Research Progress of Carbon Deposition on Ni-Based Catalyst for CO2-CH4 Reforming
Abstract
:1. Introduction
2. Thermodynamics of CO2-CH4 Reforming
3. Kinetics of CO2-CH4 Reforming (Reaction Mechanism)
- CO2 decomposes to generate O and CO, while CH4 gradually cleaves H on the surface to generate CH and H2;
- CH is oxidized to obtain CHO;
- The main product CO is obtained by the dissociation reaction of CHO;
- H2 and CO are desorbed from Ni(111) to form free H2 and CO.
4. Carbon Deposition and Elimination on Ni-Based Catalyst
4.1. Formation and Type of Carbon Deposition
4.2. Resistance and Elimination of Carbon Deposition
4.2.1. Resistance of Carbon Deposition from the Perspective of Catalyst
Effect of Ni Grain Size on the Deposition of Carbon
Inhibition of Carbon Deposition from the Stability of Ni Component
Application of High-Activity Bimetallic Catalysts
Selection of Support
Application of Confined Catalyst
4.2.2. Eliminate Carbon Deposition from Process Condition Matching
Selection of Operating Conditions (Temperature, Pressure, etc.)
Adjustment and Matching of Reaction Gases
5. Conclusions and Prospect
- More advanced characterization methods should be used to explore the reaction mechanism and carbon deposition mechanism of the CRM reaction on a Ni-based catalyst, and the reaction mechanism and anti-carbon deposition mechanism of the Ni-based catalyst should be further clarified.
- By introducing different types of additives to regulate the number of alkaline sites on the surface of the catalyst, the adsorption performance of CO2 may be enhanced, and more adsorbed oxygen may be generated; the gasification process of the carbon deposition may also be promoted.
- By DFT or other calculations, the formation and elimination mechanism of carbon deposition can be discussed in depth, and the catalyst design scheme can correspondingly be optimized to inhibit carbon deposition.
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Q.; Wang, S.J.; Zhao, G.M.; Yang, H.Y.; Yuan, M.; An, X.X.; Zhou, H.F.; Qiao, Y.Y.; Tian, Y.Y. CO2 methanation over ordered mesoporous NiRu-doped CaO-Al2O3 nanocomposites with enhanced catalytic performance. Int. J. Hydrogen Energy 2018, 43, 239–250. [Google Scholar] [CrossRef]
- Zain, M.M.; Mohamed, A.R. An overview on conversion technologies to produce value added products from CH4 and CO2 as major biogas constituents. Renew. Sustain. Energy Rev. 2018, 98, 56–63. [Google Scholar] [CrossRef]
- Lougou, B.G.; Shuai, Y.; Chaffa, G.; Xing, H.; Tan, H.P.; Du, H.B. Analysis of CO2 utilization into synthesis gas based on solar thermochemical CH4-reforming. J. Energy Chem. 2019, 28, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.C.J.; Vannice, M.A. Catalytic reforming of methane with carbon dioxide over nickel catalysts II. Reaction kinetics. Appl. Catal. A Gen. 1996, 142, 97–122. [Google Scholar] [CrossRef]
- Oezkara-Aydmoglu, S. Thermodynamic equilibrium analysis of combined carbon dioxide reforming with steam reforming of methane to synthesis gas. Int. J. Hydrogen Energy 2010, 35, 12821–12828. [Google Scholar] [CrossRef]
- Kang, J.; He, S.; Zhou, W.; Shen, Z.; Li, Y.Y.; Chen, M.S.; Zhang, Q.H.; Wang, Y. Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis. Nat. Commun. 2020, 11, 827. [Google Scholar] [CrossRef] [Green Version]
- Kawi, S.; Kathiraser, Y.; Ni, J.; Oemar, U.; Li, Z.W.; Saw, E.T. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane. ChemSusChem 2015, 8, 3556–3575. [Google Scholar] [CrossRef]
- Oyama, S.; Hacarlioglu, P.; Gu, Y.; Lee, D. Dry reforming of methane has no future for hydrogen production: Comparison with steam reforming at high pressure in standard and membrane reactors. Int. J. Hydrogen Energy 2012, 37, 10444–10450. [Google Scholar] [CrossRef]
- Qin, Z.; Chen, J.; Xie, X.; Luo, X.; Su, T.M.; Ji, H.B. CO2 reforming of CH4 to syngas over nickel-based catalysts. Environ. Chem. Lett. 2020, 18, 997–1017. [Google Scholar] [CrossRef]
- Abdulrasheed, A.; Jalil, A.A.; Gambo, Y.; Ibrahim, M.; Hambali, H.U.; Hamid, M.Y.S. A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renew. Sustain. Energy Rev. 2019, 108, 175–193. [Google Scholar] [CrossRef]
- Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837. [Google Scholar] [CrossRef]
- Li, W.Y.; Feng, J.; Xie, K.C.; Sun, Q. Study on carbon deposition performance of nickel catalyst for CH4-CO2 reforming reaction. J. Fuel Chem. Technol. 1997, 25, 460–464. [Google Scholar]
- Li, X.C.; Li, S.G.; Yang, Y.F.; Wu, M.; He, F. Study on Coke Formation and Stability of Nickel-Based Catalysts in CO2 Reforming of CH4. Catal. Lett. 2007, 118, 59–63. [Google Scholar]
- Ji, L.; Tang, S.; Zeng, H.C.; Lin, J.; Tan, K.L. CO2 reforming of methane to synthesis gas over sol-gel-made Co/γ-Al2O3 catalysts from organometallic precursors. Appl. Catal. A Gen. 2001, 207, 247–255. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Zhang, J.Y.; Chang, L.; Zhou, R.Q.; Duan, Z.T. Bound-state Ni species-a superior form in Ni-based catalyst for CO2-CH4 reforming. Appl. Catal. A Gen. 2001, 210, 45–53. [Google Scholar] [CrossRef]
- Yang, Y.L.; Xu, H.Y.; Li, W.Z. Pyrolysis and deposition performance of CH4, C2H6 and C2H4 on Ni-based catalysts. Acta Phys. Chim. Sin. 2001, 17, 773–775. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Dalai, A.K. Development of stable bimetallic catalysts for carbon dioxide reforming of methane. J. Catal. 2007, 249, 300–310. [Google Scholar] [CrossRef]
- Fraenkel, D.; Levitan, R.; Levy, M. A solar thermochemical pipe based on the CO2-CH4 (1:1) system. Int. J. Hydrogen Energy 1986, 11, 267–277. [Google Scholar] [CrossRef]
- Wang, S.B.; Lu, G.Q.; Millar, G.J. Carbon Dioxide Reforming of Methane to Produce Synthesis Gas over Metal-Supported Catalysts: State of the Art. Energy Fuels 1996, 10, 896–904. [Google Scholar] [CrossRef]
- Abdullah, B.; Ghani, N.A.A.; Vo, D.-V.N. Recent advances in dry reforming of methane over Ni-based catalysts. J. Clean. Prod. 2017, 162, 170–185. [Google Scholar] [CrossRef] [Green Version]
- Al-Fatesh, A.; Singh, S.K.; Kanade, G.S.; Atia, H.; Fakeeha, A.H.; Ibrahim, A.A.; El-Toni, A.M.; Labhasetwar, N.K. Rh promoted and ZrO2/Al2O3 supported Ni/Co based catalysts: High activity for CO2 reforming, steam-CO2 reforming and oxy-CO2 reforming of CH4. Int. J. Hydrogen Energy 2018, 43, 12069–12080. [Google Scholar] [CrossRef]
- Oemar, U.; Kathiraser, Y.; Mo, L.; Ho, X.K.; Kawi, S. CO2 reforming of methane over highly active La-promoted Ni supported on SBA-15 catalysts: Mechanism and kinetic modelling. Catal. Sci. Technol. 2016, 6, 1173–1186. [Google Scholar] [CrossRef]
- Assabumrungrat, S.; Charoenseri, S.; Laosiripojana, N.; Kiatkittipong, W.; Praserthdam, P. Effect of oxygen addition on catalytic performance of Ni/SiO2·MgO toward carbon dioxide reforming of methane under periodic operation. Int. J. Hydrogen Energy 2009, 34, 6211–6220. [Google Scholar] [CrossRef]
- Wang, Z.J.; Song, H.; Liu, H.; Ye, J. Coupling of Solar Energy and Thermal Energy for Carbon Dioxide Reduction: Status and Prospects. Angew. Chem. Int. Ed. 2020, 59, 8016–8035. [Google Scholar] [CrossRef]
- Paksoy, A.I.; Caglayan, B.S.; Aksoylu, A.E. An in situ FTIR-DRIFTS study on CDRM over Co-Ce/ZrO2: Active surfaces and mechanistic features. Int. J. Hydrogen Energy 2020, 45, 12822–12834. [Google Scholar] [CrossRef]
- Bodrov, N.N.; Apelbaum, L.O.; Temkin, M.I. Kinetics of the reaction of methane with steam on the surface of nickel. Kinet. Catal. 1964, 5, 614–621. [Google Scholar] [CrossRef]
- Rostrupnielsen, J.R.; Hansen, J.H.B. CO2-Reforming of Methane over Transition Metals. J. Catal. 1993, 144, 38–49. [Google Scholar] [CrossRef]
- Osaki, T.; Masuda, H.; Mori, T. Intermediate hydrocarbon species for the CO2-CH4 reaction on supported Ni catalysts. Catal. Lett. 1994, 29, 33–37. [Google Scholar] [CrossRef]
- Bradford, M.C.J.; Vannice, M.A. CO2 reforming of CH4 over supported Pt catalysts. J. Catal. 1998, 173, 157–171. [Google Scholar] [CrossRef]
- Wei, J.M.; Iglesia, E. Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J. Catal. 2004, 224, 370–383. [Google Scholar] [CrossRef]
- Wang, S.G.; Liao, X.Y.; Jia, H.; Cao, D.B.; Li, Y.W.; Wang, J.; Jiao, H. Kinetic aspect of CO2 reforming of CH4 on Ni(111): A density functional theory calculation. Surf. Sci. 2007, 601, 1271–1284. [Google Scholar] [CrossRef]
- Wang, S.G.; Liao, X.Y.; Cao, D.B.; Li, Y.W.; Wang, J.G.; Jiao, H.J. Formation of Carbon Species on Ni(111): Structure and Stability. J. Phys. Chem. C 2007, 111, 10894–10903. [Google Scholar] [CrossRef]
- Freund, H.J.; Messmer, R.P. On the bonding and reactivity of CO2 on metal surfaces. Surf. Sci. Lett. 1986, 172, 1–30. [Google Scholar] [CrossRef]
- Muhammad, A.; Tahir, M.; Al-Shahrani, S.S.; Ali, A.M.; Rather, S.U. Template free synthesis of graphitic carbon nitride nanotubes mediated by lanthanum (La/g-CNT) for selective photocatalytic CO2 reduction via dry reforming of methane (DRM) to fuels. Appl. Surf. Sci. 2020, 504, 144177. [Google Scholar] [CrossRef]
- Xie, W.; Liang, D.; Li, L.; Qu, S.J.; Tao, W. Surface chemical ploperties and pore structure of the activated coke and their effects on the denitrification activity of selective catalytic reduction. Int. J. Coal Sci. Technol. 2019, 6, 595–602. [Google Scholar] [CrossRef] [Green Version]
- Khavarian, M.; Chai, S.P.; Mohamed, A.R. Direct use of as-synthesized multi-walled carbon nanotubes for carbon dioxide reforming of methane for prodacing synthesis gas. Chem. Eng. J. 2014, 257, 200–208. [Google Scholar] [CrossRef]
- He, L.; Hu, S.; Yin, X.; Jun, X.; Han, H.D.; Li, H.J.; Ren, Q.Q.; Su, S.; Wang, Y.; Xiang, J. Promoting effects of Fe-Ni alloy on co-production of H2 and carbon nanotubes during steam reforming of biomass tar over Ni-Fe/α-Al2O3. Fuel 2020, 276, 118116. [Google Scholar] [CrossRef]
- Ma, Q.X.; Wang, D.; Wu, M.B.; Zhao, T.S.; Yoneyama, Y.; Tsubaki, N. Effect of catalyticsite position: Nickel nanocatalyst selectively loaded inside or outside carbon nanotubes for methane dry reforming. Fuel 2013, 108, 430–438. [Google Scholar] [CrossRef]
- Das, S.; Sengupta, M.; Patel, J.; Bordoloi, A. A study of the synergy between support surface properties and catalyst deactivation for CO2 reforming over supported Ni nanoparticles. Appl. Catal. A Gen. 2017, 545, 113–126. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J.F.; Wu, Y.Q.; Pan, J.X.; Zhang, Q.D.; Tan, Y.S.; Han, Y.Z. Insight into the effects of the oxygen species over Ni/ZrO2 catalyst surface on methane reforming with carbon dioxide. Appl. Catal. B Environ. 2019, 244, 427–437. [Google Scholar] [CrossRef]
- Jin, B.T.; Li, S.G.; Liang, X.H. Enhanced activity and stability of MgO-promoted Ni/Al2O3 catalyst for dry reforming of methane: Role of MgO. Fuel 2021, 284, 119082. [Google Scholar] [CrossRef]
- Wang, Y.N.; Zhang, R.J.; Yan, B.H. Ni/Ce0.9Eu0.1O1.95 with enhanced coke resistance for dry reforming of methane. J. Catal. 2022, 407, 77–89. [Google Scholar] [CrossRef]
- Burghaus, U. Surface science perspective of carbon dioxide chemistry-Adsorption kinetics and dynamics of CO2 on selected model surfaces. Catal. Today 2009, 148, 212–220. [Google Scholar] [CrossRef]
- Pan, Y.X.; Liu, C.J.; Wiltowski, T.S.; Ge, Q.F. CO2 adsorption and activation over γ-Al2O3-supported transition metal dimers: A density functional study. Catal. Today 2009, 147, 68–76. [Google Scholar] [CrossRef]
- Tsipouriari, V.A.; Verykios, X.E. Carbon and Oxygen Reaction Pathways of CO2 Reforming of Methane over Ni/La2O3 and Ni/Al2O3 Catalysts Studied by Isotopic Tracing Techniques. J. Catal. 1999, 187, 85–94. [Google Scholar] [CrossRef]
- Daza, C.E.; Gallego, J.; Mondragon, F.; Moreno, S.; Molina, R. High stability of Ce-promoted Ni/Mg-Al catalysts derived from hydrotalcites in dry reforming of methane. Fuel Guildf. 2010, 89, 592–603. [Google Scholar] [CrossRef]
- Liu, C.J.; Ye, J.Y.; Jiang, J.J.; Pan, Y.X. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. ChemSusChem 2011, 3, 529–541. [Google Scholar]
- Ferreira-Aparicio, P.; Fernandez-Garcia, M.; Guerrero-Ruiz, A.; Rodriguez-Ramos, I. Evaluation of the role of the metal-support interfacial centers in the dry reforming of methane on alumina-supported rhodium catalysts. J. Catal. 2000, 190, 296–308. [Google Scholar] [CrossRef]
- Mo, W.L.; Ma, F.Y.; Liu, J.M.; Zhong, M.; Nulahong, A.S. Study on CO2-CH4 reforming reaction carbon deposition on Ni-Al2O3 catalyst based on programmed hydrogenation characterization. J. Fuel Chem. Technol. 2019, 47, 549–557. [Google Scholar]
- Mo, W.L.; Ma, F.Y.; Liu, Y.E.; Liu, J.M.; Aisha, N. Preparation of porous Al2O3 by template method and its application in Ni-based catalyst for CH4/CO2 reforming to produce syngas. Int. J. Hydrogen Energy 2015, 40, 16147–16158. [Google Scholar] [CrossRef]
- Wang, C.Z.; Sun, N.N.; Wei, W.; Zhang, Y.X. Carbon intermediates during CO2 reforming of methane over Ni-CaO-ZrO2 catalysts: Atemperature-programmed surface reaction study. Int. J. Hydrogen Energy 2016, 41, 19014–19024. [Google Scholar] [CrossRef]
- Bodrov, I.M.; Apelbaum, L.O. Reaction kinetics of methane and carbon dioxide on a nickel surface. Kinet. Catal. 1967, 8, 379. [Google Scholar]
- Li, D.L.; Xu, S.P.; Song, K.; Chen, C.Q.; Zhan, Y.Y.; Jiang, L.L. Hydrotalcite-derived Co/Mg(Al)O as a stable and coke-resistant catalystfor low-temperature carbon dioxide reforming of methane. Appl. Catal. A Gen. 2018, 552, 21–29. [Google Scholar] [CrossRef]
- Wang, R.; Xu, H.Y.; Liu, X.B.; Ge, Q.J.; Li, W.Z. Role of redox couples of Rh0/Rhδ+and Ce4+/Ce3+in CO2-CH4 reforming over Rh-CeO2/Al2O3 catalyst. Appl. Catal. A Gen. 2006, 305, 204–210. [Google Scholar] [CrossRef]
- Ruckenstein, E.; Wang, H.Y. Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/γ-Al2O3 catalysts. J. Catal. 2002, 205, 289–293. [Google Scholar] [CrossRef]
- Liang, T.Y.; Lin, C.Y.; Chou, F.C.; Wang, M.Q.; Tsai, D.H. Gas-phase synthesis of Ni-CeOx hybrid nanopaticles and their synergistic catalysis for simultaneous reforming of methane and carbon dioxide to syngas. J. Phys. Chem. C 2018, 122, 11789–11798. [Google Scholar] [CrossRef]
- Kuijpers, E.G.M.; Breedijk, A.K.; Van Der Wal, W.J.J.; Geus, J.W. Chemisorption of Methane on Ni/SiO2 Catalysts and Reactivity of the Chemisorption Products toward Hydrogen. J. Catal. 1983, 81, 429–439. [Google Scholar] [CrossRef]
- Osaki, T.; Masuda, H.; Horiuchi, T.; Mori, T. Highly hydrogen-deficient hydrocarbon species for the CO2-reforming of CH4 on Co/Al2O3 catalyst. Catal. Lett. 1995, 34, 59–63. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, L.; Wang, Y.N.; Wang, S.H.; Zhao, Q.; Mao, D.H.; Hu, C.W. Low-Temperature Catalytic CO2 Dry Reforming of Methane on Ni-Si/ZrO2 Catalyst. ACS Catal. 2018, 8, 6495–6506. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Lustemberg, P.; Gutierrez, R.A.; Carey, J.J.; Palomino, R.M.; Vorokhta, M.; Grinter, D.C.; Ramirez, P.J.; Matolin, V.; Nolan, M.; et al. In situ Investigation of Methane Dry Reforming on M-CeO2(111) {M=Co, Ni, Cu} Surfaces: Metal-Support Interactions and the activation of C-H bonds at Low Temperature. Angew. Chem. Int. Ed. 2017, 56, 13041–13046. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Grinter, D.C.; Lustemberg, P.G.; Nguyen-Phan, T.-D.; Zhou, Y.H.; Luo, S.; Waluyo, I.; Crumlin, E.J.; Stacchiola, D.J.; Zhou, J.; et al. Dry Reforming of Methane on a Highly-Active Ni-CeO Catalyst: Effects of Metal-Support Interactions on C-H Bond Breaking. Angew. Chem. Int. Ed. 2016, 55, 7455–7459. [Google Scholar] [CrossRef] [Green Version]
- Horiuchi, T.; Sakuma, K.; Fukui, T.; Kubo, Y.; Osaki, T.; Mori, T. Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst. Appl. Catal. A 1996, 144, 111–120. [Google Scholar] [CrossRef]
- Gallego, G.S.; Batiot-Dupeyrat, C.; Barraault, J.; Florez, E.; Mondragon, F. Dry reforming of methane over LaNi1−yByO3±δ (B=Mg, Co) perovskites used as catalyst precursor. Appl. Catal. A Gen. 2008, 334, 251–258. [Google Scholar] [CrossRef]
- Garcia-Dieguez, M.; Pieta, I.S.; Herrera, M.C.; Larrubia, M.A.; Malpartida, I.; Alemany, L.J. Transient study of the dry reforming of methane over Pt supported on different γ-Al2O3. Catal. Today 2010, 149, 380–387. [Google Scholar] [CrossRef]
- Lucreda, F.; Assafj, M.; Assafe, M. Methane Conversion Reactions on Ni Catalysts Promoted with Rh: Influence of Support. Appl. Catal. A Gen. 2011, 400, 156–165. [Google Scholar] [CrossRef]
- Xu, J.K.; Zhou, W.; Wang, J.H.; Li, Z.J.; Ma, J.X. Characterization and analysis of carbon deposited during the dry reforming of methane over Ni/La2O3/Al2O3 catalysts. Chin. J. Catal. 2009, 30, 1076–1084. [Google Scholar] [CrossRef]
- Crnivec IG, O.; Djinovic, P.; Erjavec, B.; Pintar, A. Effect of synthesis parameters on morphology and activity of bimetallic catalysts in CO2-CH4 reforming. Chem. Eng. J. 2012, 207, 299–307. [Google Scholar] [CrossRef]
- Liu, Z.C.; Zhou, J.; Cao, K.; Yang, W.M.; Gao, H.X. Highly dispersed nickel loaded on mesoporous silica: One-spot synthesis strategy and high performance as catalysts for methane reforming with carbon dioxide. Appl. Catal. B Environ. 2012, 125, 324–330. [Google Scholar] [CrossRef]
- Guo, Y.P.; Feng, J.; Li, W.Y. Effect of the Ni size on CO2-CH4 reforming over Ni/MgO catalyst: A DFT study. Chin. J. Chem. Eng. 2017, 25, 1442–1448. [Google Scholar] [CrossRef]
- Mo, W.L.; Ma, F.Y.; Ma, Y.Y.; Fan, X. The optimization of Ni-Al2O3 catalyst with the addition of La2O3 for CO2-CH4 reforming to produce syngas. Int. J. Hydrogen Energy 2019, 44, 24510–24524. [Google Scholar] [CrossRef]
- Mo, W.L.; Ma, F.Y.; Liu, Y.E.; Liu, J.M.; Zhong, M.; Nulahong, A.S. Effect of preparation method on the catalytic performance of Ni-Al2O3 catalyst in CO2-CH4 reforming reaction. J. Fuel Chem. Technol. 2015, 43, 1083–1091. [Google Scholar]
- Mo, W.L.; Ma, F.Y.; Liu, Y.E.; Liu, J.M.; Zhong, M.; Nulahong, A.S. Effect of roasting temperature on the performance of NiO/γ-Al2O3 catalyst for CO2-CH4 reforming syngas. J. Inorg. Mater. 2016, 31, 234–240. [Google Scholar]
- Ding, R.G.; Yan, A.F. Structure characterization of the Co and Ni catalysts for carbon dioxide reforming of methane. Catal. Today 2001, 68, 135–143. [Google Scholar] [CrossRef]
- Osaki, T.; Mori, T. Role of Potassium in Carbon-Free CO2 Reforming of Methane on K-Promoted Ni/Al2O3 Catalysts. J. Catal. 2001, 204, 89–97. [Google Scholar] [CrossRef]
- Wang, H.H.; Mo, W.L.; He, X.Q.; Fan, X.; Ma, F.Y.; Liu, S.; Tax, D. Effect of Ca Promoter on the Structure, Performance, and Carbon Deposition of Ni-Al2O3 Catalyst for CO2-CH4 Reforming. ACS Omega 2020, 5, 28955–28964. [Google Scholar] [CrossRef]
- Wang, J.B.; Kuo, L.E.; Huang, T.J. Study of carbon dioxide reforming of methane over bimetallic Ni-Cr/yttria-doped ceria catalysts. Appl. Catal. A Gen. 2003, 249, 93–105. [Google Scholar] [CrossRef]
- Potdar, H.S.; Roh, H.S.; Jun, K.W. Carbon Dioxide Reforming of Methane Over Co-precipitated Ni-CeO2, Ni-ZrO2, Ni-Ce-ZrO2 Catalysts. Catal. Today 2004, 93–95, 39–44. [Google Scholar]
- Roh, H.S.; Jun, K.W.; Baek, S.C.; Park, S.E. A Highly Active and Stable Catalyst for Carbon Dioxide Reforming of Methane: Ni/Ce-ZrO2/θ-Al2O3. Catal. 2002, 81, 147–151. [Google Scholar]
- Huang, X.J.; Mo, W.L.; He, X.Q.; Fan, X.; Ma, F.Y.; Tax, D. Effects of Promoters on the Structure, Performance, and Carbon Deposition of Ni-Al2O3 Catalysts for CO2-CH4 Reforming. ACS Omega 2021, 6, 16381–16390. [Google Scholar] [CrossRef]
- Wang, N.; Yu, X.P.; Wang, Y.; Chu, W.; Liu, M. A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier. Catal. Today 2013, 212, 98–107. [Google Scholar] [CrossRef]
- Rashid, M.U.; Daud, W.M.A.W. Microemulsion based synthesis of Ni/MgO catalyst for dry reforming of methane. RSC Adv. 2016, 6, 38277–38289. [Google Scholar] [CrossRef]
- Adans, Y.F.; Ballarini, A.D.; Martins, A.R.; Coelho, R.E.; Carvalho, L.S. Performance of nickel supported on gamma-Alumina obtained by aluminum recycling for methane dry reforming. Catal. Lett. 2017, 147, 2057–2066. [Google Scholar] [CrossRef]
- Sun, J.W.; Wang, S.; Guo, Y.; Li, M.Z.; Zou, H.K.; Wang, Z.J. Carbon dioxide reforming of methane over nanostructured Ni/Al2O3 catalysts. Catal. Commun. 2018, 104, 53–56. [Google Scholar] [CrossRef]
- Turap, Y.S.; Wang, I.W.; Fu, T.T.; Wu, Y.M.; Wang, Y.D.; Wang, W. Co-Ni alloy supported on CeO2 as a bimetallic catalyst for dry reforming of methane. Int. J. Hydrogen Energy 2020, 45, 6538–6548. [Google Scholar] [CrossRef]
- Huang, X.H.; Ji, Y.J.; Wei, T.; Jia, L.C.; Yan, D.; Li, J. High performance and stable mesoporous MgO-ZrO supported Ni catalysts for dry reforming of methane-ScienceDirect. Curr. Res. Green Sustain. Chem. 2021, 4, 100183. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Fakeeha, A.H.; Abasaeed, A.E.; Al-Fatesh, A.S. Dry reforming of methane using Ni catalyst supported on ZrO2, The effect of different sources of Zirconia. Catalysts 2021, 11, 827. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J.F.; Zhou, Z.L.; Zhang, Q.D.; Tan, Y.S.; Han, Y.Z. Effects of calcination atmosphere on the performance of the co-precipitated Ni/ZrO2 catalyst in dry reforming of methane. Can. J. Chem. Eng. 2021, 100, 172–183. [Google Scholar]
- Liu, D.P.; Quek, X.Y.; Cheo WN, E.; Lau, R.; Borgna, A.; Yang, Y. MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: Effect of strong metal-support interaction. J. Catal. 2009, 266, 380–390. [Google Scholar] [CrossRef]
- Bian, Z.F.; Das, S.; Wai, M.H.; Hongmanorom, P.; Kawi, S. A Review on Bimetallic Nickel-Based Catalysts for CO2 Reforming of Methane. ChemPhysChem 2017, 18, 3117–3134. [Google Scholar] [CrossRef] [Green Version]
- Mahboob, S.; Haghighi, M.; Rahmani, F. Sonochemically preparation and characterization of bimetallic Ni-Co/Al2O3-ZrO2 nanocatalyst: Effects of ultrasound irradiation time and power on catalytic properties and activity in dry reforming of CH4. Ultrason. Sonochemistry 2017, 38, 38–49. [Google Scholar] [CrossRef]
- Dam, A.H.; Wang, H.M.; Niri, R.D.; Yu, X.F.; Walmsley, J.C.; Holmen, A.; Yang, J.; Chen, D. Methane Activation on Bimetallic Catalysts: Properties and Functions of Surface Ni-Ag Alloy. ChemCatChem 2019, 11, 3401–3412. [Google Scholar] [CrossRef]
- Pawelec, B.; Damyanova, S.; Arishtirova, K.; Fierro, J.L.G.; Petrov, L. Structural and surface features of PtNi catalysts for reforming of methane with CO2. Appl. Catal. A Gen. 2007, 323, 188–201. [Google Scholar] [CrossRef]
- San-Jose-Alonso, D.; Juan-Juan, J.; Illan-Gomez, M.J.; Roman-Martinez, M.C. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane. Appl. Catal. A Gen. 2009, 371, 54–59. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, Q.; Cai, W.Y.; Zhang, P.; Song, X.F.; Sun, Z.; Cao, L. Phyllosilicate evolved hierarchical Ni-and Cu-Ni/SiO2 nanocomposites for methane dry reforming catalysis. Appl. Catal. A Gen. 2015, 503, 94–102. [Google Scholar] [CrossRef]
- Liu, H.L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056–3078. [Google Scholar] [CrossRef] [Green Version]
- De, S.; Zhang, J.; Luque, R.; Yan, N. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 2016, 9, 3314–3347. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.P.; Zhang, F.B.; Wang, N.; Hao, S.X.; Chu, W. Plasma-Treated Bimetallic Ni-Pt Catalysts Derived from Hydrotalcites for the Carbon Dioxide Reforming of Methane. Catal. Lett. 2014, 144, 293–300. [Google Scholar] [CrossRef]
- Hou, T.F.; Lei, Y.S.; Zhang, S.Y.; Zhang, J.H.; Cai, W.J. Ethanol dry reforming for syngas production over Ir/CeO2 catalyst. J. Rare Earths 2015, 33, 42–45. [Google Scholar] [CrossRef]
- Ma, Q.X.; Sun, J.; Gao, X.H.; Zhang, J.L.; Zhao, T.S.; Yoneyama, Y.; Tsubaki, N. Ordered mesoporous alumina-supported bimetallic Pd-Ni catalysts for methane dry reforming reaction. Catal. Sci. Technol. 2016, 6, 6542–6550. [Google Scholar] [CrossRef]
- Oemar, U.; Hidajat, K.; Kawi, S. High catalytic stability of Pd-Ni/Y2O3 formed by interfacial Cl for oxy-CO2 reforming of CH4. Catal. Today 2017, 281, 276–294. [Google Scholar] [CrossRef]
- Menning, C.A.; Chen, J.G. Thermodynamics and kinetics of oxygen-induced segregation of 3d metals in Pt-3d-Pt(111) and Pt-3d-Pt(100) bimetallic structures. J. Chem. Phys. 2008, 128, 164703. [Google Scholar] [CrossRef] [PubMed]
- Menning, C.A.; Chen, J.G. General trend for adsorbate-induced segregation of subsurface metal atoms in bimetallic surfaces. J. Chem. Phys. 2009, 130, 174709. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Dieguez, M.; Pieta, I.S.; Herrera, M.C.; Larrubia, M.A.; Alemany, L.J. Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane. J. Catal. 2010, 270, 136–145. [Google Scholar] [CrossRef]
- Fan, M.S.; Abdullah, A.Z.; Bhatia, S. Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni-Co/MgO-ZrO2: Preparation, characterization and activity studies. Appl. Catal. B Environ. 2010, 100, 365–377. [Google Scholar] [CrossRef]
- Qin, Z.Z.; Su, T.M.; Ji, H.B.; Jiang, Y.X.; Liu, R.W.; Chen, J.H. Experimental and theoretical study of the intrinsic kinetics for dimethyl ether synthesis from CO2 over Cu-Fe-Zr/HZSM-5. Aiche J. 2015, 61, 1613–1627. [Google Scholar] [CrossRef]
- Su, T.M.; Qin, Z.Z.; Ji, H.B.; Jiang, Y.X.; Huang, G. Recent advances in the photocatalytic reduction of carbon dioxide. Environ. Chem. Lett. 2016, 14, 99–112. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Dardir, F.M.; Shaban, M.; Ahmed, E.A.; Soliman, M.F. Spongy Ni/Fe carbonate-fluorapatite catalyst for efficient conversion of cooking oil waste into biodiesel. Environ. Chem. Lett. 2017, 16, 665–670. [Google Scholar] [CrossRef]
- Chen, L.; Huang, X.Y.; Tang, M.; Zhou, D.; Wu, F. Rapid dephosphorylation of glyphosate by Cu-catalyzed sulfite oxidation involving sulfate and hydroxyl radicals. Environ. Chem. Lett. 2018, 16, 1507–1511. [Google Scholar] [CrossRef]
- Kumar, N.S.; Reddy, B.V.; Babu, M.S. Rapid synthesis of mono/bimetallic (Zn/Co/Zn-Co) zeolitic imidazolate frameworks at room temperature and evolution of their CO2 uptake capacity. Environ. Chem. Lett. 2019, 17, 447–454. [Google Scholar]
- Ray, K.; Sandupatla, A.S.; Deo, G. Activity and stability descriptors of Ni-based alloy catalysts for dry reforming of methane: A density functional theory study. Int. J. Quantum Chem. 2021, 121, e26580. [Google Scholar] [CrossRef]
- Gonzalez-Delcruz, V.M.; Perenigue, R.; Ternero, F.; Holgado, J.P.; Caballero, A. In Situ XAS Study of Synergic Effects on Ni-Co/ZrO2 Methane Reforming Catalysts. J. Phys. Chem. C 2012, 116, 2919–2926. [Google Scholar] [CrossRef]
- Yu, M.; Zhu, K.; Liu, Z.; Xiao, H.; Deng, W.; Zhou, X. Carbon dioxide reforming of methane over promoted NixMg1-xO(111) platelet catalyst derived from solvothermal synthesis. Appl. Catal. B Environ. 2014, 148, 177–190. [Google Scholar] [CrossRef]
- Fan, X.; Liu, Z.; Zhu, Y.A.; Tong, G.S.; Zhang, J.D.; Engelbrekt, C.; Ulstrup, J.; Zhu, K.; Zhou, X.G. Tuning the composition of metastable CoxNiyMg100-x-y(OH)(OCH3) nanoplates for optimizing robust methane dry reforming catalyst. J. Catal. 2015, 330, 106–119. [Google Scholar] [CrossRef]
- Ay, H.; Uner, D. Dry reforming of methane over CeO2 supported Ni, Co and Ni-Co catalysts. Appl. Catal. B Environ. 2015, 179, 128–138. [Google Scholar] [CrossRef]
- Tsoukalou, A.; Imtiaz, Q.; Kim, S.M.; Abdala, P.M.; Yoon, S.; Muller, C.R. Dry-reforming of methane over bimetallic Ni-M/La2O3 (M=Co, Fe): The effect of the rate of La2O2CO3 formation and phase stability on the catalytic activity and stability. J. Catal. 2016, 343, 208–214. [Google Scholar] [CrossRef]
- Gao, X.Y.; Tan, Z.W.; Hidajat, K.; Kawi, S. Highly reactive Ni-Co/SiO2 bimetallic catalyst via complexation with oleylamine/oleic acid organic pair for dry reforming of methane. Catal. Today 2017, 281, 250–258. [Google Scholar] [CrossRef]
- Xu, L.L.; Wang, F.G.; Chen, M.; Fan, X.L.; Yang, H.M.; Nie, D.Y.; Qi, L. Alkaline-promoted Co-Ni bimetal ordered mesoporous catalysts with enhanced coke-resistant performance toward CO2 reforming of CH4. J. CO2 Util. 2017, 18, 1–14. [Google Scholar] [CrossRef]
- Takanabe, K.; Nagaoka, K.; Nariai, K.; Aika, K. Influence of reduction temperature on the catalytic behavior of Co/TiO2 catalysts for CO2-CH4 reforming and its relation with titania bulk crystal structure. J. Catal. 2005, 230, 75–85. [Google Scholar] [CrossRef]
- Takanabe, K.; Nagaoka, K.; Nariai, K.; Aiak, K. Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane. J. Catal. 2005, 232, 268–275. [Google Scholar] [CrossRef]
- Wu, Z.X.; Yang, B.; Miao, S.; Liu, W.; Xie, J.L.; Lee, S.; Pellin, M.J.; Xiao, D.Q.; Su, D.S.; Ma, D. Lattice strained Ni-Co alloy as high-performance catalyst for catalytic dry-reforming of methane. ACS Catal. 2019, 9, 2693–2700. [Google Scholar] [CrossRef]
- Li, B.; Yuan, X.Q.; Li, L.Y.; Wang, X.J.; Li, B.T. Stabilizing Ni-Co alloy on bimodal mesoporous alumina to enhance carbon resistance for dry reforming of methane. Ind. Eng. Chem. Res. 2021, 60, 16874–16886. [Google Scholar] [CrossRef]
- Liang, D.F.; Wang, Y.S.; Chen, M.Q.; Xie, X.L.; Li, C.; Wang, J.; Yuan, L. Dry reforming of methane for syngas production over attapulgite-derived MFI zeolite encapsulated bimetallic Ni-Co catalysts. Appl. Catal. B Environ. 2023, 322, 122088. [Google Scholar] [CrossRef]
- Song, K.; Lu, M.M.; Xu, S.P.; Chen, C.Q.; Zhan, Y.Y.; Li, D.L.; Au, C.; Jiang, L.L.; Tomishige, K. Effect of alloy composition on catalytic performance and coke-resistance property of Ni-Cu/Mg(Al)O catalysts for dry reforming of methane. Appl. Catal. B Environ. 2018, 239, 324–333. [Google Scholar] [CrossRef]
- Sagar, T.V.; Padmakar, D.; Lingaiah, N.; Prasad, P.S.S. Influence of Solid Solution Formation on the Activity of CeO2 Supported Ni-Cu Mixed Oxide Catalysts in Dry Reforming of Methane. Catal. Lett. 2019, 149, 2597–2606. [Google Scholar] [CrossRef]
- Wang, L.; Li, D.L.; Koike, M.; Watanabe, H.; Xu, Y.; Nakagawa, Y.; Tomishige, K. Catalytic performance and characterization of Ni-Co catalysts for the steam reforming of biomass tar to synthesis gas. Fuel 2013, 112, 654–661. [Google Scholar] [CrossRef]
- Kim, S.M.; Abdala, P.M.; Margossian, T.; Hosseini, D.; Foppa, L.; Armutlulu, A.; Beek, W.V.; Comas-Vives, A.; Coperet, C.; Muller, C. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts. J. Am. Chem. Soc. 2017, 139, 1937–1949. [Google Scholar] [CrossRef]
- Andraos, S.; Abbas-Ghaleb, R.; Chlala, D.; Vita, A.; Italiano, C.; Laganà, M.; Pino, L.; Nakhl, M.; Specchia, S. Production of hydrogen by methane dry reforming over ruthenium-nickel based catalysts deposited on Al2O3, MgAl2O4, and YSZ. Int. J. Hydrogen Energy 2019, 44, 25706–25716. [Google Scholar] [CrossRef]
- Song, Z.; Wang, Q.; Guo, C.; Li, S.; Yan, W.; Jiao, W.; Qiu, L.; Yan, X.; Li, R. Improved effect of Fe on the stable NiFe/Al2O3 catalyst in low-temperature dry reforming of methane. Ind. Eng. Chem. Res. 2020, 59, 17250–17258. [Google Scholar] [CrossRef]
- Chatla, A.; Ghouri, M.M.; El Hassan, O.W.; Mohamed, N.; Prakash, A.V.; Elbashir, N.O. An experimental and first principles DFT investigation on the effect of Cu addition to Ni/Al2O3 catalyst for the dry reforming of methane. Appl. Catal. A 2020, 602, 117699. [Google Scholar] [CrossRef]
- Aghaali, M.H.; Firoozi, S. Enhancing the catalytic performance of Co substituted NiAl2O4 spinel by ultrasonic spray pyrolysis method for steam and dry reforming of methane. Int. J. Hydrogen Energy 2021, 46, 357–373. [Google Scholar] [CrossRef]
- Hao, S.H.; Ma, F.Y.; Mo, W.L.; Li, M.F.; Zhu, W.J.; Zhang, J. Effect of additive La on the properties of CH4/CO2 reforming catalyst NiO/γ-Al2O3. Nat. Gas Chem. Ind. 2015, 40, 44–49. [Google Scholar]
- Ruckenstein, E.; Hu, Y.H. Role of support in CO2 reforming of CH4 to syngas over Ni catalysts. J. Catal. 1996, 162, 230–238. [Google Scholar] [CrossRef]
- Luisetto, I.; Tuti, S.; Romano, C.; Boaro, M.; Bartolomeo, E.D. Dry reforming of methane over Ni supported on doped CeO2: New insight on the role of dopants for CO2 activation. J. CO2 Util. 2019, 30, 63–78. [Google Scholar] [CrossRef]
- Amin, M.H.; Sudarsanam, P.; Field, M.R.; Patel, J.; Bhargava, S.K. Effect of a Swelling Agent on the Performance of Ni/Porous Silica Catalyst for CH4-CO2 Reforming. ACS Langmuir 2017, 33, 10632–10644. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Zhang, T.F.; Shi, Y.Z.; Zhao, B.; Wang, M.Z.; Liu, Q.X.; Wang, J.; Long, K.X.; Duany, K.; Ning, P. A sintering and carbon-resistant Ni-SBA-15 catalyst prepared by solid-state grinding method for dry reforming of methane. J. CO2 Util. 2017, 17, 10–19. [Google Scholar] [CrossRef]
- Tanggarnjanavalukul, C.; Donphai, W.; Witoon, T.; Chareonpanich, M.; Limtrakul, J. Deactivation of nickel catalysts in methane cracking reaction: Effect of bimodal mesomacropore structure of silica support. Chem. Eng. J. 2019, 262, 364–371. [Google Scholar] [CrossRef]
- Du, X.J.; Zhang, D.S.; Shi, L.Y.; Gao, R.H.; Zhang, J.P. Coke- and sintering-resistant monolithic catalysts derived from in situ supported hydrotalcite-like films on Al wires for dry reforming of methane. Nanoscale 2013, 5, 2659–2663. [Google Scholar] [CrossRef]
- Zhang, L.M.; Li, L.; Li, J.L.; Zhang, Y.H.; Hu, J.C. Carbon Dioxide Reforming of Methane over Nickel Catalyst Supported on MgO(111) Nanosheets. Top. Catal. 2014, 57, 619–626. [Google Scholar] [CrossRef]
- Grigorkina, G.S.; Ramonova, A.G.; Kibizov, D.D.; Kozyrev, E.N.; Zaalishvili, V.B.; Fukutani, K.; Magkoev, T.T. Probing specific oxides as potential supports for metal/oxide model catalysts: MgO(111) polar film. Solid State Commun. 2017, 257, 16–19. [Google Scholar] [CrossRef]
- Liu, S.G.; Guan, L.X.; Li, J.P.; Zhao, N.; Wei, W.; Sun, Y.H. CO2 reforming of CH4 over stabilized mesoporous Ni-CaO-ZrO2 composites. Fuel 2008, 87, 2477–2481. [Google Scholar] [CrossRef]
- Jafarbegloo, M.; Tarlani, A.; Mesbah, A.W.; Sahebdelfar, S. One-pot synthesis of NiO-MgO nanocatalysts for CO2 reforming of methane: The influence of active metal content on catalytic performance. J. Nat. Gas Sci. Eng. 2015, 27, 1165–1173. [Google Scholar] [CrossRef]
- Li, L.Z.; Yan, K.S.; Chen, J.; Feng, T.; Wang, F.M.; Wang, J.W.; Song, Z.L.; Ma, C.Y. Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide. Sci. Total Environ. 2019, 657, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Ou, Z.L.; Qin, C.L.; Ran, J.Y.; Wu, C.F. Roles of alkali/alkaline earth metals in steam reforming of biomass tar for hydrogen production over perovskite supported Ni catalysts. Fuel 2019, 257, 116032. [Google Scholar] [CrossRef]
- Li, L.; Yang, Z.; Chen, J.; Qin, X.; Jiang, X.; Wang, F.; Song, Z.; Ma, C. Performance of bio-char and energy analysis on CH4 combined reforming by CO2 and H2O into syngas production with assistance of microwave. Fuel 2018, 215, 655–664. [Google Scholar] [CrossRef]
- Jose-Alonso, D.S.; Illan-Gomez, M.J.; Roman-Martinez, M.C. K and Sr promoted Co alumina supported catalysts for the CO2 reforming of methane. Catal. Today 2011, 176, 187–190. [Google Scholar] [CrossRef]
- Wu, P.; Tao, Y.W.; Ling, H.J.; Chen, Z.B.; Ding, J.; Zeng, X.; Liao, X.Z.; Stampfl, C.; Huang, J. Cooperation of Ni and CaO at interface for CO2 reforming of CH4: A combined theoretical and experimental study. ACS Catal. 2019, 9, 10060–10069. [Google Scholar] [CrossRef]
- Ruitenbeek, M.; Weckhuysen, B.M. A Radical twist to the versatile behavior of iron in selective methane activation. Angew. Chem. Intermational Ed. 2014, 53, 11137–11139. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Mao, Y.R.; Zhang, L.Z.; Li, Y.L.; Liu, W.M.; Ma, Q.X.; Wu, D.S.; Peng, H.G. Remarkable basic-metal oxides promoted confinement catalysts for CO2 reforming. Fuel 2022, 315, 123167. [Google Scholar] [CrossRef]
- Kong, W.; Fu, Y.; Sun, Y.; Shi, L.; Li, S.G.; Vovk, E.; Zhou, X.H.; Si, R.; Pan, B.R.; Yuan, C.K.; et al. Nickel nanoparticles with interfacial confinement mimic noble metal catalyst in methane dry reforming. Appl. Catal. B Environ. 2021, 285, 119837. [Google Scholar] [CrossRef]
- Zhang, L.; Lian, J.; Li, L.; Peng, C.; Liu, W.M.; Xu, X.L.; Fang, X.Z.; Wang, Z.; Wang, X.; Peng, H.E. LaNiO3 nanocube embedded in mesoporous silica for dry reforming of methane with enhanced coking resistance. Microporous Mesoporous Mater. 2018, 266, 189–197. [Google Scholar] [CrossRef]
- Liu, W.M.; Li, L.; Lin, S.X.; Luo, Y.W.; Bao, Z.H.; Mao, Y.R.; Li, K.Z.; Wu, D.S.; Peng, H.G. Confined Ni-In intermetallic alloy nanocatalyst with excellent coking resistance for methane dry reforming. J. Energy Chem. 2022, 65, 34–47. [Google Scholar] [CrossRef]
- Wang, L.H.; Hu, R.; Liu, H.; Wei, Q.H.; Gong, D.D.; Mo, L.Y.; Tao, H.C.; Zhuang, Z.H. Encapsulated Ni@La2O3/SiO2 catalyst with a one-pot method for the dry reforming of methane. Catalysts 2020, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Nematollahi, B.; Rezaei, M.; Lay, E.N.; Khajenoori, M. Thermodynamic analysis of combined reforming process using Gibbs energy minimization method: In view of solid carbon formation. J. Nat. Gas Chem. 2012, 21, 694–702. [Google Scholar] [CrossRef]
- Jang, W.J.; Jeong, D.W.; Shim, J.O.; Kim, H.M.; Roh, H.S.; Son, I.H.; Lee, S.J. Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application. Appl. Energy 2016, 173, 80–91. [Google Scholar] [CrossRef]
- Nikoo, M.K.; Amin, N.A.S. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Process. Technol. 2011, 92, 678–691. [Google Scholar] [CrossRef] [Green Version]
- Bao, Z.H.; Lu, Y.W.; Han, J.; Li, Y.B.; Yu, F. Highly active and stable Ni-based bimodal pore catalyst for dry reforming of methane. Appl. Catal. A Gen. 2015, 491, 116–126. [Google Scholar] [CrossRef]
- Li, C.L.; Fu, Y.L.; Meng, M.; Bian, G.Z.; Xie, Y.N.; Hu, T.D.; Zhang, J. EXAFS study on the effect of water vapor addition on the structure of Ni components in the CH4-CO2 reforming catalyst Ni/CeO2-ZrO2-Al2O3. Nucl. Tech. 2002, (10), 879–882. [Google Scholar]
- O'Connor, A.M.; Ross, J.R.H. The effect of O2 addition on the carbon dioxide reforming of methane over Pt/ZrO2 catalysts. Catal. Today 1998, 46, 203–210. [Google Scholar] [CrossRef]
- Li, L.Z.; Jiang, X.W.; Wang, H.G.; Song, Z.L.; Ma, C.Y. Combined reforming of CH4 with CO2/steam assisted by microwave. Combust. Sci. Technol. 2017, 23, 293–298. [Google Scholar]
Active Component | Support | Mass Fraction of Active Component /% | Temperature /°C | Time /h | SV /(mL·g−1·h−1) | CH4 Conversion Rate /% | CO2 Conversion Rate /% | Carbon Deposition /% | Reference |
---|---|---|---|---|---|---|---|---|---|
LaNiO3 | SBA-15 | 10 | 700 | 60 | 36,000 | 78 | 73 | 4.47 | [80] |
LaNiO3 | MCM-41 | 10 | 700 | 60 | 36,000 | 75 | 71 | 4.83 | [80] |
LaNiO3 | SiO2 | 10 | 700 | 60 | 36,000 | 68 | 64 | 5.67 | [80] |
Ni | MgO | 20 | 750 | 2.3 | 168,000 | 46.13→34.3 | 51.4→37.6 | 2.648 | [81] |
Ni | Al2O3-T | 10 | 700 | 5 | 24,000 | 80 | 90 | —— | [82] |
Ni | Al2O3-S | 10 | 700 | 5 | 24,000 | 68 | 79 | —— | [82] |
Ni | Al2O3 | 10 | 700 | 5 | 24,000 | 72 | 75 | —— | [82] |
Ni | γ-Al2O3-S | 10 | 700 | 5 | 48,000 | 56.0→52.2 | —— | —— | [83] |
Ni | γ-Al2O3-P | 10 | 700 | 5 | 48,000 | 52.2→39.3 | —— | —— | [83] |
Co-Ni | CeO2 | —— | 600 | 10 | 12,000 | 77 | 80 | —— | [84] |
Ni | MgO-ZrO2 | 10 | 700 | 60 | 16,000 | 84.7 | 86.5 | 20 | [85] |
Ni | ZrO2-RC-100 | 5 | 700 | 7 | 42,000 | 67.4→46.5 | 68.4→58.2 | 66.3 | [86] |
Ni | ZrO2-ELTN | 5 | 700 | 7 | 42,000 | 42.3→31.9 | 52.3→43.9 | 25.2 | [86] |
Ni | ZrO2-Z-3215 | 5 | 700 | 7 | 42,000 | 62.2→45.3 | 69.5→58.4 | 38.3 | [86] |
Ni | ZrO2(MK) | 5 | 700 | 7 | 42,000 | 51.2→36.3 | 56.7→46.4 | 46.9 | [86] |
Ni | ZrO2-O2 | 10 | 750 | 10 | 24,000 | 78→64 | 86→73 | —— | [87] |
Ni | ZrO2 | 5 | 750 | 36 | 24,000 | 83→78 | —— | —— | [87] |
Catalysts | SV /(mL·g−1·h−1) | Feed Ratio | Temperature /K | CH4 Conversion Rate /% | CO2 Conversion Rate /% | Carbon Deposition /% |
---|---|---|---|---|---|---|
Ru-Ni/Al2O3 [127] | 60,000 | 1023 | 94.00 | 97.00 | 0.32 | |
Co-Ni/CeO2 [84] | 30,000 | CH4:CO2 = 1:1 | 1073 | 80.10 | 82.20 | 10.00 |
NiFe/Al2O3 [128] | 12,000 | CH4:CO2 = 1:1 | 823 | 26.60 | 37.80 | 2.30 |
NiCu/Al2O3 [129] | 18,000 | CH4:CO2:He = 1:1:8 | 923 | 65.00 | 64.34 | 6.40 |
Ni-Co/Al2O3 [130] | 54,000 | CH4:CO2:N2 = 2:2:1 | 1023 | 96.10 | 92.20 | 1.00 |
NiPt/Al2O3 [100] | CH4:CO2:Ar = 45:45:10 | 1023 | 86.00 | 87.00 | 7.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Ma, Y.-Y.; Mo, W.-L.; Guo, J.; Liu, Q.; Fan, X.; Zhang, S.-P. Research Progress of Carbon Deposition on Ni-Based Catalyst for CO2-CH4 Reforming. Catalysts 2023, 13, 647. https://doi.org/10.3390/catal13040647
Ren Y, Ma Y-Y, Mo W-L, Guo J, Liu Q, Fan X, Zhang S-P. Research Progress of Carbon Deposition on Ni-Based Catalyst for CO2-CH4 Reforming. Catalysts. 2023; 13(4):647. https://doi.org/10.3390/catal13040647
Chicago/Turabian StyleRen, Yuan, Ya-Ya Ma, Wen-Long Mo, Jing Guo, Qing Liu, Xing Fan, and Shu-Pei Zhang. 2023. "Research Progress of Carbon Deposition on Ni-Based Catalyst for CO2-CH4 Reforming" Catalysts 13, no. 4: 647. https://doi.org/10.3390/catal13040647
APA StyleRen, Y., Ma, Y. -Y., Mo, W. -L., Guo, J., Liu, Q., Fan, X., & Zhang, S. -P. (2023). Research Progress of Carbon Deposition on Ni-Based Catalyst for CO2-CH4 Reforming. Catalysts, 13(4), 647. https://doi.org/10.3390/catal13040647