Crystal-Plane-Dependent Guaiacol Hydrodeoxygenation Performance of Au on Anatase TiO2
Abstract
:1. Introduction
2. Results
2.1. Structure Characteristic of TiO2 and Au/TiO2
2.2. Chemical Properties of TiO2 and Au/TiO2
2.3. Catalytic Performance
2.4. Pathways of Au/TiO2 Catalyst
2.5. Stability of Au/TiO2 Catalyst
3. Discussion
4. Materials and Methods
4.1. Synthesis of TiO2-101
4.1.1. Synthesis of Precursor
4.1.2. Synthesis of TiO2-101
4.2. Synthesis of TiO2-001
4.3. Preparation of Au/TiO2 Catalysts
4.4. Catalyst Characterization
4.5. Catalyst Activity Measurements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tauster, S.J.; Fung, S.C.; Baker, R.T.; Horsley, J.A. Strong Interactions in Supported-Metal Catalysts. Science 1981, 211, 1121–1125. [Google Scholar] [CrossRef] [Green Version]
- Tauster, S.J. Strong Metal-Support Interactions. Acc. Chem. Res. 1987, 20, 389–394. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Qian, K.; Huang, W. Metal-Support Interactions in Metal/Oxide Catalysts and Oxide-Metal Interactions in Oxide/Metal Inverse Catalysts. ACS Catal. 2022, 12, 1268–1287. [Google Scholar] [CrossRef]
- Tauster, S.J.; Fung, S.C.; Garten, R.L. Strong Metal-Support Interactions. Group 8 Noble Metals Supported on TiO2. J. Am. Chem. Soc. 1978, 100, 170–175. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, X.; Li, H.; Chen, B.; Ye, S.; Zhang, N.; Yu, Z.; Zheng, J.; Chen, B. Enhancing electronic metal support interaction (EMSI) over Pt/TiO2 for efficient catalytic wet air oxidation of phenol in wastewater. J. Hazard. Mater. 2022, 426, 128088. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Zhu, Y.; Xu, S.; Wang, C.; Bian, C.; Meng, X.; Xiao, F.S. Strong Metal-Support Interactions Achieved by Hydroxide-to-Oxide Support Transformation for Preparation of Sinter-Resistant Gold Nanoparticle Catalysts. ACS Catal. 2017, 7, 7461–7465. [Google Scholar] [CrossRef]
- Bruix, A.; Rodriguez, J.A.; Ramírez, P.J.; Senanayake, S.D.; Evans, J.; Park, J.B.; Stacchiola, D.; Liu, P.; Hrbek, J.; Illas, F. A New Type of Strong Metal—Support Interaction and the Production of H2 through the Transformation of Water on Pt/ CeO2 (111) and Pt/CeO. J. Am. Chem. Soc. 2012, 134, 8968–8974. [Google Scholar] [CrossRef]
- Xiao, S.; Lu, Y.; Li, X.; Xiao, B.Y.; Wu, L.; Song, J.P.; Xiao, Y.X.; Wu, S.M.; Hu, J.; Wang, Y.; et al. Hierarchically Dual-Mesoporous TiO2 Microspheres for Enhanced Photocatalytic Properties and Lithium Storage. Chem. Eur. J. 2018, 24, 13246–13252. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.Y.; Kavadiya, S.; He, X.; Wang, W.N.; Karakocak, B.B.; Lin, Y.C.; Berezin, M.Y.; Biswas, P. Engineering stable Pt nanoparticles and oxygen vacancies on defective TiO2 via introducing strong electronic metal-support interaction for efficient CO2 photoreduction. Chem. Eng. J. 2020, 389, 123450. [Google Scholar] [CrossRef]
- Wang, Y.; Widmann, D.; Behm, R.J. Influence of TiO2 Bulk Defects on CO Adsorption and CO Oxidation on Au/TiO2: Electronic Metal-Support Interactions (EMSIs) in Supported Au Catalysts. ACS Catal. 2017, 7, 2339–2345. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, X.; Zhang, G.; Qiu, W.; He, H.; Chen, G. High active platinum clusters on titanium dioxide supports toward carbon monoxide oxidation. Appl. Catal. B 2020, 266, 118629. [Google Scholar] [CrossRef]
- Huang, R.; Kwon, O.; Lin, C.; Gorte, R.J. The effects of SMSI on m-Cresol hydrodeoxygenation over Pt/Nb2O5 and Pt/TiO2. J. Catal. 2021, 398, 102–108. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, X.; Wang, H.; Han, J.; Ge, Q.; Zhu, X. Effect of Strong Metal-Support Interaction of Pt/TiO2 on Hydrodeoxygenation of m-Cresol. ChemistrySelect 2018, 3, 10364–10370. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, P.; Zhao, B.; Zhang, Z.C. Identification of electron-rich mononuclear Ni atoms on TiO2—A distinguished from Ni particles on TiO2-R in guaiacol hydrodeoxygenation pathways. Catal. Sci. Technol. 2021, 11, 297–311. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, P.; Zhao, B.; Liu, K.; Kung, M.C.; Kung, H.H.; Chen, S.; Zhang, Z.C. Selective Hydrodeoxygenation of Guaiacol to Phenolics by Ni/Anatase TiO2 Catalyst Formed by Cross-Surface Migration of Ni and TiO2. ACS Catal. 2019, 9, 3551–3563. [Google Scholar] [CrossRef]
- Liu, K.; Yan, P.; Jiang, H.; Xia, Z.; Xu, Z.; Bai, S.; Zhang, Z.C. Silver initiated hydrogen spillover on anatase TiO2 creates active sites for selective hydrodeoxygenation of guaiacol. J. Catal. 2019, 369, 396–404. [Google Scholar] [CrossRef]
- Mao, J.; Zhou, J.; Xia, Z.; Wang, Z.; Xu, Z.; Xu, W.; Yan, P.; Liu, K.; Guo, X.; Zhang, Z.C. Anatase TiO2 Activated by Gold Nanoparticles for Selective Hydrodeoxygenation of Guaiacol to Phenolics. ACS Catal. 2017, 7, 695–705. [Google Scholar] [CrossRef]
- Liu, K.; Hou, G.; Gao, P.; Nie, X.; Bai, S.; Janik, M.J.; Zhang, Z.C. Evolution of multiple spillover hydrogen species on anatase titanium dioxide. Cell Rep. Phys. Sci. 2022, 3, 101190. [Google Scholar] [CrossRef]
- Yu, S.; Lu, Y.; Gao, F.; Dong, L. Study on the crystal plane effect of CuO/TiO2 catalysts in NH3-SCR reaction. Catal. Today 2020, 339, 265–273. [Google Scholar] [CrossRef]
- Liu, L.; Gu, X.; Cao, Y.; Yao, X.; Zhang, L.; Tang, C.; Gao, F.; Dong, L. Crystal-plane effects on the catalytic properties of Au/TiO2. ACS Catal. 2013, 3, 2768–2775. [Google Scholar] [CrossRef]
- Wei, T.; Ding, P.; Wang, T.; Liu, L.M.; An, X.; Yu, X. Facet-Regulating Local Coordination of Dual-Atom Cocatalyzed TiO2 for Photocatalytic Water Splitting. ACS Catal. 2021, 11, 14669–14676. [Google Scholar] [CrossRef]
- Pham, T.N.; Shi, D.; Sooknoi, T.; Resasco, D.E. Aqueous-phase ketonization of acetic acid over Ru/TiO2/carbon catalysts. J. Catal. 2012, 295, 169–178. [Google Scholar] [CrossRef]
- Tian, F.; Zhang, Y.; Zhang, J.; Pan, C. Raman spectroscopy: A new approach to measure the percentage of anatase TiO2 exposed (001) facets. J. Phys. Chem. C 2012, 116, 7515–7519. [Google Scholar] [CrossRef]
- Yu, X.; Kim, B.; Kim, Y.K. Highly Enhanced Photoactivity of Anatase TiO2 Nanocrystals by Controlled Hydrogenation-Induced Surface Defects. ACS Catal. 2013, 3, 2479–2486. [Google Scholar] [CrossRef]
- Chen, S.; Li, D.; Liu, Y.; Huang, W. Morphology-dependent defect structures and photocatalytic performance of hydrogenated anatase TiO2 nanocrystals. J. Catal. 2016, 341, 126–135. [Google Scholar] [CrossRef]
- Yang, J.; Mou, C.Y. Ordered mesoporous Au/TiO2 nanospheres for solvent-free visible-light-driven plasmonic oxidative coupling reactions of amines. Appl. Catal. B 2018, 231, 283–291. [Google Scholar] [CrossRef]
- Lv, S.; Liu, X.; Shen, X. A simulated-TPD study of H2 desorption on metal surfaces. Surf. Sci. 2022, 718, 122015. [Google Scholar] [CrossRef]
- Ousmane, M.; Liotta, L.F.; Di Carlo, G.; Pantaleo, G.; Venezia, A.M.; Deganello, G.; Retailleau, L.; Boreave, A.; Giroir-Fendler, A. Supported Au catalysts for low-temperature abatement of propene and toluene, as model VOCs: Support effect. Appl. Catal. B 2011, 101, 629–637. [Google Scholar] [CrossRef]
- Yu, J.; Wu, G.; Lu, G.; Mao, D.; Guo, Y. Promoting effects of ceria on the catalytic performance of gold supported on TiO2 for low-temperature CO oxidation. RSC Adv. 2014, 4, 16985–16991. [Google Scholar] [CrossRef]
- Liu, H.; Kozlov, A.I.; Kozlova, A.P.; Shido, T.; Asakura, K.; Iwasawa, Y. Active oxygen species and mechanism for low-temperature CO oxidation reaction on a TiO2-supported Au catalyst prepared from Au(PPh3)(NO3) and as-precipitated titanium hydroxide. J. Catal. 1999, 185, 252–264. [Google Scholar] [CrossRef]
- Byun, M.Y.; Kim, Y.E.; Baek, J.H.; Jae, J.; Lee, M.S. Effect of surface properties of TiO2 on the performance of Pt/TiO2 catalysts for furfural hydrogenation. RSC Adv. 2022, 12, 860–868. [Google Scholar] [CrossRef]
- Panayotov, D.A.; Burrows, S.P.; Yates, J.T.; Morris, J.R. Mechanistic studies of hydrogen dissociation and spillover on Au/TiO2: IR spectroscopy of coadsorbed CO and H-donated electrons. J. Phys. Chem. C 2011, 115, 22400–22408. [Google Scholar] [CrossRef]
- Panayotov, D.A.; Yates, J.T. Spectroscopic detection of hydrogen atom spillover from Au nanoparticles supported on TiO2: Use of conduction band electrons. J. Phys. Chem. C 2007, 111, 2959–2964. [Google Scholar] [CrossRef]
- Yingxin, L.; Jixiang, C.; Jiyan, Z. Effects of the Supports on Activity of Supported Nickel Catalysts for Hydrogenation of m-Dinitrobenzene to m-Phenylenediamine. Chin. J. Chem. Eng. 2007, 15, 63–67. [Google Scholar] [CrossRef]
- Cárdenas-Lizana, F.; Keane, M.A. Gas phase selective hydrogenation over oxide supported Ni-Au. Phys. Chem. Chem. Phys. 2015, 17, 28088–28095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Widmann, D.; Heenemann, M.; Diemant, T.; Biskupek, J.; Schlögl, R.; Behm, R.J. The role of electronic metal-support interactions and its temperature dependence: CO adsorption and CO oxidation on Au/TiO2 catalysts in the presence of TiO2 bulk defects. J. Catal. 2017, 354, 46–60. [Google Scholar] [CrossRef]
- Brudvig, G.W.; Iverson, T.M.; Maghlaoui, K.; Barber, J.; Iwata, S.; Kern, J.; Saenger, W.; Zouni, A.; Biesiadka, J.; Haumann, M.; et al. Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a AuTiO2 Catalyst. Science 2011, 333, 736–740. [Google Scholar]
- Derrouiche, S.; Gravejat, P.; Bianchi, D. Heats of adsorption of linear CO species adsorbed on the Au° and Ti+δ of a 1% Au/TiO2 catalyst using in situ FTIR spectroscopy under adsorption equilibrium. J. Am. Chem. Soc. 2004, 126, 13010–13015. [Google Scholar] [CrossRef]
- Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2002, 48, 53–229. [Google Scholar] [CrossRef]
- Pan, X.; Yang, M.Q.; Fu, X.; Zhang, N.; Xu, Y.J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601–3614. [Google Scholar] [CrossRef]
- Jia, A.; Zhang, Y.; Song, T.; Zhang, Z.; Tang, C.; Hu, Y.; Zheng, W.; Luo, M.; Lu, J.; Huang, W. Crystal-plane effects of anatase TiO2 on the selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts. J. Catal. 2021, 395, 10–22. [Google Scholar] [CrossRef]
- Liu, L.; Gu, X.; Ji, Z.; Zou, W.; Tang, C.; Gao, F.; Dong, L. Anion-assisted synthesis of TiO2 nanocrystals with tunable crystal forms and crystal facets and their photocatalytic redox activities in organic reactions. J. Phys. Chem. C 2013, 117, 18578–18587. [Google Scholar] [CrossRef]
- Li, Q.; Wu, C.; Wang, K.; Wang, X.; Chen, X.; Dai, W.; Fu, X. Comparison of the catalytic performance of Au/TiO2 prepared by in situ photodeposition and deposition precipitation methods for CO oxidation at room temperature under visible light irradiation. Catal. Sci. Technol. 2022, 12, 237–249. [Google Scholar] [CrossRef]
- Grunwaldt, J.; Maciejewski, M.; Becker, O.S.; Fabrizioli, P.; Baiker, A. Comparative Study of Au/TiO 2 and Au/ZrO 2 Catalysts for Low-Temperature CO Oxidation. J. Catal. 1999, 469, 458–469. [Google Scholar] [CrossRef]
- Wei, S.; Wang, W.W.; Fu, X.P.; Li, S.Q.; Jia, C.J. The effect of reactants adsorption and products desorption for Au/TiO2 in catalyzing CO oxidation. J. Catal. 2019, 376, 134–145. [Google Scholar] [CrossRef]
- Liu, N.; Xu, M.; Yang, Y.; Zhang, S.; Zhang, J.; Wang, W.; Zheng, L.; Hong, S.; Wei, M. Auδ--Ov-Ti3+ Interfacial Site: Catalytic Active Center toward Low-Temperature Water Gas Shift Reaction. ACS Catal. 2019, 9, 2707–2717. [Google Scholar] [CrossRef]
- Tsunoyama, H.; Ichikuni, N.; Sakurai, H.; Tsukuda, T. Effect of electronic structures of au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J. Am. Chem. Soc. 2009, 131, 7086–7093. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Höfft, O.; Gödde, A.S.; Endres, F. In Situ Electrochemical XPS Monitoring of the Formation of Anionic Gold Species by Cathodic Corrosion of a Gold Electrode in an Ionic Liquid. J. Phys. Chem. C 2021, 125, 26793–26800. [Google Scholar] [CrossRef]
- Erdem, B.; Hunsicker, R.A.; Simmons, G.W.; David Sudol, E.; Dimonie, V.L.; El-Aasser, M.S. XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 2001, 17, 2664–2669. [Google Scholar] [CrossRef]
- Zwijnenburg, A.; Goossens, A.; Sloof, W.G.; Craje, M.W.J. XPS and Mo 1 ssbauer Characterization of Au/TiO2 Propene Epoxidation Catalysts. J. Phys. Chem. B 2002, 106, 9853–9862. [Google Scholar] [CrossRef]
- Senna, M.; Šepelák, V.; Shi, J.; Bauer, B.; Feldhoff, A.; Laporte, V.; Becker, K.D. Introduction of oxygen vacancies and fluorine into TiO2 nanoparticles by co-milling with PTFE. J. Solid State Chem. 2012, 187, 51–57. [Google Scholar] [CrossRef]
- Mohr, C.; Claus, P. On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis. Phys. Chem. Chem. Phys. 2003, 5, 172–177. [Google Scholar]
- Chenakin, S.; Kruse, N. Combining XPS and ToF-SIMS for assessing the CO oxidation activity of Au/TiO2 catalysts. J. Catal. 2018, 358, 224–236. [Google Scholar] [CrossRef]
- McCafferty, E.; Wightman, J.P. Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf. Interface Anal. 1998, 26, 549–564. [Google Scholar] [CrossRef]
- Kruse, N.; Chenakin, S. XPS characterization of Au/TiO2 catalysts: Binding energy assessment and irradiation effects. Appl. Catal. A-Gen. 2011, 391, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Wei, S.; Wang, W.W.; Jia, C.J. The Effect of Hydrogenated TiO2 to the Au/TiO2 Catalyst in Catalyzing CO Oxidation. Langmuir 2021, 37, 3270–3280. [Google Scholar] [CrossRef]
- Abdel-Mageed, A.M.; Klyushin, A.; Rezvani, A.; Knop-Gericke, A.; Schlögl, R.; Behm, R.J. Negative Charging of Au Nanoparticles during Methanol Synthesis from CO2/H2 on a Au/ZnO Catalyst: Insights from Operando IR and Near-Ambient-Pressure XPS and XAS Measurements. Angew. Chem. Int. Ed. 2019, 58, 10325–10329. [Google Scholar] [CrossRef]
- Wang, X.; Arai, M.; Wu, Q.; Zhang, C.; Zhao, F. Hydrodeoxygenation of lignin-derived phenolics-a review on the active sites of supported metal catalysts. Green Chem. 2020, 22, 8140–8168. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, T.; Ma, L.; Zhang, Q.; Yu, Y.; Liu, Q. Characterization and catalytic properties of Ni and NiCu catalysts supported on ZrO2-SiO2 for guaiacol hydrodeoxygenation. Catal. Commun. 2013, 33, 15–19. [Google Scholar] [CrossRef]
- Wang, X.; Wu, P.; Wang, Z.; Zhou, L.; Liu, Y.; Cheng, H.; Arai, M.; Zhang, C.; Zhao, F. Chlorine-Modified Ru/TiO2 Catalyst for Selective Guaiacol Hydrodeoxygenation. ACS Sustain Chem. Eng. 2021, 9, 3083–3094. [Google Scholar] [CrossRef]
- Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Chen, W.; Jia, C.; Zheng, L.; Dong, J.; Zheng, X.; Wang, Y.; Yan, W.; Chen, C.; Peng, Q.; et al. Defect Effects on TiO2 Nanosheets: Stabilizing Single Atomic Site Au and Promoting Catalytic Properties. Adv. Mater. 2018, 30, 1705369. [Google Scholar] [CrossRef] [PubMed]
Samples | SBET (m2·g−1) | Au Content (wt%) a |
---|---|---|
TiO2-101 | 118 | - |
TiO2-001 | 107 | - |
Au/TiO2-101 | 109 | 0.91 |
Au/TiO2-001 | 101 | 1.04 |
Sample b | Conv. (%) | C6-Ring Sel. (%) | C1 Sel. (%) | |||||
---|---|---|---|---|---|---|---|---|
Phenol | Catechol | Methylated Phenols | Cyclohexanol | Others c | CH4 | CH3OH | ||
TiO2-101 | 5.8 | 50.1 | 0 | 0 | 0 | 49.4 | - | 100 |
TiO2-001 | 6.4 | 51.6 | 0 | 0 | 0 | 48.4 | - | 100 |
Au/TiO2-101 | 39.4 | 60.2 | 6.0 | 23.4 | 6.5 | 3.9 | 80.2 | 19.8 |
Au/TiO2-001 | 19.7 | 49.1 | 9.4 | 27.7 | 8.5 | 5.6 | 9.4 | 90.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Zhang, X.; Mao, J.; Wang, Y.; Zhang, G.; Zhang, Z.C.; Guo, X. Crystal-Plane-Dependent Guaiacol Hydrodeoxygenation Performance of Au on Anatase TiO2. Catalysts 2023, 13, 699. https://doi.org/10.3390/catal13040699
Zhao B, Zhang X, Mao J, Wang Y, Zhang G, Zhang ZC, Guo X. Crystal-Plane-Dependent Guaiacol Hydrodeoxygenation Performance of Au on Anatase TiO2. Catalysts. 2023; 13(4):699. https://doi.org/10.3390/catal13040699
Chicago/Turabian StyleZhao, Bin, Xiaoqiang Zhang, Jingbo Mao, Yanli Wang, Guanghui Zhang, Zongchao Conrad Zhang, and Xinwen Guo. 2023. "Crystal-Plane-Dependent Guaiacol Hydrodeoxygenation Performance of Au on Anatase TiO2" Catalysts 13, no. 4: 699. https://doi.org/10.3390/catal13040699
APA StyleZhao, B., Zhang, X., Mao, J., Wang, Y., Zhang, G., Zhang, Z. C., & Guo, X. (2023). Crystal-Plane-Dependent Guaiacol Hydrodeoxygenation Performance of Au on Anatase TiO2. Catalysts, 13(4), 699. https://doi.org/10.3390/catal13040699