Sustain. Energy Rev. 2022, 154, 111821. [Google Scholar] [CrossRef]
- Marks, E.A.N.; Kinigopoulou, V.; Akrout, H.; Azzaz, A.A.; Doulgeris, C.; Jellali, S.; Rad, C.; Zulueta, P.S.; Tziritis, E.; El-Bassi, L.; et al. Potential for Production of Biochar-Based Fertilizers from Olive Millwaste in Mediterranean Basin Countries: An Initial Assessment for Spain, Tunisia, and Greece. Sustainability 2020, 12, 6081. [Google Scholar] [CrossRef]
- Diez, C.M.; Trujillo, I.; Martinez-Urdiroz, N.; Barranco, D.; Rallo, L.; Marfil, P.; Gaut, B.S. Olive Domestication and Diversification in the Mediterranean Basin. New Phytol. 2015, 206, 436–447. [Google Scholar] [CrossRef]
- del Mar Contreras, M.; Romero, I.; Moya, M.; Castro, E. Olive-Derived Biomass as a Renewable Source of Value-Added Products. Process Biochem. 2020, 97, 43–56. [Google Scholar] [CrossRef]
- Garcìa Martìn, J.F.; Cuevas, M.; Feng, C.; Mateos, P.Á.; Torres, M. Energetic Valorisation of Olive Biomass: Olive-Tree Pruning, Olive Stones and Pomaces. Processes 2020, 8, 511. [Google Scholar] [CrossRef]
- Christoforou, E.; Fokaides, P.A. A Review of Olive Mill Solid Wastes to Energy Utilization Techniques. Waste Manag. 2016, 49, 346–363. [Google Scholar] [CrossRef]
- Damartzis, T.; Michailos, S.; Zabaniotou, A. Energetic Assessment of a Combined Heat and Power Integrated Biomass Gasification-Internal Combustion Engine System by Using Aspen Plus®. Fuel Process. Technol. 2012, 95, 37–44. [Google Scholar] [CrossRef]
- Vera, D.; Jurado, F.; Margaritis, N.K.; Grammelis, P. Experimental and Economic Study of a Gasification Plant Fuelled with Olive Industry Wastes. Energy Sustain. Dev. 2014, 23, 247–257. [Google Scholar] [CrossRef]
- Vera, D.; De Mena, B.; Jurado, F.; Schories, G. Study of a Downdraft Gasifier and Gas Engine Fueled with Olive Oil Industry Wastes. Appl. Therm. Eng. 2013, 51, 119–129. [Google Scholar] [CrossRef]
- Fryda, L.; Panopoulos, K.D.; Kakaras, E. Integrated CHP with Autothermal Biomass Gasification and SOFC-MGT. Energy Convers. Manag. 2008, 49, 281–290. [Google Scholar] [CrossRef]
- Manara, P.; Zabaniotou, A. Indicator-Based Economic, Environmental, and Social Sustainability Assessment of a Small Gasification Bioenergy System Fuelled with Food Processing Residues from the Mediterranean Agro-Industrial Sector. Sustain. Energy Technol. Assessments 2014, 8, 159–171. [Google Scholar] [CrossRef]
- Vera, D.; Jurado, F.; De Mena, B.; Hernández, J.C. A Distributed Generation Hybrid System for Electric Energy Boosting Fueled with Olive Industry Wastes. Energies 2019, 12, 500. [Google Scholar] [CrossRef] [Green Version]
- Kougioumtzis, M.A.; Kanaveli, I.P.; Karampinis, E.; Grammelis, P.; Kakaras, E. Combustion of Olive Tree Pruning Pellets versus Sunflower Husk Pellets at Industrial Boiler. Monitoring of Emissions and Combustion Efficiency. Renew. Energy 2021, 171, 516–525. [Google Scholar] [CrossRef]
- Colantoni, A.; Villarini, M.; Marcantonio, V.; Gallucci, F.; Cecchini, M. Performance Analysis of a Small-Scale ORC Trigeneration System Powered by the Combustion of Olive Pomace. Energies 2019, 12, 2279. [Google Scholar] [CrossRef] [Green Version]
- Alatzas, S.; Moustakas, K.; Malamis, D.; Vakalis, S. Biomass Potential from Agricultural Waste for Energetic Utilization in Greece. Energies 2019, 12, 1095. [Google Scholar] [CrossRef] [Green Version]
- Vourdoubas, J. Use of Renewable Energy Sources for Energy Generation in Rural Areas in the Island of Crete, Greece. Eur. J. Environ. Earth Sci. 2020, 1, 1–7. [Google Scholar] [CrossRef]
- Vourdoubas, J. Description and Assessment of a Small Renewable Energy Community in the Island of Crete, Greece. Open J. Energy Effic. 2017, 06, 97–111. [Google Scholar] [CrossRef] [Green Version]
- Ratchahat, S.; Kodama, S.; Tanthapanichakoon, W.; Sekiguchi, H. CO2 Gasification of Biomass Wastes Enhanced by Ni/Al2O3 Catalyst in Molten Eutectic Carbonate Salt. Int. J. Hydrogen Energy 2015, 40, 11809–11822. [Google Scholar] [CrossRef]
- Teh, J.S.; Teoh, Y.H.; How, H.G.; Sher, F. Thermal Analysis Technologies for Biomass Feedstocks: A State-of-the-Art Review. Processes 2021, 9, 1610. [Google Scholar] [CrossRef]
- Suárez-Ruiz, I.; Diez, M.A.; Rubiera, F. New Trends in Coal Conversion: Combustion, Gasification, Emissions, and Coking; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780081022016. [Google Scholar]
- Lampropoulos, A.; Kaklidis, N.; Athanasiou, C.; Montes-Morán, M.A.; Arenillas, A.; Menéndez, J.A.; Binas, V.D.; Konsolakis, M.; Marnellos, G.E. Effect of Olive Kernel Thermal Treatment (Torrefaction vs. Slow Pyrolysis) on the Physicochemical Characteristics and the CO2 or H2O Gasification Performance of as-Prepared Biochars. Int. J. Hydrogen Energy 2020, 46, 29126–29141. [Google Scholar] [CrossRef]
- Lampropoulos, A.; Binas, V.; Konsolakis, M.; Marnellos, G.E. Steam Gasification of Greek Lignite and Its Chars by Co-Feeding CO2 toward Syngas Production with an Adjustable H2/CO Ratio. Int. J. Hydrogen Energy 2021, 46, 28486–28500. [Google Scholar] [CrossRef]
- Galadima, A.; Masudi, A.; Muraza, O. Catalyst Development for Tar Reduction in Biomass Gasification: Recent Progress and the Way Forward. J. Environ. Manage. 2022, 305, 114274. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Nam, H.; Won Seo, M.; Hoon Lee, S.; Tokmurzin, D.; Wang, S.; Park, Y.K. Recent Progress in the Catalytic Thermochemical Conversion Process of Biomass for Biofuels. Chem. Eng. J. 2022, 447, 137501. [Google Scholar] [CrossRef]
- Straczewski, G.; Mai, R.; Gerhards, U.; Garbev, K.; Leibold, H. Catalytic Tar Conversion in Two Different Hot Syngas Cleaning Systems. Catalysts 2021, 11, 1231. [Google Scholar] [CrossRef]
- Guan, G.; Kaewpanha, M.; Hao, X.; Abudula, A. Catalytic Steam Reforming of Biomass Tar: Prospects and Challenges. Renew. Sustain. Energy Rev. 2016, 58, 450–461. [Google Scholar] [CrossRef] [Green Version]
- Mun, T.Y.; Seon, P.G.; Kim, J.S. Production of a Producer Gas from Woody Waste via Air Gasification Using Activated Carbon and a Two-Stage Gasifier and Characterization of Tar. Fuel 2010, 89, 3226–3234. [Google Scholar] [CrossRef]
- Guo, F.; Jia, X.; Liang, S.; Zhou, N.; Chen, P.; Ruan, R. Development of Biochar-Based Nanocatalysts for Tar Cracking/Reforming during Biomass Pyrolysis and Gasification. Bioresour. Technol. 2020, 298, 122263. [Google Scholar] [CrossRef]
- Ren, J.; Cao, J.P.; Zhao, X.Y.; Yang, F.L.; Wei, X.Y. Recent Advances in Syngas Production from Biomass Catalytic Gasification: A Critical Review on Reactors, Catalysts, Catalytic Mechanisms and Mathematical Models. Renew. Sustain. Energy Rev. 2019, 116, 109426. [Google Scholar] [CrossRef]
- Binte Mohamed, D.K.; Veksha, A.; Ha, Q.L.M.; Chan, W.P.; Lim, T.T.; Lisak, G. Advanced Ni Tar Reforming Catalysts Resistant to Syngas Impurities: Current Knowledge, Research Gaps and Future Prospects. Fuel 2022, 318, 123602. [Google Scholar] [CrossRef]
- Ren, J.; Cao, J.P.; Zhao, X.Y.; Liu, Y.L. Recent Progress and Perspectives of Catalyst Design and Downstream Integration in Biomass Tar Reforming. Chem. Eng. J. 2022, 429, 132316. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, H.; Li, H.; Han, X.; Zhang, M.; Sun, Y.; Fan, X.; Tu, R.; Zeng, Y.; Xu, C.C.; et al. Applications of Catalysts in Thermochemical Conversion of Biomass (Pyrolysis, Hydrothermal Liquefaction and Gasification): A Critical Review. Renew. Energy 2022, 196, 462–481. [Google Scholar] [CrossRef]
- Qin, T.; Yuan, S. Research Progress of Catalysts for Catalytic Steam Reforming of High Temperature Tar: A Review. Fuel 2023, 331, 125790. [Google Scholar] [CrossRef]
- Gao, N.; Salisu, J.; Quan, C.; Williams, P. Modified Nickel-Based Catalysts for Improved Steam Reforming of Biomass Tar: A Critical Review. Renew. Sustain. Energy Rev. 2021, 145, 111023. [Google Scholar] [CrossRef]
- Chan, F.L.; Tanksale, A. Review of Recent Developments in Ni-Based Catalysts for Biomass Gasification. Renew. Sustain. Energy Rev. 2014, 38, 428–438. [Google Scholar] [CrossRef]
- Abedi, A.; Dalai, A.K. Steam Gasification of Oat Hull Pellets over Ni-Based Catalysts: Syngas Yield and Tar Reduction. Fuel 2019, 254, 115585. [Google Scholar] [CrossRef]
- Hu, J.; Jia, Z.; Zhao, S.; Wang, W.; Zhang, Q.; Liu, R.; Huang, Z. Activated Char Supported Fe-Ni Catalyst for Syngas Production from Catalytic Gasification of Pine Wood. Bioresour. Technol. 2021, 340, 125600. [Google Scholar] [CrossRef]
- Khalifa, O.; Xu, M.; Zhang, R.; Iqbal, T.; Li, M.; Lu, Q. Steam Reforming of Toluene as a Tar Model Compound with Modified Nickel-Based Catalyst. Front. Energy 2021, 16, 492–501. [Google Scholar] [CrossRef]
- Lu, Y.; Jin, H.; Zhang, R. Evaluation of Stability and Catalytic Activity of Ni Catalysts for Hydrogen Production by Biomass Gasification in Supercritical Water. Carbon Resour. Convers. 2019, 2, 95–101. [Google Scholar] [CrossRef]
- Granados-Fernández, R.; Cortés-Reyes, M.; Poggio-Fraccari, E.; Herrera, C.; Larrubia, M.; Alemany, L.J. Biomass Catalytic Gasification Performance over Unsupported Ni-Ce Catalyst for High-Yield Hydrogen Production. Biofuels Bioprod. Biorefining 2020, 14, 20–29. [Google Scholar] [CrossRef]
- Baker, E.G.; Mudge, L.K.; Brown, M.D. Steam Gasification of Biomass with Nickel Secondary Catalysts. Ind. Eng. Chem. Res. 1987, 26, 1335–1339. [Google Scholar] [CrossRef]
- Li, X.T.; Grace, J.R.; Lim, C.J.; Watkinson, A.P.; Chen, H.P.; Kim, J.R. Biomass Gasification in a Circulating Fluidized Bed. Biomass Bioenergy 2004, 26, 171–193. [Google Scholar] [CrossRef]
- Ashok, J.; Kawi, S. Steam Reforming of Toluene as a Biomass Tar Model Compound over CeO2 Promoted Ni/CaOeAl2O3 Catalytic Systems. Int. J. Hydrogen Energy 2013, 38, 13938–13949. [Google Scholar] [CrossRef]
- Furusawa, T.; Saito, K.; Kori, Y.; Miura, Y.; Sato, M.; Suzuki, N. Steam Reforming of Naphthalene/Benzene with Various Types of Pt- and Ni-Based Catalysts for Hydrogen Production. Fuel 2013, 103, 111–121. [Google Scholar] [CrossRef]
- Artetxe, M.; Nahil, M.A.; Olazar, M.; Williams, P.T. Steam Reforming of Phenol as Biomass Tar Model Compound over Ni/Al2O3 Catalyst. Fuel 2016, 184, 629–636. [Google Scholar] [CrossRef]
- Artetxe, M.; Alvarez, J.; Nahil, M.A.; Olazar, M.; Williams, P.T. Steam Reforming of Different Biomass Tar Model Compounds over Ni/Al2O3 Catalysts. Energy Convers. Manag. 2017, 136, 119–126. [Google Scholar] [CrossRef]
- Kihlman, J.; Simell, P. Carbon Formation in the Reforming of Simulated Biomass Gasification Gas on Nickel and Rhodium Catalysts. Catalysts 2022, 12, 410. [Google Scholar] [CrossRef]
- Tomishige, K.; Kimura, T.; Nishikawa, J.; Miyazawa, T.; Kunimori, K. Promoting Effect of the Interaction between Ni and CeO2 on Steam Gasification of Biomass. Catal. Commun. 2007, 8, 1074–1079. [Google Scholar] [CrossRef]
- Park, H.J.; Park, S.H.; Sohn, J.M.; Park, J.; Jeon, J.K.; Kim, S.S.; Park, Y.K. Steam Reforming of Biomass Gasification Tar Using Benzene as a Model Compound over Various Ni Supported Metal Oxide Catalysts. Bioresour. Technol. 2010, 101, S101–S103. [Google Scholar] [CrossRef] [PubMed]
- Abou Rached, J.; El Hayek, C.; Dahdah, E.; Gennequin, C.; Aouad, S.; Tidahy, H.L.; Estephane, J.; Nsouli, B.; Aboukaïs, A.; Abi-Aad, E. Ni Based Catalysts Promoted with Cerium Used in the Steam Reforming of Toluene for Hydrogen Production. Int. J. Hydrogen Energy 2017, 42, 12829–12840. [Google Scholar] [CrossRef]
- Lu, Y.; Li, S.; Guo, L.; Zhang, X. Hydrogen Production by Biomass Gasification in Supercritical Water over Ni/γAl2O3 and Ni/CeO2-γAl2O3 Catalysts. Int. J. Hydrogen Energy 2010, 35, 7161–7168. [Google Scholar] [CrossRef]
- Nishikawa, J.; Nakamura, K.; Asadullah, M.; Miyazawa, T.; Kunimori, K.; Tomishige, K. Catalytic Performance of Ni/CeO2/Al2O3 Modified with Noble Metals in Steam Gasification of Biomass. Catal. Today 2008, 131, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Łamacz, A. Toluene Steam Reforming over Ni/CeZrO2—The Influence of Performance and Carbon Deposition. Catalysts 2022, 12, 219. [Google Scholar] [CrossRef]
- Hernandez, A.R.C.; Castañeda, D.G.G.; Enriquez, A.S.; de Lasa, H.; Rosales, B.S. Ru-Promoted Ni/γAl2O3 Fluidized Catalyst for Biomass Gasification. Catalysts 2020, 10, 316. [Google Scholar] [CrossRef] [Green Version]
- Frangini, S.; Masi, A. Molten Carbonates for Advanced and Sustainable Energy Applications: Part I. Revisiting Molten Carbonate Properties from a Sustainable Viewpoint. Int. J. Hydrogen Energy 2016, 41, 18739–18746. [Google Scholar] [CrossRef]
- Abdalazeez, A.; Li, T.; Wang, W.; Abuelgasim, S. A Brief Review of CO2 utilization for Alkali Carbonate Gasification and Biomass/Coal Co-Gasification: Reactivity, Products and Process. J. CO2 Util. 2021, 43, 101370. [Google Scholar] [CrossRef]
- Yu, J.; Guo, Q.; Gong, Y.; Ding, L.; Wang, J.; Yu, G. A Review of the Effects of Alkali and Alkaline Earth Metal Species on Biomass Gasification. Fuel Process. Technol. 2021, 214, 106723. [Google Scholar] [CrossRef]
- Mckee, D.W. Gasification of Graphite in CO2 and Water Vapor- the Catalytic Effect of Metal Salts. Carbon N. Y. 1982, 20, 59–66. [Google Scholar] [CrossRef]
- Wen, W.Y. Mechanisms of Alkali Metal Catalysis in the Gasification of Coal, Char, or Graphite. Catal. Rev. 1980, 22, 1–28. [Google Scholar] [CrossRef]
- Mallick, D.; Mahanta, P.; Moholkar, V.S. Co-Gasification of Coal and Biomass Blends: Chemistry and Engineering. Fuel 2017, 204, 106–128. [Google Scholar] [CrossRef]
- Jia, S.; Ning, S.; Ying, H.; Sun, Y.; Xu, W.; Yin, H. High Quality Syngas Production from Catalytic Gasification of Woodchip Char. Energy Convers. Manag. 2017, 151, 457–464. [Google Scholar] [CrossRef]
- Nzihou, A.; Stanmore, B.; Sharrock, P. A Review of Catalysts for the Gasification of Biomass Char, with Some Reference to Coal. Energy 2013, 58, 305–317. [Google Scholar] [CrossRef] [Green Version]
- Freriks, I.L.C.; van Wechem, H.M.H.; Stuiver, J.C.M.; Bouwman, R. Potassium-Catalysed Gasification of Carbon with Steam: A Temperature-Programmed Desorption and Fourier Transform Infrared Study. Fuel 1981, 60, 463–470. [Google Scholar] [CrossRef]
- Di Blasi, C. Combustion and Gasification Rates of Lignocellulosic Chars. Prog. Energy Combust. Sci. 2009, 35, 121–140. [Google Scholar] [CrossRef]
- Olivares, R.I.; Chen, C.; Wright, S. The Thermal Stability of Molten Lithium-Sodium-Potassium Carbonate and the Influence of Additives on the Melting Point. J. Sol. Energy Eng. Trans. ASME 2012, 134, 041002. [Google Scholar] [CrossRef]
- Ratchahat, S.; Kodama, S.; Tanthapanichakoon, W.; Sekiguchi, H. Combined Molten Salt-Ni/Al2O3 as Synergistic Medium for High-Quality Syngas Production. Chem. Eng. J. 2015, 278, 224–233. [Google Scholar] [CrossRef]
- Parvez, A.M.; Afzal, M.T.; Victor Hebb, T.G.; Schmid, M. Utilization of CO2 in Thermochemical Conversion of Biomass for Enhanced Product Properties: A Review. J. CO2 Util. 2020, 40, 101217. [Google Scholar] [CrossRef]
- Lahijani, P.; Zainal, Z.A.; Mohammadi, M.; Mohamed, A.R. Conversion of the Greenhouse Gas CO2 to the Fuel Gas CO via the Boudouard Reaction: A Review. Renew. Sustain. Energy Rev. 2015, 41, 615–632. [Google Scholar] [CrossRef]
- Roncancio, R.; Gore, J.P. CO2 Char Gasification: A Systematic Review from 2014 to 2020. Energy Convers. Manag. X 2021, 10, 100060. [Google Scholar] [CrossRef]
- Renganathan, T.; Yadav, M.V.; Pushpavanam, S.; Voolapalli, R.K.; Cho, Y.S. CO2 Utilization for Gasification of Carbonaceous Feedstocks: A Thermodynamic Analysis. Chem. Eng. Sci. 2012, 83, 159–170. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, H.; Zeng, K.; Zhu, Y.; Hu, J.; Mao, Q.; Liu, Q.; Chen, H. Study on CO2 Gasification of Biochar in Molten Salts: Reactivity and Structure Evolution. Fuel 2019, 254, 115614. [Google Scholar] [CrossRef]
- Iwaki, H.; Ye, S.; Katagiri, H.; Kitagawa, K. Wastepaper Gasification with CO2 or Steam Using Catalysts of Molten Carbonates. Appl. Catal. A Gen. 2004, 270, 237–243. [Google Scholar] [CrossRef]
- Kirtania, K.; Axelsson, J.; Matsakas, L.; Christakopoulos, P.; Umeki, K.; Furusjö, E. Kinetic Study of Catalytic Gasification of Wood Char Impregnated with Different Alkali Salts. Energy 2017, 118, 1055–1065. [Google Scholar] [CrossRef]
- Jin, G.; Iwaki, H.; Arai, N.; Kitagawa, K. Study on the Gasification of Wastepaper/Carbon Dioxide Catalyzed by Molten Carbonate Salts. Energy 2005, 30, 1192–1203. [Google Scholar] [CrossRef]
- Sadhwani, N.; Adhikari, S.; Eden, M.R.; Wang, Z.; Baker, R. Southern Pines Char Gasification with CO2—Kinetics and Effect of Alkali and Alkaline Earth Metals. Fuel Process. Technol. 2016, 150, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Kramb, J.; Gómez-Barea, A.; DeMartini, N.; Romar, H.; Doddapaneni, T.R.K.C.; Konttinen, J. The Effects of Calcium and Potassium on CO2 Gasification of Birch Wood in a Fluidized Bed. Fuel 2017, 196, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Vamvuka, D.; Karouki, E.; Sfakiotakis, S.; Salatino, P. Gasification of Waste Biomass Chars by Carbon Dioxide via Thermogravimetry-Effect of Catalysts. Combust. Sci. Technol. 2012, 184, 64–77. [Google Scholar] [CrossRef]
- Song, Q.; Wang, X.; Gu, C.; Wang, N.; Li, H.; Su, H.; Huo, J.; Qiao, Y. A Comprehensive Model of Biomass Char-CO2 Gasification Reactivity with Inorganic Element Catalysis in the Kinetic Control Zone Based on TGA Analysis. Chem. Eng. J. 2020, 398, 125624. [Google Scholar] [CrossRef]
- Fatimah, S.; Ragadhita, R.; Al Husaeni, D.F.; Nandiyanto, A.B.D. How to Calculate Crystallite Size from X-Ray Diffraction (XRD) Using Scherrer Method. ASEAN J. Sci. Eng. 2021, 2, 65–76. [Google Scholar] [CrossRef]
- Bampenrat, A.; Meeyoo, V.; Kitiyanan, B.; Rangsunvigit, P.; Rirksomboon, T. Naphthalene Steam Reforming over Mn-Doped CeO2-ZrO2 Supported Nickel Catalysts. Appl. Catal. A Gen. 2010, 373, 154–159. [Google Scholar] [CrossRef]
- Lee, Y.H.; Ahn, J.Y.; Nguyen, D.D.; Chang, S.W.; Kim, S.S.; Lee, S.M. Role of Oxide Support in Ni Based Catalysts for CO2 Methanation. RSC Adv. 2021, 11, 17648–17657. [Google Scholar] [CrossRef]
- Ding, M.Y.; Tu, J.Y.; Wang, T.J.; Ma, L.L.; Wang, C.G.; Chen, L.G. Bio-Syngas Methanation towards Synthetic Natural Gas (SNG) over Highly Active Al2O3-CeO2 Supported Ni Catalyst. Fuel Process. Technol. 2015, 134, 480–486. [Google Scholar] [CrossRef]
- Sun, D.; Du, Y.; Wang, Z.; Zhang, J.; Li, Y.; Li, J.; Kou, L.; Li, C.; Li, J.; Feng, H.; et al. Effects of CaO Addition on Ni/CeO2–ZrO2–Al2O3 Coated Monolith Catalysts for Steam Reforming of N-Decane. Int. J. Hydrogen Energy 2020, 45, 16421–16431. [Google Scholar] [CrossRef]
- Jayaprakash, S.; Dewangan, N.; Jangam, A.; Kawi, S. H2S-Resistant CeO2-NiO-MgO-Al2O3 LDH-Derived Catalysts for Steam Reforming of Toluene. Fuel Process. Technol. 2021, 219, 106871. [Google Scholar] [CrossRef]
- Ashok, J.; Kawi, S. Low-Temperature Biomass Tar Model Reforming over Perovskite Materials with DBD Plasma: Role of Surface Oxygen Mobility. Energy Convers. Manag. 2021, 248, 114802. [Google Scholar] [CrossRef]
- Chen, X.; Ma, X.; Peng, X. Effect of Lattice Oxygen in Ni-Fe/Bio-Char on Filamentous Coke Resistance during CO2 Reforming of Tar. Fuel 2022, 307, 121878. [Google Scholar] [CrossRef]
- Varvoutis, G.; Lykaki, M.; Stefa, S.; Binas, V.; Marnellos, G.E.; Konsolakis, M. Deciphering the Role of Ni Particle Size and Nickel-Ceria Interfacial Perimeter in the Low-Temperature CO2 Methanation Reaction over Remarkably Active Ni/CeO2 Nanorods. Appl. Catal. B Environ. 2021, 297, 120401. [Google Scholar] [CrossRef]
- Varvoutis, G.; Karakoulia, S.A.; Lykaki, M.; Stefa, S.; Binas, V.; Marnellos, G.E.; Konsolakis, M. Support-Induced Modifications on the CO2 Hydrogenation Performance of Ni/CeO2: The Effect of ZnO Doping on CeO2 Nanorods. J. CO2 Util. 2022, 61, 102057. [Google Scholar] [CrossRef]
- Lu, Y.; Li, S.; Guo, L. Hydrogen Production by Supercritical Water Gasification of Glucose with Ni/CeO2/Al2O3: Effect of Ce Loading. Fuel 2013, 103, 193–199. [Google Scholar] [CrossRef]
- de Caprariis, B.; Bracciale, M.P.; De Filippis, P.; Hernandez, A.D.; Petrullo, A.; Scarsella, M. Steam Reforming of Tar Model Compounds over Ni Supported on CeO2 and Mayenite. Can. J. Chem. Eng. 2017, 95, 1745–1751. [Google Scholar] [CrossRef]
- Xu, M.; Hu, H.; Yang, Y.; Huang, Y.; Xie, K.; Liu, H.; Li, X.; Yao, H.; Naruse, I. A Deep Insight into Carbon Conversion during Zhundong Coal Molten Salt Gasification. Fuel 2018, 220, 890–897. [Google Scholar] [CrossRef]
- Zhou, L.; Li, L.; Wei, N.; Li, J.; Basset, J.M. Effect of NiAl2O4 Formation on Ni/Al2O3 Stability during Dry Reforming of Methane. Chem. Cat. Chem. 2015, 7, 2508–2516. [Google Scholar] [CrossRef] [Green Version]
- Qiu, H.; Ran, J.; Huang, X.; Ou, Z.; Niu, J. Unrevealing the Influence That Preparation and Reaction Parameters Have on Ni/Al2O3 Catalysts for Dry Reforming of Methane. Int. J. Hydrogen Energy 2022, 47, 34066–34074. [Google Scholar] [CrossRef]
- Norouzi, O.; Safari, F.; Jafarian, S.; Tavasoli, A.; Karimi, A. Hydrothermal Gasification Performance of Enteromorpha Intestinalis as an Algal Biomass for Hydrogen-Rich Gas Production Using Ru Promoted Fe–Ni/γ-Al2O3 Nanocatalysts. Energy Convers. Manag. 2017, 141, 63–71. [Google Scholar] [CrossRef]
- Furusjö, E.; Ma, C.; Ji, X.; Carvalho, L.; Lundgren, J.; Wetterlund, E. Alkali Enhanced Biomass Gasification with in Situ S Capture and Novel Syngas Cleaning. Part 1: Gasifier Performance. Energy 2018, 157, 96–105. [Google Scholar] [CrossRef]
- Chan, Y.H.; Syed Abdul Rahman, S.N.F.; Lahuri, H.M.; Khalid, A. Recent Progress on CO-Rich Syngas Production via CO2 Gasification of Various Wastes: A Critical Review on Efficiency, Challenges and Outlook. Environ. Pollut. 2021, 278, 116843. [Google Scholar] [CrossRef]
- Lampropoulos, A.; Binas, V.D.; Zouridi, L.; Athanasiou, C.; Montes-Morán, M.A.; Menéndez, J.A.; Konsolakis, M.; Marnellos, G.E. CO2 Gasification Reactivity and Syngas Production of Greek Lignite Coal and Ex-Situ Produced Chars under Non-Isothermal and Isothermal Conditions: Structure-Performance Relationships. Energies 2022, 15, 679. [Google Scholar] [CrossRef]
Sample | XRD | TEM | |||||
---|---|---|---|---|---|---|---|
Ni/CeO2 | CeO2 (111) | NiO (200) | NiO mean particle size | ||||
DXRD (nm) 1 | d (nm) 2 | a (nm) | DXRD (nm) 1 | d (nm) 2 | a (nm) | 38.1 ± 8.5 | |
54.92 | 0.31 | 0.54 | 42.83 | 0.21 | 0.42 | ||
Ni/Al2O3 | Al2O3 (113) | NiO (200) | NiO mean particle size | ||||
DXRD (nm) 1 | d (nm) 2 | a (nm) | DXRD (nm) 1 | d (nm) 2 | a (nm) | 37.7 ± 9.0 | |
73.22 | 0.21 | n/a * | 37.22 | 0.21 | 0.42 |
Total H2 Uptake (mmol H2/g) | α | β | γ | δ | |
---|---|---|---|---|---|
Ni/CeO2 | 2.85 | 0.69 (295 °C) | 1.10 (376 °C) | 0.70 (502 °C) | 0.35 (802 °C) |
Ni/Al2O3 | 2.65 | 0.04 (310 °C) | 1.33 (436 °C) | 1.21 (507 °C) | 0.06 (916 °C) |
Reaction | No | |
---|---|---|
Tar thermal cracking | Tar (CmHn) → Smaller Tar (CqHq) + H2(g) | R1 |
Tar dry reforming | Tar (CmHn) + mCO2(g) → 2mCO2(g) + (n/2)H2(g) | R2 |
Tar dry reforming | Tar (CmHn) + (m + n/2)CO2(g) → (2m + n/2)CO(g) + (n/2)H2(g) | R3 |
Tar steam cracking | Tar (CmHn) + mH2O(g) → mCO(g) + (m + n/2)H2(g) | R4 |
Tar steam cracking | Tar (CmHn) + 2mH2O(g) → mCO2(g) + (2m + n/2)H2(g) | R5 |
Tar partial oxidation | Tar (CmHn) + (n/2)O2(g) → mCO(g) + (n/2)H2(g) | R6 |
Carbon-steam reforming | C(s) + H2O(g) ↔ CO(g) + H2(g) | R7 |
Water gas shift | CO(g) + H2O(g) ↔ CO2(g) + H2(g) | R8 |
Boudouard reaction | C(s) + CO2(g) ↔ 2CO(g) | R9 |
Reaction | No |
---|---|
M2CO3 + 2C → 2M * +3CO | (R11) |
2M * + CO2 → M2O + CO | (R12) |
M2O + CO2 → M2CO3 | (R13) |
C(s) + CO2(g) → 2CO(g) | (R14) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lampropoulos, A.; Karakoulia, S.A.; Varvoutis, G.; Spyridakos, S.; Binas, V.; Zouridi, L.; Stefa, S.; Konsolakis, M.; Marnellos, G.E. The Combined Impact of Ni-Based Catalysts and a Binary Carbonate Salts Mixture on the CO2 Gasification Performance of Olive Kernel Biomass Fuel. Catalysts 2023, 13, 596. https://doi.org/10.3390/catal13030596
Lampropoulos A, Karakoulia SA, Varvoutis G, Spyridakos S, Binas V, Zouridi L, Stefa S, Konsolakis M, Marnellos GE. The Combined Impact of Ni-Based Catalysts and a Binary Carbonate Salts Mixture on the CO2 Gasification Performance of Olive Kernel Biomass Fuel. Catalysts. 2023; 13(3):596. https://doi.org/10.3390/catal13030596
Chicago/Turabian StyleLampropoulos, Athanasios, Stamatia A. Karakoulia, Georgios Varvoutis, Stavros Spyridakos, Vassilios Binas, Leila Zouridi, Sofia Stefa, Michalis Konsolakis, and George E. Marnellos. 2023. "The Combined Impact of Ni-Based Catalysts and a Binary Carbonate Salts Mixture on the CO2 Gasification Performance of Olive Kernel Biomass Fuel" Catalysts 13, no. 3: 596. https://doi.org/10.3390/catal13030596
APA StyleLampropoulos, A., Karakoulia, S. A., Varvoutis, G., Spyridakos, S., Binas, V., Zouridi, L., Stefa, S., Konsolakis, M., & Marnellos, G. E. (2023). The Combined Impact of Ni-Based Catalysts and a Binary Carbonate Salts Mixture on the CO2 Gasification Performance of Olive Kernel Biomass Fuel. Catalysts, 13(3), 596. https://doi.org/10.3390/catal13030596