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Abstract: In this study, ferroelectric Bi4Ti3O12 and Au-Bi4Ti3O12 nanofibers were synthesized by
electrospinning and ion sputtering. The piezoelectric effect of Bi4Ti3O12 and the surface plasmon
effect of Au were used to improve the photogenerated electron–hole separation and optical ab-
sorption. The results of the characterization showed successful preparation of the orthorhombic
Bi4Ti3O12 nanofibers, in which the absorption band edge was 426 nm with a 2.91 eV band gap. The
piezo-photocatalytic activity of the Bi4Ti3O12 was tested through the degradation of the antibiotic
ciprofloxacin under three different experimental conditions: light, vibration, and light plus vibration.
All of the ciprofloxacin was degraded after 80 min in piezo-photocatalytic conditions, with a piezo-
photocatalytic degradation rate of 0.03141 min−1, which is 1.56 and 3.88 times, respectively, that of
photocatalysis and piezo-catalysis. After loading Au on the Bi4Ti3O12, the degradation efficiency was
improved under all three conditions, and the piezoelectric photocatalytic efficiency of Au-Bi4Ti3O12

for ciprofloxacin degradation was able to reach 100% in 60 min with a piezo-photocatalytic degrada-
tion rate of 0.06157 min−1. The results of the photocurrent and impedance tests indicated that the
photocurrent density of Bi4Ti3O12 nanofibers loaded with Au is increased from 5.08 × 10−7 A/cm2

to 8.17 × 10−6 A/cm2, which is 16.08 times higher than without loading the Au. This work provides
an effective way to improve the conversion efficiency of photocatalysis to degrade organic pollutants
by combining the plasmon effect and the piezoelectric effect.

Keywords: photocatalysis; environmental applications; antibiotic ciprofloxacin; piezoelectric effect

1. Introduction

According to research, China is the world’s largest producer and user of antibiotics.
However, the abuse of antibiotics can make some pathogenic bacteria resistant, and their
long-term survival in the environment would be a threat to human health and the security
of the ecological environment. Avoiding the abuse of antibiotics and the degradation of
antibiotics in rivers has become our research focus. Ciprofloxacin (CIP) is the third genera-
tion of synthetic quinolone antibacterial drugs, which have broad-spectrum antibacterial
activity and good bactericidal effects [1,2]. It is widely used in animal husbandry to prevent
and treat diseases. However, CIP is widely exposed to water ecosystems, and even at very
low concentrations, it can cause a serious threat to human and ecological environments.
Traditional physical separation technology, biological methods and other water treatment
technologies cannot effectively remove these antibiotics [3,4]. Therefore, it is a challenge
to develop effective and environment-friendly technologies for degrading antibiotics [5].
The emergence of photocatalytic technologies has brought hope to this urgent problem due
to their environment-friendly nature and cost effectiveness [6,7]. Photocatalysis mainly
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involves the following processes: (1) a semiconductor is excited by photons with an energy
greater than its band gap in order to generate electrons and holes [8–10]; (2) photogen-
erated electrons and holes are separated and migrated to the surface effectively [11–14];
(3) a surface redox reaction occurs to degrade the antibiotics [15–17]. However, for com-
mon semiconductor photocatalysts, the photogenerated electrons and holes are prone to
recombination during the migration process and cannot generate highly reactive radicals.
As a result, the catalytic activity and efficiency of the photocatalyst are greatly reduced.

Over the last few years, the piezoelectric polarization-based method known as piezo-
catalysis has undergone rapid improvement in the domain of environmental mitigation
and production of fuels [18–20]. On the application of mechanical force, the polarization
of a piezoelectric semiconductor takes place, leading to the accumulation of oppositely
charged localized polarizations on opposite surfaces. Consequently, the free charge carriers
(electrons and holes) are separated after being driven through the built-in piezoelectric
field, thereby allowing their participation in the surface redox reactions. Up to now, many
piezoelectric materials have been demonstrated to be promising for application in the piezo-
phototronic degradation of environmental pollutants [21–23]. However, a large proportion
of piezoelectrical materials have poor electrical conductivity, which seriously restricts the
transport of the charge carriers across the interface formed with other active materials.

Bi4Ti3O12 has a unique, layered structure with perovskite-like (Bi2Ti3O10)2− units
alternating with (Bi2O2)2+ layers [24]. The (Bi2O2)2+ layers contain many oxygen vacan-
cies, which can expand the wavelength range of light absorption. In addition, (Bi2O2)2+

and (Bi2Ti3O10)2− layers can form an inner electrical field [25], which could promote the
separation of photo-generated electrons and holes. Its unique crystal and electronic struc-
tures endow Bi4Ti3O12 with excellent ferroelectricity and piezoelectricity, fatigue resistance
and a high Curie temperature. Therefore, Bi4Ti3O12 can be used as an ideal material for
piezo-phototronic degradation of organic pollutants.

It is generally accepted that the performance of different materials depends highly on
their morphologies and microstructures [26,27]. Bi4Ti3O12 nanofibers have large specific
surface areas, high porosity, small volumes, light weights, good flexibility and bending
properties. The piezoelectric properties of continuous-filament nanofibers are better than
those of granular and blocky ones. Moreover, the introduction of a noble metal, such as
gold (Au), on the surface of Bi4Ti3O12 can not only help improve the absorbing efficiency of
the light, but also enhance the separation efficiency of photogenerated electrons and holes
due to the resonant oscillation of the surface plasmon effect [28,29].

In order to solve the problem of CIP release and to avoid rapid recombination be-
tween the electrons and holes of Bi4Ti3O12, we synthesized Bi4Ti3O12 nanofibers using the
electrospinning method and then investigated the catalytic degradation of ciprofloxacin
under different conditions to verify the photocatalytic properties of Bi4Ti3O12 nanofibers.
To enhance the photocatalytic activity in the degradation of the substrate and explore the
internal mechanism of photocatalysis, Au-Bi4Ti3O12 material was prepared. The results
show that the catalytic effect and light absorption were all enhanced due to the local
surface plasmon effect after loading Au on the Bi4Ti3O12, which is of great significance
for improving the photocatalytic effects and studying the mechanism of the degradation.
This work introduces the synergistic effects of SPR and piezotronic effects to promote
the separation of electron–hole pairs and improve the piezo-photocatalytic degradation
of ciprofloxacin using Au-Bi4Ti3O12 nanofiber heterostructures, which offer an efficient
technology to design high-performance catalysts for environmental purification.

2. Results and Discussion
2.1. Characterization of the Morphology

The SEM images of Bi4Ti3O12 nanofibers before calcining and after calcining are shown
in Figure 1. The SEM image of the dried Bi4Ti3O12 precursor without calcination after
electrospinning shows that the nanofibers are interlaced (Figure 1a), which indicates that
the electrospinning was in good condition. The SEM image presented in Figure 1b shows
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that the Bi4Ti3O12 still maintains a fibrous structure after calcining, which indicates that
only the PVP was removed, and the structure of the Bi4Ti3O12 nanofibers was not affected
by calcining. However, when the PVP was removed in the calcination process, the surface
of the Bi4Ti3O12 was no longer smooth and became a porous nanofiber structure with a
diameter of about 60–80 nm.
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Figure 1. Scanning electron microscopy (SEM) images of Bi4Ti3O12 nanofibers (a) before calcination
and (b) after calcination.

The TEM and HRTEM images were measured to further investigate the microstructure
of the Bi4Ti3O12 nanofibers and the Au-Bi4Ti3O12 nanofibers. The low-magnification TEM
image of the Bi4Ti3O12 shows nanofibers inlaid with particles (Figure 2a). Meanwhile, the
TEM image of the Au-Bi4Ti3O12 (Figure 2b) shows that the nanofibers are made up of many
Au particles, with sizes ranging from 5 to 15 nm. The HRTEM image (Figure 2c) shows a
lattice spacing of 0.233 nm, corresponding to the (111) planes of Au and proving that the
Au nanoparticles were successfully embedded in the Bi4Ti3O12 nanofiber [30].
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Figure 2. Transmission electron microscopy (TEM) images of (a) Bi4Ti3O12 nanofibers and
(b) Au-Bi4Ti3O12 nanofibers, and (c) high-resolution TEM images of Au-Bi4Ti3O12 nanofibers.

2.2. Characterization of the Crystal Structure

The phase structures of the Bi4Ti3O12 nanofibers and the Au-Bi4Ti3O12 nanofibers were
studied using X-ray diffraction. As shown in Figure 3a, all of the diffraction peaks of the
Bi4Ti3O12 and Au-Bi4Ti3O12 nanofibers were in accord with the standards of the database
card. The characteristic peaks located at 2θ equaled 23.0◦, 29.9◦ and 32.7◦ and corresponded
to crystal planes (111), (117) and (020), respectively. The peak shapes demonstrated that
the prepared sample had good crystallinity. Other diffraction peaks were located at 21.35◦,
38.1◦, 39.7◦, 47.0◦, 51.35◦, 53.13◦, 56.8◦ and 62.2◦ corresponded to crystal facets (008),
(0014), (208), (202), (262), (0214), (137) and (2214), respectively. These were all part of
the orthorhombic crystalline phase of Bi4Ti3O12 (JCPDS 72-1019) [24]. The orthogonal
crystal Bi4Ti3O12 was described by the general formula of (Bi2O2)2+(Bi2Ti3O10)2−, which is
composed of three layers of TiO6 octahedron and (Bi2O2)2+ monolayers that are alternately
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stacked, so that its structure cannot be easily changed. The average crystallite size of
Bi4Ti3O12 was calculated by using the modified Scherer method [31]:

Inβ = In(
kλ

DSM• cos θ
) (1)

where DSM is the average crystallite size, k is a constant (equal to 0.9), β is the line broaden-
ing in radians (FWHM), θ is the Bragg angle and λ is the X-ray wavelength (λ = 0.1546 nm).
The calculated crystallite size value was 18.53 nm. No typical diffraction peaks of Au were
detected in the Au-Bi4Ti3O12. This is because the amount of Au was too small (less than
5%) and could not be detected by the X-ray diffraction.
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Figure 3. (a) X-Ray Diffraction, (b) Raman spectra, (c) UV-Vis diffuse reflectance spectra, and (d) A
plot of the (αhν)2 versus the hν of Bi4Ti3O12 and Au–Bi4Ti3O12; (e) X-ray photoelectron spectroscopy
and high-resolution XPS spectra of (f) Bi 4f, (g) Ti 2p and (h) O 1s core levels of Bi4Ti3O12; and
(i) High-resolution XPS spectrum of Au 4f in Au–Bi4Ti3O12.

Raman spectra of the Bi4Ti3O12 and Au-Bi4Ti3O12 nanofibers are shown in Figure 3b,
which illustrates that the Bi4Ti3O12 nanocrystals have strong phonon modes near the
Raman frequency peaks of 58, 89,118, 267, 472, 537 and 846 cm−1. When we compared
the distribution of the Bi4Ti3O12, the phonon modes corresponded to the peaks on the
left or right of 200 cm−1, as the boundaries were different. Low-frequency modes of less
than 200 cm−1 were related to the vibration of Bi3+ and (Bi2O2)2+ layers with large masses,
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and high-frequency modes larger than 200 cm−1 were related to internal vibrations or
distortions of Ti4+ and TiO6 octahedra with relatively small masses. The Raman peaks at
267, 472, 537 and 846 cm−1 were attributed to the internal vibration modes of the TiO6
octahedron. The peak at 267 cm−1 was associated with the torsional vibration mode of
the TiO6 octahedron. In accordance with the Raman rule, only the octahedral distortion
was active, and the corresponding positions of peaks at 472 and 537 cm−1 depended on
O-Ti-O bending and stretching vibrations, while the phonon mode at 846 cm−1 reflected the
internal vibration of the octahedra and the stretching vibration of O-Ti-O. The strong and
sharp mode at 55 cm−1 was a rigid layer mode, which originated from the layer motion,
similar to the rigid-unit crystal in the layered structure [24]. The appearance of a TiO6
octahedron vibration mode and a rigid layer mode indicated that a layered perovskite
structure had formed in the prepared Bi4Ti3O12 nanocrystals, which is consistent with the
XRD characterization results. Au deposition on the Bi4Ti3O12 surface did not change the
crystalline structures of the bare Bi4Ti3O12, since the spectra were similar to Bi4Ti3O12.

2.3. Characterization of the Optical Properties

In this study, UV-Vis absorbance spectra were measured to clarify the optical properties
of the Bi4Ti3O12 nanofibers and the Au-Bi4Ti3O12 nanofibers. The UV-Vis diffuse reflection
absorption spectrum showed an absorption edge of 426 nm of Bi4Ti3O12 (Figure 3c), which
indicated that the Bi4Ti3O12 had a visible light absorption capacity. Based on the equation
of Eg = 1240/λ, the band gap value were able to be obtained [32], and the band gaps of
the samples were estimated to be 2.91 and 2.89 eV for the Bi4Ti3O12 and the Au-Bi4Ti3O12,
respectively (Figure 3d). However, an absorption peak was observed at around 500–600 nm
after loading Au nanoparticles onto the Bi4Ti3O12 nanofibers. This is attributed to the
surface plasmon resonance (SPR) excitation of the Au, where the hot electrons on the
surface of the Au oscillated together and resonated with incidental light, thus increasing
the electromagnetic field at the vicinity of the Au surface [33].

The chemical states of the elements in Bi4Ti3O12 nanofibers were analyzed using X-ray
photoelectron spectroscopy (XPS) survey scan spectra, as shown in Figure 3e. The results
showed that the Bi4Ti3O12 nanofibers were mainly composed of Bi, Ti and O. Figure 3f
shows the XPS spectrum of Bi 4f, which contains two isolated peaks at the binding energies
of 158.88 eV and 164.18 eV, ascribing to Bi 4f7/2 and Bi 4f5/2, respectively. Thus, the element
Bi can be ascribed to Bi3+ [34]. The peaks at 457.88 and 463.88 eV correspond to the binding
energies of Ti 2p3/2 and Ti 2p1/2, respectively (Figure 3g), suggesting that Ti exists in the
form of Ti4+ [24]. Figure 3h shows the high-resolution XPS spectrum of O 1s. The binding
energies of O 1s at 529.48 and 530.98 eV correspond to the binding energy of the Bi-O bond
and the surface hydroxyl oxygen, respectively [35,36]. The high-resolution XPS spectrum
of the Au 4f in Au-Bi4Ti3O12 presents two peaks at 83.0 and 86.6 eV, which are assigned to
metallic Au 4f7/2 and Au 4f5/2, respectively (Figure 3i) [37].

2.4. Degradation of Ciprofloxacin

Bi4Ti3O12 nanofibers and Au-Bi4Ti3O12 nanofibers were used to study the photo-
catalytic degradation of the ciprofloxacin antibiotic under three different experimental
conditions: light, vibration, and light plus vibration. The photocatalytic performance of
Bi4Ti3O12 nanofibers for the degradation of CIP under Xenon lamp illumination is pre-
sented in Figure 4a. According to the results of the ultraviolet visible spectrophotometer, as
the photocatalytic reaction proceeded, the main extinction peak of CIP at 270 nm and the
wider peak from 300–350 nm decreased with time, which means that the CIP was effectively
degraded by the light. However, there was still some CIP that was not degraded 90 min
into the reaction. When the Xenon lamp illumination was replaced with vibration, the main
extinction peak of CIP and the wider peak were also decreased as the reaction proceeded,
but the peak decreased more slowly than in the photocatalytic condition during the same
90-min time interval (Figure 4b). By using both Xenon lamp illumination and vibration, the
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CIP was almost completely degraded in 80 min (Figure 4c), which confirms our original
hypothesis that piezo-photocatalytic degradation is better than either type alone.
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Figure 4. Absorbance spectra of the decomposition activity of ciprofloxacin with 10 min intervals
under the following condition: Bi4Ti3O12 (a) under the light, (b) with vibration, and (c) with vibration
and under the light; Au–Bi4Ti3O12 (d) under the light, (e) with vibration, and (f) with vibration and
under the light; (g) comparison of the degradation proficiency in various test conditions; (h) sample
kinetics fit to the information; and (i) comparison of the rate constant (k) values for the decomposition
activity of ciprofloxacin under different conditions.

The above results prove that the degradation performance of ferroelectric Bi4Ti3O12 is
significantly enhanced under ultrasonic conditions, which may be ascribed to the piezoelec-
tric effect that promotes the generation of free electrons on the surface of a piezo-catalyst.
Bi4Ti3O12 has ferroelectric properties and can spontaneously polarize to generate an internal
electric field. Vibration pressurization of Bi4Ti3O12 nanofibers can enhance the polarization
electric field and light absorption. Under the enhanced polarization electric field, more
photogenerated electrons and holes quickly move to both sides separately and combine
with corresponding ions to the active sites of the surface. Both of these factors can enhance
the catalytic effect.

When Au-Bi4Ti3O12 was substituted for Bi4Ti3O12, the efficiency of the degradation of
CIP was increased under Xenon lamp illumination, with vibration, and with both Xenon
lamp illumination and vibration (Figure 4d–f). The photocatalytic degradation trend of CIP
by Au-Bi4Ti3O12 was similar to that of Bi4Ti3O12, but the degradation efficiency was able to
reach 100% in 80 min. Moreover, by using both Xenon lamp illumination and vibration, the
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piezo-photocatalytic degradation efficiency of CIP by Au-Bi4Ti3O12 reached 100% just in
60 min.

For the purposes of comparison, chemical kinetics experiments were carried out for
the degradation of CIP by Bi4Ti3O12 and Au-Bi4Ti3O12. Figure 4g displays a plot of C/C0
in the degradation of CIP vs. time using Bi4Ti3O12 and Au-Bi4Ti3O12 under different
conditions. This graph demonstrates that the concentration ratio of the CIP decreased
with respect to the time period. Based on the graph of C/C0 vs. time, a plot was drawn
to demonstrate ln(C/C0) vs. time (Figure 4h). Using this plot, we calculated the reaction
rate constants (k) for the degradation efficiencies of the CIP solution by Bi4Ti3O12 and
Au-Bi4Ti3O12 nanofibers under Xenon lamp illumination, with vibration, and with both
Xenon lamp illumination and vibration conditions, as shown in Figure 4i. Based on this
figure, the degradation efficiencies of CIP by Au-Bi4Ti3O12 nanofibers are higher than those
of the Bi4Ti3O12 nanofibers under Xenon lamp illumination, with vibration, and with both
Xenon lamp illumination and vibration. The degradation efficiency of the CIP solution
by Au-Bi4Ti3O12 nanofibers reached 100% within 60 min, with a peak reaction rate of
0.06187 min−1 under simultaneous light and ultrasonic vibration, which is twice as high
as the peak reaction rate of the Bi4Ti3O12 nanofibers. This suggests that the introduction
of Au on the surface of Bi4Ti3O12 can enhance the performance of Bi4Ti3O12 due to the
piezo-plasmonic coupling effect.

Control experiments showed that no obvious self-decolorization was observed (Figure 5a)
in the absence of catalyst under light irradiation with ultrasonic excitation. To understand
the mechanism of the photocatalytic reaction process, a series of comparative tests were con-
ducted by employing holes and radical trapping agents for the degradation of ciprofloxacin.
The results are shown in Figure 5b. It is clear that the ciprofloxacin degradation was barely
influenced with the addition of isopropanol (IPA) (as a quencher of •OH) [38]. However,
after adding benzoquinone (BQ) (as a quencher of •O2) and ethylenediaminetetraacetic
acid disodium (EDTA-2Na) (as a quencher of h+) into the reactions, the degradation rate
of the ciprofloxacin was reduced significantly. The results indicate that the •O2 and the
photogenerated holes were the major active species participating in the photocatalytic
reaction process. After light irradiation, the electron and hole appeared and separated to
the surface of the Au-Bi4Ti3O12 catalyst. Then the adsorbed oxygen combined with the
electron and became the reactive species of superoxide radicals. With their strong oxidative
ability, the •O2 and holes directly oxidated the pollutants.
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(b) Photodegradation curves of ciprofloxacin over Au-Bi4Ti3O12 with different scavengers.

2.5. Photoelectrochemical Measurement

Electrochemical impedance spectroscopy (EIS) was used to understand the direction
and resistance of the charge transfer [39]. The diameter of the semicircle in the figure
represents the charge transfer resistance. The smaller the diameter of the semicircle is,
the smaller the transfer resistance of the photo electrode is, and the higher the charge
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transfer efficiency is. As shown from left to right in Figure 6, the impedance diagrams were
drawn of Bi4Ti3O12 nanofibers and Au-Bi4Ti3O12 nanofibers under light and dark. It was
found that the impedance of Bi4Ti3O12 nanofibers without Au was large, and the change of
additive optical impedance was very small, which indicates that the Bi4Ti3O12 nanofibers
were insensitive to light absorption, whereas the impedance of Au-Bi4Ti3O12 nanofibers
material became noticeably smaller under the light.
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and dark.

Subsequently, transient photocurrent response measurements were conducted to study
the separation behaviors of the photoexcited carriers during the photoreactions. As shown
in Figure 7, there was generation of photocurrents with good reproducibility for both
the Bi4Ti3O12 and the Au-Bi4Ti3O12 nanofibers. The Bi4Ti3O12 nanofibers and the Au-
Bi4Ti3O12 nanofibers were characterized at 0 V and 0.1 V, respectively. At the same time,
the photocurrent density of Bi4Ti3O12 nanofibers at 0 V was 2.89 × 10−7 A/cm2. When the
voltage was changed to 0.1 V, the photocurrent density increased to 5.04 × 10−7 A/cm2.
The photocurrent density of Au-Bi4Ti3O12 nanofibers at 0 V was 2.74 × 10−6 A/cm2, and
the photocurrent density at 0.1 V was 7.54 × 10−6 A/cm2.
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Figure 7. Photocurrent response of (a) Bi4Ti3O12 and (b) Au-Bi4Ti3O12 under lamp irradiation at 0 V
and 0.1 V.

The current-time curve is the observation of the change of the current with time under
different voltage conditions. The fact that the I-T result was consistent under EIS indicates
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that loaded Au can enhance the photocatalytic performance of Bi4Ti3O12 nanofibers. After
absorbing light, the Au nanoparticles are excited by the light to generate hot electrons.
Because of the Fermi levels generated on the contact surfaces of the Au nanoparticles and
the Bi4Ti3O12 nanofibers, the electrons in the Au nanoparticles move to the conduction band
of the Bi4Ti3O12 nanofibers [40]. At the same time, the Bi4Ti3O12 nanofibers can absorb light
to generate electron–hole pairs. Under the action of the polarization field, more electrons
and holes are generated through transfer. On the other hand, after the local surface plasmon
is excited, a large scattering cross section will be produced, and the generated hot electrons
will then travel through the semiconductor and participate in the photocatalytic reaction
process. Thus, loading Au can not only enhance the light absorption capacity, but also
promote the separation of electrons and holes by participating in the reaction, which can
explain why the introduction of Au enhances the photocatalytic performance.

3. Experimental Section
3.1. Synthesis of Bi4Ti3O12 Nanofibers

First, 0.75 g of Bi(NO3)·5H2O was poured into a bottle, and then 8 mL of N, N-
dimethylformamide (DMF); 2 mL of glacial acetic acid; and 0.4 mL tetrabutyl titanate (TBT)
were added into the bottle and continuously stirred for about 2 h. Subsequently, 1.25 g
PVP was added into the premixed solution and stirred for about 8 h to form a precursor
solution. Then the precursor solution was transferred into a 10 mL needle tube, followed
by adjusting the high voltage to 18 V and the low voltage to −2 V and pushing the speed
to 0.1 mm/min, with a rotation speed of 50 r/min. Then the solution was stripped and
calcined in a tube furnace at 550 ◦C for 2 h (heating rate: 3 ◦C min−1). After naturally
cooling to room temperature, the product was washed and dried to obtain the sample
Bi4Ti3O12 nanofibers.

3.2. Synthesis of Au-Bi4Ti3O12 Nanofibers

First, the Au was plated with a small ion sputtering instrument to obtain Au-loaded
Bi4Ti3O12 nanofibers. The relevant parameters were a current of 30 mA and an air pressure
of 5 × 10−2 mbar/Pa that was maintained in the cavity, along with a gold plating time
of 20 s.

3.3. Material Characterization

The diffraction patterns of the samples and the pellets were collected with the Rigaku
D/Max 3 C X-ray diffraction (XRD) system equipped with a Cu Kα tube (wavelength = 0.154 nm)
and operated at 40 kV/40 mA. The scanner was set to scan from 10◦ to 80◦ with a scan
rate of 1◦/min. Raman spectra of the samples were measured using a Raman spectroscopy
(Thermo scientific, with a laser wavelength of 785 nm) at a laser power of 0.2 mW and a
magnification of 50×. The size and morphologies of the Bi4Ti3O12 nanofibers were charac-
terized using a scanning electron microscope (SEM, Hitachi S-4800). The nanostructures
of the Bi4Ti3O12 nanofibers and the Au-Bi4Ti3O12 nanofibers were observed using trans-
mission electron microscopy (TEM, Hitachi H-8100IV). Prior to the SEM observation, the
electrodes were covered with a Au coating to improve their conductivity. The absorption
spectra of the samples were obtained using a UV-vis near-infrared spectrophotometer
(UV-3600, Shimadzu). X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250) was
performed with an Al target (15 kV, 10 mA) to determine the surface chemical composition
of the samples.

3.4. Degradation of Ciprofloxacin

The piezo-photocatalytic behaviors of the Bi4Ti3O12 nanofibers and the Au-Bi4Ti3O12
nanofibers were measured by the decomposition of ciprofloxacin. The change in concen-
tration of the ciprofloxacin was measured using a UV-Vis spectrophotometer. Moreover,
the degradation effect was reflected by the change of absorbance. In typical conditions, a
concentration of 20mg/L of ciprofloxacin solution (100 mL) and 50 mg of catalyst were
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used during each experiment for every catalyst. Before testing the photocatalytic activity
(under dark conditions), a reaction solution of ciprofloxacin and 50 mg catalyst was put into
the beaker and stirred for 30 min using a magnetic stirrer to attain equilibrium (adsorption-
desorption). The beaker was placed in a small ultrasonic machine (with ultrasonic power
of 40 KHz) under a xenon lamp (300 W, light power 99.99 mW/cm2). The experiment was
conducted according to the requirements of using just the lamp (photocatalytic reaction),
just the ultrasonic machine (piezoelectric reaction), or the lamp and ultrasonic machine
together (piezo-photocatalytic reaction) as the experimental instruments. During the photo-
catalytic reactions, 1 mL solution was taken out of the reaction mixture every 10 min. Then
the reaction mixture was centrifuged to remove traces of the catalyst.

3.5. Photoelectrochemistry Measurements

The photocurrent densities and electrochemical impedance spectroscopy of the Bi4Ti3O12
nanofibers and the Au-Bi4Ti3O12 nanofibers were tested using an electrochemical worksta-
tion (CHI760E, China). This workstation was equipped with a standard three-electrode
system with a platinum plate, a saturated Ag/AgCl electrode, and obtained samples as
the counter, reference, and working electrodes, respectively. The prepared samples were
directly spread onto an indium tin oxide glass electrode to prepare the working electrodes,
and a Na2SO4 (0.1 M, pH 7.0) aqueous solution was used as the electrolyte for the pho-
tocurrent measurements. The studied area of the thin films was fixed to 1 cm2. The light
source was supplied by a 300 W Xe arc lamp equipped with filter (AM 1.5 G) and with a
power density of 100 mW cm−2.

4. Conclusions

In summary, in order to obtain high efficiency in the photocatalytic degradation of
antibiotics, Au-loaded ferroelectric Bi4Ti3O12 nanofibers were obtained by electrospinning
and ion sputtering. The characterization of the morphology, crystal structure and optical
properties indicated that the Bi4Ti3O12 nanofibers with orthorhombic crystal phases were
prepared successfully. Furthermore, the degradation efficiency of ciprofloxacin by the
Bi4Ti3O12 nanofibers and the Au-Bi4Ti3O12 nanofibers was investigated under light, with
ultrasonic vibration and with both light and ultrasonic vibration. The results are as follows:
In a 90 min reaction, 50% of the CIP was degraded with vibration only, and the reaction
rate constant was 0.00809 min−1. Under the condition of light only, 87.45% of the CIP
was degraded, and the reaction rate constant was 0.02019 min−1. Under both light and
vibration, 100% of the CIP was degraded, and the reaction rate constant was 0.03141 min−1,
which is 0.01122 min−1 faster than that under light only. At the same time, after loading
the Au, the catalytic performance was significantly enhanced under all three conditions.
Under light and ultrasonic vibration, the CIP degradation efficiency of the Au-Bi4Ti3O12
nanofibers reached 100% within 60 min, and the reaction rate constant was 0.06187 min−1,
which is twice as fast as the Bi4Ti3O12 nanofibers. It is further observed that the photocur-
rent density was increased from 5.08 × 10−7 A/cm2 to 8.17 × 10−6 A/cm2. This work
provides a basis for more research on the piezoelectric coupling effect in photocatalytic
degradation and promotes the practical application of piezoelectric catalysis technology in
the environmental field.
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