Ordered Mesoporous TiO2: The Effect of Structure, Residual Template and Metal Doping on Photocatalytic Activity
Abstract
:1. Introduction
2. Results
2.1. Structural Characteristics of the TiO2 Samples
2.2. Textural Properties
2.3. Optical Properties and Surface Composition
2.4. Effect of Mesoporous Structure and Metal Loading in Product Evolution
3. Materials and Methods
3.1. Synthesis of Un-Doped and Metal Doped Ordered Mesoporous Titania
3.2. Characterization
3.3. Photocatalytic Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moustakas, N.G.; Strunk, J. Photocatalytic CO2 Reduction on TiO2-Based Materials under Controlled Reaction Conditions: Systematic Insights from a Literature Study. Chem. Eur. J. 2018, 24, 12739–12746. [Google Scholar] [CrossRef] [PubMed]
- Kondratenko, E.V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G.O.; Pérez-Ramírez, J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 2013, 6, 3112–3135. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P.; Robert, D. Modified TiO2 for environmental photocatalytic applications: A review. Ind. Eng. Chem. Res. 2013, 52, 3581–3599. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhao, Y.; Zhang, J.; Zheng, C. Efficient photocatalytic reduction of CO2 into liquid products over cerium doped titania nanoparticles synthesized by a sol–gel auto-ignited method. Fuel Process. Technol. 2015, 135, 6–13. [Google Scholar] [CrossRef]
- Fattakhova-Rohlfing, D.; Zaleska, A.; Bein, T. Three-dimensional titanium dioxide nanomaterials. Chem. Rev. 2014, 114, 9487–9558. [Google Scholar] [CrossRef]
- Cherevan, A.S.; Deilmann, L.; Weller, T.; Eder, D.; Marschall, R. Mesoporous Semiconductors: A New Model to Assess Accessible Surface Area and Increased Photocatalytic Activity? ACS Appl. Energy Mater. 2018, 1, 5787–5799. [Google Scholar] [CrossRef]
- Zhang, R.; Elzatahry, A.A.; Al-Deyab, S.S.; Zhao, D. Mesoporous titania: From synthesis to application. Nano Today 2012, 7, 344–366. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, Y.; He, H.; Xu, L.; Li, W.; Zhao, D. Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications. Natl. Sci. Rev. 2020, 7, 1702–1725. [Google Scholar] [CrossRef]
- Zhang, T.; Low, J.; Koh, K.; Yu, J.; Asefa, T. Mesoporous TiO2 Comprising Small, Highly Crystalline Nanoparticles for Efficient CO2 Reduction by H2O. ACS Sustain. Chem. Eng. 2018, 6, 531–540. [Google Scholar] [CrossRef]
- Lo, A.-Y.; Taghipour, F. Ordered mesoporous photocatalysts for CO2 photoreduction. J. Mater. Chem. A 2021, 9, 26430–26453. [Google Scholar] [CrossRef]
- Parlett, C.M.; Wilson, K.; Lee, A.F. Hierarchical porous materials: Catalytic applications. Chem. Soc. Rev. 2013, 42, 3876–3893. [Google Scholar] [CrossRef]
- Ismail, A.A.; Bahnemann, D.W. Mesoporous titania photocatalysts: Preparation, characterization and reaction mechanisms. J. Mater. Chem. 2011, 21, 11686–11707. [Google Scholar] [CrossRef]
- Bonelli, B.; Esposito, S.; Freyria, F.S. Mesoporous Titania: Synthesis, Properties and Comparison with Non-Porous Titania. In Titanium Dioxide; InTechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Zimny, K.; Ghanbaja, J.; Carteret, C.; Stébé, M.-J.; Blin, J.-L. Highly ordered mesoporous titania with semi crystalline framework templated by large or small nonionic surfactants. New J. Chem. 2010, 34, 2113–2117. [Google Scholar] [CrossRef]
- Zimny, K.; Roques-Carmes, T.; Carteret, C.; Stébé, M.; Blin, J. Synthesis and photoactivity of ordered mesoporous titania with a semicrystalline framework. J. Phys. Chem. C 2012, 116, 6585–6594. [Google Scholar] [CrossRef]
- Mohammed, A.M.; Sebek, M.; Kreyenschulte, C.; Lund, H.; Rabeah, J.; Langer, P.; Strunk, J.; Steinfeldt, N. Effect of metal ion addition on structural characteristics and photocatalytic activity of ordered mesoporous titania. J. Sol-Gel Sci. Technol. 2019, 91, 539–551. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.-J.; Peng, X.; Li, Z.-S.; Zeng, M.-X. Preparation and improved photocatalytic activity of ordered mesoporous TiO2 by evaporation induced self-assembly technique using liquid crystal as template. T. Nonferr. Metal. Soc. 2014, 24, 1072–1078. [Google Scholar]
- Zhang, W.; He, H.; Tian, Y.; Lan, K.; Liu, Q.; Wang, C.; Liu, Y.; Elzatahry, A.; Che, R.; Li, W.; et al. Synthesis of uniform ordered mesoporous TiO2 microspheres with controllable phase junctions for efficient solar water splitting. Chem. Sci. 2019, 10, 1664–1670. [Google Scholar] [CrossRef]
- Wang, T.; Meng, X.G.; Li, P.; Ouyang, S.X.; Chang, K.; Liu, G.G.; Mei, Z.W.; Ye, J.H. Photoreduction of CO2 over the well-crystallized ordered mesoporous TiO2 with the confined space effect. Nano Energy 2014, 9, 50–60. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Jung, H.S.; Kim, J.M.; Kang, Y.T. Photocatalytic CO2 conversion on highly ordered mesoporous materials: Comparisons of metal oxides and compound semiconductors. Appl. Catal. B-Environ. 2018, 224, 594–601. [Google Scholar] [CrossRef]
- Wang, T.; Meng, X.; Liu, G.; Chang, K.; Li, P.; Kang, Q.; Liu, L.; Li, M.; Ouyang, S.; Ye, J. In situ synthesis of ordered mesoporous Co-doped TiO2 and its enhanced photocatalytic activity and selectivity for the reduction of CO2. J. Mater. Chem. A 2015, 3, 9491–9501. [Google Scholar] [CrossRef]
- Xue, H.; Wang, T.; Gong, H.; Guo, H.; Fan, X.; Gao, B.; Feng, Y.; Meng, X.; Huang, X.; He, J. Constructing Ordered Three-Dimensional TiO2 Channels for Enhanced Visible-Light Photocatalytic Performance in CO2 Conversion Induced by Au Nanoparticles. Chem. Asian J. 2018, 13, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zhu, X.; Chen, Z.; Ren, Y.; Wang, W.; Han, C.; Li, W.; Li, S.; Cheng, G. Oxygen Vacancy and Metallic Silver Site Coinjection Associates Photocatalytic CO2 Reduction upon Mesoporous NH2–TiO2 Nanoparticles Assembly. Solar RRL 2022, 6, 2200657. [Google Scholar] [CrossRef]
- Sing, K.S.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Zuas, O.; Budiman, H. Synthesis of nanostructured copper-doped titania and its properties. Nano-Micro Lett. 2013, 5, 26–33. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, R.; Zhang, M.; Gao, S. Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance. J. Alloys Compd. 2017, 690, 139–144. [Google Scholar] [CrossRef]
- Zhang, D. Chemical synthesis of Ni/TiO2 nanophotocatalyst for UV/visible light assisted degradation of organic dye in aqueous solution. J. Sol-Gel Sci. Technol. 2011, 58, 312–318. [Google Scholar] [CrossRef]
- Brik, M.; Srivastava, A.; Popov, A. A few common misconceptions in the interpretation of experimental spectroscopic data. Opt. Mater. 2022, 127, 112276. [Google Scholar] [CrossRef]
- Jubu, P.; Yam, F.; Igba, V.; Beh, K. Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data–a case study of β-Ga2O3. J. Solid State Chem. 2020, 290, 121576. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef]
- Choudhury, B.; Dey, M.; Choudhury, A. Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int. Nano Lett. 2013, 3, 25. [Google Scholar] [CrossRef]
- Park, S.-M.; Razzaq, A.; Park, Y.H.; Sorcar, S.; Park, Y.; Grimes, C.A.; In, S.-I. Hybrid CuxO–TiO2 Heterostructured Composites for Photocatalytic CO2 Reduction into Methane Using Solar Irradiation: Sunlight into Fuel. ACS Omega 2016, 1, 868–875. [Google Scholar] [CrossRef]
- Anitha, B.; Khadar, M.A. Dopant concentration dependent magnetism of Cu-doped TiO2 nanocrystals. J. Nanopart. Res. 2016, 18, 149. [Google Scholar] [CrossRef]
- Colon, G.; Maicu, M.; Hidalgo, M.S.; Navio, J. Cu-doped TiO2 systems with improved photocatalytic activity. Appl. Catal. B 2006, 67, 41–51. [Google Scholar] [CrossRef]
- Li, G.; Dimitrijevic, N.M.; Chen, L.; Rajh, T.; Gray, K.A. Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO−TiO2 nanocomposites. J. Phys. Chem. C 2008, 112, 19040–19044. [Google Scholar] [CrossRef]
- Baltazar, P.; Lara, V.; Cordoba, G.; Arroyo, R. Kinetics of the amorphous—Anatase phase transformation in copper doped titanium oxide. J. Sol-Gel Sci. Technol. 2006, 37, 129–133. [Google Scholar] [CrossRef]
- Yao, X.; Tang, C.; Ji, Z.; Dai, Y.; Cao, Y.; Gao, F.; Dong, L.; Chen, Y. Investigation of the physicochemical properties and catalytic activities of Ce 0.67 M 0.33 O2 (M = Zr4+, Ti4+, Sn4+) solid solutions for NO removal by CO. Catal. Sci. Technol. 2013, 3, 688–698. [Google Scholar] [CrossRef]
- Zeng, M.; Li, Y.; Mao, M.; Bai, J.; Ren, L.; Zhao, X. Synergetic effect between photocatalysis on TiO2 and thermocatalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites. ACS Catalysis 2015, 5, 3278–3286. [Google Scholar] [CrossRef]
- Deng, C.; Li, B.; Dong, L.; Zhang, F.; Fan, M.; Jin, G.; Gao, J.; Gao, L.; Zhang, F.; Zhou, X. NO reduction by CO over CuO supported on CeO2-doped TiO2: The effect of the amount of a few CeO2. Phys. Chem. Chem. Phys. 2015, 17, 16092–16109. [Google Scholar] [CrossRef]
- Dilla, M.; Schlögl, R.; Strunk, J. Photocatalytic CO2 Reduction Under Continuous Flow High-Purity Conditions: Quantitative Evaluation of CH4 Formation in the Steady-State. ChemCatChem 2017, 9, 696–704. [Google Scholar] [CrossRef]
- Pougin, A.; Dilla, M.; Strunk, J. Identification and exclusion of intermediates of photocatalytic CO2 reduction on TiO2 under conditions of highest purity. Phys. Chem. Chem. Phys. 2016, 18, 10809–10817. [Google Scholar] [CrossRef]
- Moustakas, N.G.; Lorenz, F.; Dilla, M.; Peppel, T.; Strunk, J. Pivotal Role of Holes in Photocatalytic CO2 Reduction on TiO2. Chemistry 2021, 27, 17213–17219. [Google Scholar] [CrossRef] [PubMed]
Sample | Crystal Phase | s m2/g | Vp cm3/g | dp nm | Cryst. Size * nm | Band Gap eV |
---|---|---|---|---|---|---|
P25 | Anatase/Rutile | 50 | n.d. | n.d. | n.d. | 3.2 |
om-TiO2 | Anatase/β-TiO2 | 166 | 0.27 | 3.9 | 5 | 3.17 ± 0.04 |
0.5 mol% Cu | Anatase/β-TiO2 | 169 | 0.23 | 3.9 | 5 | 3.18 ± 0.04 |
0.5 mol% Ce | Anatase/β-TiO2 | 135 | 0.24 | 3.9 | 4 | 3.22 ± 0.04 |
Sample | Ti Atom% | O Atom% | C Atom% | N Atom% | Dopant Atom% |
---|---|---|---|---|---|
P25 | |||||
pristine om-TiO2 | 23.8 | 55.1 | 18.8 | 0.5 | n.a. |
om-TiO2/0.5 mol% Cu | 23.8 | 56.0 | 18.5 | 0.6 | 0.3 |
om-TiO2/0.5 mol% Ce | 25.3 | 52.0 | 20.1 | 0.6 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, A.M.; Becerikli, A.E.; Ristig, S.; Steinfeldt, N.; Strunk, J. Ordered Mesoporous TiO2: The Effect of Structure, Residual Template and Metal Doping on Photocatalytic Activity. Catalysts 2023, 13, 895. https://doi.org/10.3390/catal13050895
Mohammed AM, Becerikli AE, Ristig S, Steinfeldt N, Strunk J. Ordered Mesoporous TiO2: The Effect of Structure, Residual Template and Metal Doping on Photocatalytic Activity. Catalysts. 2023; 13(5):895. https://doi.org/10.3390/catal13050895
Chicago/Turabian StyleMohammed, Ahmed M., Ahmet E. Becerikli, Simon Ristig, Norbert Steinfeldt, and Jennifer Strunk. 2023. "Ordered Mesoporous TiO2: The Effect of Structure, Residual Template and Metal Doping on Photocatalytic Activity" Catalysts 13, no. 5: 895. https://doi.org/10.3390/catal13050895
APA StyleMohammed, A. M., Becerikli, A. E., Ristig, S., Steinfeldt, N., & Strunk, J. (2023). Ordered Mesoporous TiO2: The Effect of Structure, Residual Template and Metal Doping on Photocatalytic Activity. Catalysts, 13(5), 895. https://doi.org/10.3390/catal13050895