Solution Plasma for Surface Design of Advanced Photocatalysts
Abstract
:1. Introduction
2. SP Fundamental
2.1. Physical and Chemical Properties of SP
2.2. SP for Materials Preparation
2.2.1. Oxide Materials
2.2.2. Carbon Materials
2.2.3. Metal Materials
2.2.4. Composite Materials
3. Surface Design of Advanced Photocatalysts by SP
3.1. Surface Modification of Semiconductor Oxides
3.1.1. Surface Electronic State Regulation
3.1.2. Crystal Facet Modulation
3.1.3. Surface Amorphization
3.2. Single-Atom Metal Synthesis and Support Modulation
3.3. Construction of Multidimensional Heterojunctions
4. Conclusions and Future Perspectives
- The material systems are expanded from photocatalysis to electrocatalysis, thermal catalysis, dye-sensitized solar cells, etc. Recently, Li et al. utilized SP to modify transparent MoOx film, loading it with Pt to act as counter electrodes for bifacial dye-sensitized solar cells (DSSCs). The fabricated DSSCs exhibited excellent double-sided electrocatalytic efficiency of 7.56% and 6.41% with front- and rear-side illumination, respectively [155]. Therefore, SP has the potential to prepare diversified materials for various fields. In addition, it is reasonably expected that the materials suitable for SP processing can be extended from oxides to sulfides, carbides, nitrides, etc., and even polymer systems, such as covalent-organic frameworks, metal-organic frameworks, porous organic polymers, etc.
- SP has been successfully employed to prepare single-atom metals and double-atom metals for catalyst applications. It is reasonable to expect that multi-atom metal catalysts of metal kinds over three as well as high-entropy alloy catalysts could be prepared by SP in the future. In addition, non-metallic materials with the advantages of low cost and abundant reserves also have broad application prospects. SP can be attempted to synthesize non-metallic single atoms, non-metallic multiple atoms, and even non-metallic high-entropy alloys.
- Plasma catalysis has achieved a series of achievements in nitrogen fixation, waste degradation, and fuel synthesis [156,157,158]. The combination of SP with various types of catalysis, such as photo-, thermal-, and electro-catalysis, may possibly achieve rapid mass production and directional selection of products with low energy consumption. Extra energy input can accelerate the reaction rate for mass production. Moreover, different energy fields may affect the proportion of active species and alter the catalytic reaction paths, ultimately achieving precise product orientation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fujishima, A.; Zhang, X.T.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Ohtani, B. Titania Photocatalysis beyond Recombination: A Critical Review. Catalysts 2013, 3, 942–953. [Google Scholar] [CrossRef] [Green Version]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Roy, N.; Suzuki, N.; Terashima, C.; Fujishima, A. Recent Improvements in the Production of Solar Fuels: From CO2 Reduction to Water Splitting and Artificial Photosynthesis. Bull. Chem. Soc. Jpn. 2019, 92, 178–192. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.N.; Wang, C.H.; Wan, F.X.; Zheng, H.; Zhang, X.T. Synergistic effect of surface self-doping and Fe species-grafting for enhanced photocatalytic activity of TiO2 under visible-light. Appl. Surf. Sci. 2017, 396, 26–35. [Google Scholar] [CrossRef]
- Kong, L.N.; Jiang, Z.Q.; Wang, C.H.; Wan, F.X.; Li, Y.Y.; Wu, L.Z.; Zhi, J.-F.; Zhang, X.T.; Chen, S.J.; Liu, Y.C. Simple ethanol impregnation treatment can enhance photocatalytic activity of TiO2 nanoparticles under visible-light irradiation. ACS Appl. Mater. Interfaces 2015, 7, 7752–7758. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.B.; Wang, W.W.; Deng, F.; Han, L.; Gao, X.M.; Feng, Z.J.; Chen, Z.; Huang, J.T.; Zengi, F.Y.; et al. Bi and S Co-doping g-C3N4 to Enhance Internal Electric Field for Robust Photocatalytic Degradation and H2 Production. Chin. J. Struct. Chem. 2022, 41, 2206069–2206078. [Google Scholar]
- Li, Y.Y.; Wang, C.H.; Zheng, H.; Wan, F.X.; Yu, F.; Zhang, X.T.; Liu, Y.C. Surface oxygen vacancies on WO3 contributed to enhanced photothermo-synergistic effect. Appl. Surf. Sci. 2017, 391, 654–661. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, X.T.; Sun, P.P.; Lu, S.; Wang, L.L.; Wang, C.H.; Liu, Y.C. Photoelectrochemical water splitting with rutile TiO2 nanowires array: Synergistic effect of hydrogen treatment and surface modification with anatase nanoparticles. Electrochim. Acta 2014, 130, 290–295. [Google Scholar] [CrossRef]
- Jiang, T.T.; Xie, W.W.; Geng, S.P.; Li, R.C.; Song, S.Q.; Wang, Y. Constructing oxygen vacancy-regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis. Chin. J. Catal. 2022, 43, 2434–2442. [Google Scholar] [CrossRef]
- Shen, R.C.; Hao, L.; Chen, Q.; Zheng, Q.Q.; Zhang, P.; Li, X. P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2P Cocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Phys.-Chim. Sin. 2022, 38, 2110014. [Google Scholar]
- Zheng, H.; Wang, C.H.; Zhang, X.T.; Li, Y.Y.; Ma, H.; Liu, Y.C. Control over energy level match in Keggin polyoxometallate-TiO2 microspheres for multielectron photocatalytic reactions. Appl. Catal. B 2018, 234, 79–89. [Google Scholar] [CrossRef]
- Wang, C.H.; Zhang, X.T.; Liu, Y.C. Coexistence of an anatase/TiO2(B) heterojunction and an exposed (001) facet in TiO2 nanoribbon photocatalysts synthesized via a fluorine-free route and topotactic transformation. Nanoscale 2014, 6, 5329–5337. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Liu, G.; Lu, G.Q.; Cheng, H.M. On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. Angew. Chem. Int. Ed. 2011, 50, 2133–2137. [Google Scholar] [CrossRef]
- Tan, C.S.; Hsu, S.C.; Ke, W.H.; Chen, L.J.; Huang, M.H. Facet-Dependent electrical conductivity properties of Cu2O crystals. Nano Lett. 2015, 15, 2155–2160. [Google Scholar] [CrossRef]
- Takata, T.; Jiang, J.Z.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414. [Google Scholar] [CrossRef]
- Li, R.G.; Zhang, F.X.; Wang, D.G.; Yang, J.X.; Li, M.R.; Zhu, J.; Zhou, X.; Han, H.X.; Li, C. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 2013, 4, 1432. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.T.; Bari, G.A.K.M.R.; Kang, H.-J.; Lee, T.-G.; Park, J.-W.; Hwang, H.-J.; Hossain, S.M.; Mun, J.S.; Suzuki, N.; Fujishima, A.; et al. Synthesis of N-Doped TiO2 for Efficient Photocatalytic Degradation of Atmospheric NOx. Catalysts 2021, 11, 109. [Google Scholar] [CrossRef]
- Wang, C.H.; Zhang, X.T.; Zhang, Y.L.; Jia, Y.; Yuan, B.; Yang, J.K.; Sun, P.P.; Liu, Y.C. Morphologically-tunable TiO2 nanorod film with high energy facets: Green synthesis, growth mechanism and photocatalytic activity. Nanoscale 2012, 4, 5023–5030. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Uchida, A.; Tominaga, Y.; Fujii, Y.; Yadav, A.A.; Kang, S.-W.; Suzuki, N.; Shitanda, I.; Kondo, T.; Itagaki, M.; et al. Visible Light-Assisted Photocatalysis Using Spherical-Shaped BiVO4 Photocatalyst. Catalysts 2021, 11, 460. [Google Scholar] [CrossRef]
- Wang, C.H.; Zhang, X.T.; Zhang, Y.L.; Jia, Y.; Yang, J.K.; Sun, P.P.; Liu, Y.C. Hydrothermal Growth of Layered Titanate Nanosheet Arrays on Titanium Foil and Their Topotactic Transformation to Heterostructured TiO2 Photocatalysts. J. Phys. Chem. C 2011, 115, 22276–22285. [Google Scholar] [CrossRef]
- Kim, J.-H.; Hossain, S.M.; Kang, H.-J.; Park, H.; Tijing, L.; Park, G.W.; Suzuki, N.; Fujishima, A.; Jun, Y.-S.; Shon, H.K.; et al. Hydrophilic/Hydrophobic Silane Grafting on TiO2 Nanoparticles: Photocatalytic Paint for Atmospheric Cleaning. Catalysts 2021, 11, 193. [Google Scholar] [CrossRef]
- Takeshi, M.; Ryoji, A.; Takeshi, O. 11-Nitrogen Doping into TiO2 and Loading of Co-Catalysts for Enhanced Photocatalysis Under Visible-Light Irradiation. In Handbook of Self-Cleaning Surfaces and Materials From Fundamentals to Applications; Fujishima, A., Irie, H., Zhang, X.T., Tryk, D.A., Eds.; Wiley-VCH GmbH: Weinheim, Germany, 2023; pp. 264–271. [Google Scholar]
- Yu, F.; Wang, C.H.; Ma, H.; Song, M.; Li, D.S.; Li, Y.Y.; Li, S.M.; Zhang, X.T.; Liu, Y.C. Revisiting Pt/TiO2 photocatalysts for thermally assisted photocatalytic reduction of CO2. Nanoscale 2020, 12, 7000–7010. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Wang, C.H.; Song, M.; Li, D.S.; Zhang, X.T.; Liu, Y.C. TiO2-x/CoOx photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam. Appl. Catal. B 2019, 243, 760–770. [Google Scholar] [CrossRef]
- Lu, S.; Wang, Y.L.; Li, F.; Yang, G.C.; Yang, H.Y.; Zhang, X.T.; Liu, Y.C. Adsorption Energy Optimization of Co3O4 through Rapid Surface Sulfurization for Efficient Counter Electrode in Dye-Sensitized Solar Cells. J. Phys. Chem. C 2017, 121, 12524–12530. [Google Scholar] [CrossRef]
- Wang, J.J.; Meeprasert, J.; Han, Z.; Wang, H.; Feng, Z.D.; Tang, C.Z.; Sha, F.; Tang, S.; Li, G.N.; Pidko, E.A.; et al. Highly dispersed Cd cluster supported on TiO2 as an efficient catalyst for CO2 hydrogenation to methanol. Chin. J. Catal. 2022, 43, 761–770. [Google Scholar] [CrossRef]
- Ding, X.M.; Liang, Y.L.; Zhang, H.L.; Zhao, M.; Wang, J.L.; Chen, Y.Q. Preparation of Reduced Pt-Based Catalysts with High Dispersion and Their Catalytic Performances for NO Oxidation. Acta Phys.-Chim. Sin. 2022, 38, 2005009. [Google Scholar] [CrossRef]
- Kong, L.N.; Zhang, X.T.; Wang, C.H.; Wan, F.X.; Li, L. Synergic effects of CuxO electron transfer co-catalyst and valence band edge control over TiO2 for efficient visible-light photocatalysis. Chin. J. Catal. 2017, 38, 2120–2131. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, C.H.; Zhang, X.T.; Kong, L.N.; Li, Y.Y.; Liu, Y.Y.; Liu, Y.C. Ultrasonic spray pyrolysis assembly of a TiO2-WO3-Pt multi-heterojunction microsphere photocatalyst using highly crystalline WO3 nanosheets: Less is better. New J. Chem. 2016, 40, 3225–3232. [Google Scholar] [CrossRef]
- Yan, J.Y.; Wang, C.H.; Ma, H.; Li, Y.Y.; Liu, Y.C.; Suzuki, N.; Terashima, C.; Fujishima, A.; Zhang, X.T. Photothermal synergic enhancement of direct Z-scheme behavior of Bi4TaO8Cl/W18O49 heterostructure for CO2 reduction. Appl. Catal. B 2020, 268, 118401. [Google Scholar] [CrossRef]
- Li, C.M.; Chen, K.; Wang, X.Y.; Xue, N.; Yang, H.Q. Understanding the Role of Cu/ZnO Interaction in CO2 Hydrogenation to Methanol. Acta Phys.-Chim. Sin. 2021, 37, 2009101. [Google Scholar]
- Yang, Y.; Wu, J.S.; Cheng, B.; Zhang, L.Y.; Al-Ghamdi, A.A.; Wageh, S.; Li, Y.J. Enhanced Photocatalytic H2-production Activity of CdS Nanoflower using Single Atom Pt and Graphene Quantum Dot as Dual Cocatalysts. Chin. J. Struct. Chem. 2022, 41, 2206006–2206014. [Google Scholar]
- Li, S.M.; Wang, C.H.; Li, D.S.; Xing, Y.M.; Zhang, X.T.; Liu, Y.C. Bi4TaO8Cl/Bi heterojunction enables high-selectivity photothermal catalytic conversion of CO2-H2O flow to liquid alcohol. Chem. Eng. J. 2022, 435, 135133. [Google Scholar] [CrossRef]
- Zhang, M.M.; Wang, C.H.; Wang, Y.Y.; Li, S.M.; Zhang, X.T.; Liu, Y.C. Tunable bismuth doping/loading endows NaTaO3 nanosheet highly selective photothermal reduction of CO2. Nano Res. 2023, 16, 2142–2151. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Zhang, X.T.; Chen, Y.; Kong, L.N.; Chen, P.; Wang, Y.L.; Wang, C.H.; Wang, L.L.; Liu, Y.C. Enhanced photoelectrochemical performance of nanoporous BiVO4 photoanode by combining surface deposited cobalt-phosphate with hydrogenation treatment. Electrochim. Acta 2016, 195, 51–58. [Google Scholar] [CrossRef]
- Peng, X.F.; Wang, C.H.; Li, Y.Y.; Ma, H.; Yu, F.; Che, G.S.; Yan, J.Y.; Zhang, X.T.; Liu, Y.C. Revisiting cocatalyst/TiO2 photocatalyst in blue light photothermalcatalysis. Catal. Today 2019, 335, 286–293. [Google Scholar] [CrossRef]
- Zhou, X.M. TiO2-Supported Single-Atom Catalysts for Photocatalytic Reactions. Acta Phys.-Chim. Sin. 2021, 37, 2008064. [Google Scholar]
- Wang, Z.P.; Lin, Z.P.; Shen, S.J.; Zhong, W.W.; Cao, S.W. Advances in designing heterojunction photocatalytic materials. Chin. J. Catal. 2021, 42, 710–730. [Google Scholar] [CrossRef]
- Wang, C.H.; Zhang, X.T.; Yuan, B.; Wang, Y.X.; Sun, P.P.; Wang, D.; Wei, Y.G.; Liu, Y.C. Multi-heterojunction photocatalysts based on WO3 nanorods: Structural design and optimization for enhanced photocatalytic activity under visible light. Chem. Eng. J. 2014, 237, 29–37. [Google Scholar] [CrossRef]
- Mao, G.B.; Wu, H.; Qiu, T.Y.; Bao, D.J.; Lai, L.J.; Tu, W.G.; Liu, Q. WO3@Fe2O3 Core-Shell Heterojunction Photoanodes for Efficient Photoelectrochemical Water Splitting. Chin. J. Struct. Chem. 2022, 41, 2208025–2208030. [Google Scholar]
- Luo, X.; Zhu, Z.; Tian, Y.; You, J.; Jiang, L. Titanium Dioxide Derived Materials with Superwettability. Catalysts 2021, 11, 425. [Google Scholar] [CrossRef]
- Wan, F.X.; Kong, L.N.; Wang, C.H.; Li, Y.Y.; Liu, Y.C.; Zhang, X.T. The W@WO3 ohmic contact induces a high-efficiency photooxidation performance. Dalton Trans. 2017, 46, 1487–1494. [Google Scholar] [CrossRef]
- Wang, C.H.; Zhang, X.T. Anatase/Bronze TiO2 Heterojunction: Enhanced Photocatalysis and Prospect in Photothermal Catalysis. Chem. Res. Chin. Univ. 2020, 36, 992–999. [Google Scholar] [CrossRef]
- Tamboli, A.H.; Suzuki, N.; Terashima, C.; Gosavi, S.; Kim, H.; Fujishima, A. Direct Dimethyl Carbonates Synthesis over CeO2 and Evaluation of Catalyst Morphology Role in Catalytic Performance. Catalysts 2021, 11, 223. [Google Scholar] [CrossRef]
- Sridharan, K.; Shenoy, S.; Kumar, S.G.; Terashima, C.; Fujishima, A.; Pitchaimuthu, S. Advanced Two-Dimensional Heterojunction Photocatalysts of Stoichiometric and Non-Stoichiometric Bismuth Oxyhalides with Graphitic Carbon Nitride for Sustainable Energy and Environmental Applications. Catalysts 2021, 11, 426. [Google Scholar] [CrossRef]
- Neyts, E.C. Plasma-Surface Interactions in Plasma Catalysis. Plasma Chem. Plasma Process. 2016, 36, 185–212. [Google Scholar] [CrossRef]
- Horikoshi, S.; Serpone, N. In-liquid plasma: A novel tool in the fabrication of nanomaterials and in the treatment of wastewaters. RSC Adv. 2017, 7, 47196. [Google Scholar] [CrossRef] [Green Version]
- Takai, O. Fundamentals and Applications of Solution Plasma. J. Photopolym. Sci. Technol. 2014, 27, 379–384. [Google Scholar] [CrossRef]
- Terashima, C.; Iwai, Y.; Cho, S.P.; Ueno, T.; Zettsu, N.; Saito, N.; Takai, O. Solution Plasma Sputtering Processes for the Synthesis of PtAu/C Catalysts for Li-Air Batteries. Int. J. Electrochem. Sci. 2013, 8, 5407–5420. [Google Scholar] [CrossRef]
- Terashima, C.; Arihara, K.; Okazaki, S.; Shichi, T.; Tryk, D.A.; Shirafuji, T.; Saito, N.; Takai, O.; Fujishima, A. Fabrication of Vertically Aligned Diamond Whiskers from Highly Boron-Doped Diamond by Oxygen Plasma Etching. ACS Appl. Mater. Interfaces 2011, 3, 177–182. [Google Scholar] [CrossRef]
- Terashima, C.; Hishinuma, R.; Roy, N.; Sugiyama, Y.; Latthe, S.S.; Nakata, K.; Kondo, T.; Yuasa, M.; Fujishima, A. Charge Separation in TiO2/BDD Heterojunction Thin Film for Enhanced Photoelectrochemical Performance. ACS Appl. Mater. Interfaces 2016, 8, 1583–1588. [Google Scholar] [CrossRef] [PubMed]
- Harada, Y.; Hishinuma, R.; Spataru, N.; Sakurai, Y.; Miyasaka, K.; Terashima, C.; Uetsuka, H.; Suzuki, N.; Fujishima, A.; Kondo, T.; et al. High-speed synthesis of heavily boron-doped diamond films by in-liquid microwave plasma CVD. Diamond Relat. Mater. 2019, 92, 41–46. [Google Scholar] [CrossRef]
- Hirami, Y.; Hunge, Y.M.; Suzuki, N.; Rodriguez-Gonzalez, V.; Kondo, T.; Yuasa, M.; Fujishima, A.; Teshima, K.; Terashima, C. Enhanced degradation of ibuprofen using a combined treatment of plasma and Fenton reactions. J. Colloid Interface Sci. 2023, 642, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Mizoi, K.; Rodriguez-Gonzalez, V.; Sasaki, M.; Suzuki, S.; Honda, K.; Ishida, N.; Suzuki, N.; Kuchitsu, K.; Kondo, T.; Yuasa, M.; et al. Interactions between pH, reactive species, and cells in plasma-activated water can remove algae. RSC Adv. 2022, 12, 7626–7634. [Google Scholar] [CrossRef] [PubMed]
- Gosavi, S.; Tabei, R.; Roy, N.; Latthe, S.S.; Hunge, Y.M.; Suzuki, N.; Kondo, T.; Yuasa, M.; Teshima, K.; Fujishima, A.; et al. Low Temperature Deposition of TiO2 Thin Films through Atmospheric Pressure Plasma Jet Processing. Catalysts 2021, 11, 91. [Google Scholar] [CrossRef]
- Prasertsung, I.; Damrongsakkul, S.; Terashima, C.; Saito, N.; Takai, O. Preparation of low molecular weight chitosan using solution plasma system. Carbohydr. Polym. 2012, 87, 2745–2749. [Google Scholar] [CrossRef]
- Chokradjaroen, C.; Wang, X.; Niu, J.; Fan, T.; Saito, N. Fundamentals of solution plasma for advanced materials synthesis. Mater. Today Adv. 2022, 14, 100244. [Google Scholar] [CrossRef]
- Saito, G.; Akiyama, T. Nanomaterial Synthesis Using Plasma Generation in Liquid. J. Nanomater. 2015, 2015, 123696. [Google Scholar] [CrossRef] [Green Version]
- Vanraes, P.; Bogaerts, A. Plasma physics of liquids—A focused review. Appl. Phys. Rev. 2018, 5, 031103. [Google Scholar] [CrossRef]
- Saito, N.; Bratescu, M.A.; Hashimi, K. Solution plasma: A new reaction field for nanomaterials synthesis. Jpn. J. Appl. Phys. 2018, 57, 0102A4. [Google Scholar] [CrossRef]
- Takeuchi, N.; Kawahara, K.; Gamou, F.; Li, O.L.H. Observation of solution plasma in water–ethanol mixed solution for reduction of graphene oxide. Int. J. Plasma Environ. Sci. Technol. 2020, 14, e01009. [Google Scholar]
- Averin, K.A.; Bilera, I.V.; Lebedev, Y.A.; Shakhatov, V.A.; Epstein, I.L. Microwave discharge in liquid n-heptane with and without bubble flow of argon. Plasma Process. Polym. 2019, 16, e1800198. [Google Scholar] [CrossRef]
- Namihira, T.; Sakai, S.; Yamaguchi, T.; Yamamoto, K.; Yamada, C.; Kiyan, T.; Sakugawa, T.; Katsuki, S.; Akiyama, H. Electron temperature and electron density of underwater pulsed discharge plasma produced by solid-state pulsed-power generator. IEEE Trans. Plasma Sci. 2007, 35, 614–618. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Kaneko, T.; Matsuda, N.; Hatakeyama, R. Potential structure of discharge plasma inside liquid directly measured by an electrostatic probe. Appl. Phys. Lett. 2013, 102, 244105. [Google Scholar] [CrossRef]
- Miron, C.; Bratescu, M.A.; Saito, N.; Takai, O. Time-resolved Optical Emission Spectroscopy in Water Electrical Discharges. Plasma Chem. Plasma Process. 2010, 30, 619–631. [Google Scholar] [CrossRef]
- Yu, F.; Wang, C.H.; Wang, R.; Li, Y.H.; Ohtani, B.; Fujishima, A.; Zhang, X.T. Solution plasma engineering the surface of nitrogen doped TiO2 for photothermal catalysis. Appl. Surf. Sci. 2023, 624, 157119. [Google Scholar] [CrossRef]
- Bratescu, M.A.; Cho, S.-P.; Takai, O.; Saito, N. Size-Controlled Gold Nanoparticles Synthesized in Solution Plasma. J. Phys. Chem. C 2011, 115, 24569–24576. [Google Scholar] [CrossRef]
- Sun, B.; Sato, M.; Clements, J.S. Optical study of active species produced by a pulsed streamer corona discharge in water. J. Electrost. 1997, 39, 189–202. [Google Scholar] [CrossRef]
- Wang, R.; Che, G.S.; Wang, C.H.; Liu, C.Y.; Liu, B.S.; Ohtani, B.; Liu, Y.C.; Zhang, X.T. Alcohol Plasma Processed Surface Amorphization for Photocatalysis. ACS Catal. 2022, 12, 12206–12216. [Google Scholar] [CrossRef]
- Sudare, T.; Ueno, T.; Watthanaphanit, A.; Saito, N. Accelerated nanoparticles synthesis in alcohol-water-mixture-based solution plasma. Phys. Chem. Chem. Phys. 2015, 17, 30255–30259. [Google Scholar] [CrossRef]
- Wang, B.; Sun, B.; Zhu, X.M.; Yan, Z.Y.; Liu, Y.J.; Liu, H.; Liu, Q. Hydrogen production from alcohol solution by microwave discharge in liquid. Int. J. Hydrogen Energy 2016, 41, 7280–7291. [Google Scholar] [CrossRef]
- Sun, B.; Wang, B.; Zhu, X.M.; Yan, Z.Y.; Liu, Y.J.; Liu, H. Study on the Emission Spectrum of Hydrogen Production with Microwave Discharge Plasma in Ethanol Solution. Spectrosc. Spect. Anal. 2016, 36, 823–826. [Google Scholar]
- Xing, Y.M.; Wang, C.H.; Li, D.S.; Wang, R.; Liang, S.; Li, Y.Y.; Liu, Y.C.; Zhang, X.T. Solution Plasma Processing Single-Atom Au1 on CeO2 Nanosheet for Low Temperature Photo-Enhanced Mars-van Krevelen CO Oxidation. Adv. Funct. Mater. 2022, 32, 2207694. [Google Scholar] [CrossRef]
- Sun, B. 5-Properties of Active Species of Discharge Plasma in Water. In Discharge Plasma in Liquid and Its Applications; Gu, Y.L., Bu, X., Eds.; Science Press: Beijing, China, 2013; p. 96. [Google Scholar]
- Hayashi, Y.; Takada, N.; Wahyudiono; Kanda, H.; Goto, M. Hydrogen peroxide formation by electric discharge with fine bubbles. Plasma Chem. Plasma Process. 2017, 37, 125–135. [Google Scholar] [CrossRef]
- Sun, B. 1-Low Temperature Plasma. In Discharge Plasma in Liquid and Its Applications; Gu, Y.L., Bu, X., Eds.; Science Press: Beijing, China, 2013; p. 8. [Google Scholar]
- Pitchaimuthu, S.; Honda, K.; Suzuki, S.; Naito, A.; Suzuki, N.; Katsumata, K.; Nakata, K.; Ishida, N.; Kitamura, N.; Idemoto, Y.; et al. Solution Plasma Process-Derived Defect-Induced Heterophase Anatase/Brookite TiO2 Nanocrystals for Enhanced Gaseous Photocatalytic Performance. ACS Omega 2018, 3, 898–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizukoshi, Y.; Ohwada, M.; Seino, S.; Horibe, H.; Nishimura, Y.; Terashima, C. Synthesis of oxygen-deficient blue titanium oxide by discharge plasma generated in aqueous ammonia solution. Appl. Surf. Sci. 2019, 489, 255–261. [Google Scholar] [CrossRef]
- Zhang, X.L.; Li, Z.; Zhan, Z.B.; Di, L.B. Preparation of F-Doped TiO2 Photocatalysts by Gas–Liquid Plasma at Atmospheric Pressure. Top. Catal. 2017, 60, 980–986. [Google Scholar] [CrossRef]
- Panomsuwan, G.; Watthanaphanit, A.; Ishizaki, T.; Saito, N. Water-plasma-assisted synthesis of black titania spheres with efficient visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 2015, 17, 13794–13799. [Google Scholar] [CrossRef]
- Jedsukontorn, T.; Ueno, T.; Saito, N.; Hunsom, M. Narrowing band gap energy of defective black TiO2 fabricated by solution plasma process and its photocatalytic activity on glycerol transformation. J. Alloys Compd. 2018, 757, 188–199. [Google Scholar] [CrossRef]
- Jedsukontorn, T.; Ueno, T.; Saito, N.; Hunsom, M. Facile preparation of defective black TiO2 through the solution plasma process: Effect of parametric changes for plasma discharge on its structural and optical properties. J. Alloys Compd. 2017, 726, 567–577. [Google Scholar] [CrossRef]
- Kim, K.; Chae, S.; Choi, P.G.; Itoh, T.; Saito, N.; Masuda, Y. Facile synthesis of ZnO nanobullets by solution plasma without chemical additives. RSC Adv. 2021, 11, 26785–26790. [Google Scholar] [CrossRef] [PubMed]
- Saito, G.; Nakasugi, Y.; Yamashita, T.; Akiyama, T. Solution plasma synthesis of ZnO flowers and their photoluminescence properties. Appl. Surf. Sci. 2014, 290, 419–424. [Google Scholar] [CrossRef]
- Yao, W.-T.; Yu, S.-H.; Zhou, Y.; Jiang, J.; Wu, Q.-S.; Zhang, L.; Jiang, J. Formation of uniform CuO nanorods by spontaneous aggregation: Selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid-liquid phase arc discharge process. J. Phys. Chem. B 2005, 109, 14011–14016. [Google Scholar] [CrossRef]
- Kim, H.; Watthanaphanit, A.; Saito, N. Simple Solution Plasma Synthesis of Hierarchical Nanoporous MnO2 for Organic Dye Removal. ACS Sustain. Chem. Eng. 2017, 5, 5842–5851. [Google Scholar] [CrossRef]
- Sirotkin, N.A.; Khlyustova, A.V.; Titov, V.A.; Krayev, A.S.; Nikitin, D.I.; Dmitrieva, O.A.; Agafonov, A.V. Synthesis and Photocatalytic Activity of WO3 Nanoparticles Prepared by Underwater Impulse Discharge. Plasma Chem. Plasma Process. 2020, 40, 571–587. [Google Scholar] [CrossRef]
- Tong, D.G.; Wu, P.; Su, P.K.; Wang, D.Q.; Tian, H.Y. Preparation of zinc oxide nanospheres by solution plasma process and their optical property, photocatalytic and antibacterial activities. Mater. Lett. 2012, 70, 94–97. [Google Scholar] [CrossRef]
- Kang, J.; Li, O.L.; Saito, N. Synthesis of structure-controlled carbon nano spheres by solution plasma process. Carbon 2013, 60, 292–298. [Google Scholar] [CrossRef]
- Romero Valenzuela, A.E.; Chokradjaroen, C.; Choeichom, P.; Wang, X.Y.; Kim, K.; Saito, N. Carbon Fibers Prepared via Solution Plasma-Generated Seeds. Materials 2023, 16, 906. [Google Scholar] [CrossRef]
- Chokradjaroen, C.; Watanabe, H.; Ishii, T.; Ishizaki, T. Simultaneous synthesis of graphite-like and amorphous carbon materials via solution plasma and their evaluation as additive materials for cathode in Li-O2 battery. Sci. Rep. 2021, 11, 6261. [Google Scholar] [CrossRef]
- Tong, D.G.; Luo, Y.Y.; Chu, W.; Guo, Y.C.; Tian, W. Cutting of Carbon Nanotubes Via Solution Plasma Processing. Plasma Chem. Plasma Process. 2010, 30, 897–905. [Google Scholar] [CrossRef]
- Ishizaki, T.; Chiba, S.; Kaneko, Y.; Panomsuwan, G. Electrocatalytic activity for the oxygen reduction reaction of oxygen-containing nanocarbon synthesized by solution plasma. J. Mater. Chem. A 2014, 2, 10589–10598. [Google Scholar] [CrossRef]
- Treepet, S.; Chokradjaroen, C.; Kim, K.; Saito, N.; Watthanaphanit, A. Saccharide-originated fluorescent carbon dots synthesized by in-liquid plasma with controlled orderliness of carbon core through precursor alteration for selective and rapid metal ion detection. Mater. Today Chem. 2022, 26, 101139. [Google Scholar] [CrossRef]
- Lee, S.H.; Heo, Y.K.; Bratescu, M.A.; Ueno, T.; Saito, N. Solution plasma synthesis of a boron-carbon-nitrogen catalyst with a controllable bond structure. Phys. Chem. Chem. Phys. 2017, 19, 15264–15272. [Google Scholar] [CrossRef] [PubMed]
- Li, O.L.; Chiba, S.; Wada, Y.; Panomsuwan, G.; Ishizaki, T. Synthesis of graphitic-N and amino-N in nitrogen-doped carbon via a solution plasma process and exploration of their synergic effect for advanced oxygen reduction reaction. J. Mater. Chem. A 2017, 5, 2073–2082. [Google Scholar] [CrossRef]
- Panomsuwan, G.; Saito, N.; Ishizaki, T. Simple one-step synthesis of fluorine-doped carbon nanoparticles as potential alternative metal-free electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 9972–9981. [Google Scholar] [CrossRef]
- Panomsuwan, G.; Saito, N.; Ishizaki, T. Nitrogen-doped carbon nanoparticles derived from acrylonitrile plasma for electrochemical oxygen reduction. Phys. Chem. Chem. Phys. 2015, 17, 6227–6232. [Google Scholar] [CrossRef]
- Panomsuwan, G.; Saito, N.; Ishizaki, T. From cyano-aromatic molecules to nitrogen-doped carbons by solution plasma for the oxygen reduction reaction in alkaline medium. Mater. Today Proc. 2015, 2, 4302–4308. [Google Scholar] [CrossRef]
- Niu, J.Q.; Chokradjaroen, C.; Saito, N. Graphitic N-doped graphene via solution plasma with a single dielectric barrier. Carbon 2022, 199, 347–356. [Google Scholar] [CrossRef]
- Chae, S.; Panomsuwan, G.; Bratescu, M.A.; Teshima, K.; Saito, N. p-Type Doping of Graphene with Cationic Nitrogen. ACS Appl. Nano Mater. 2019, 2, 1350–1355. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Li, O.L.; Kang, J. Novel synthesis of highly phosphorus-doped carbon as an ultrahigh-rate anode for sodium ion batteries. Carbon 2020, 168, 448–457. [Google Scholar] [CrossRef]
- Panomsuwan, G.; Saito, N.; Ishizaki, T. Nitrogen-Doped Carbon Nanoparticle-Carbon Nanofiber Composite as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2016, 8, 6962–6971. [Google Scholar] [CrossRef] [PubMed]
- Chokradjaroen, C.; Kato, S.; Fujiwara, K.; Watanabe, H.; Ishii, T.; Ishizaki, T. A comparative study of undoped, boron-doped, and boron/fluorine dual-doped carbon nanoparticles obtained via solution plasma as catalysts for the oxygen reduction reaction. Sustain. Energy Fuels 2020, 4, 4570–4580. [Google Scholar] [CrossRef]
- Hyun, K.; Ueno, T.; Li, O.L.; Saito, N. Synthesis of heteroatom-carbon nanosheets by solution plasma processing using N-methyl-2-pyrrolidone as precursor. RSC Adv. 2016, 6, 6990–6996. [Google Scholar] [CrossRef]
- Panomsuwan, G.; Chiba, S.; Kaneko, Y.; Saito, N.; Ishizaki, T. In situ solution plasma synthesis of nitrogen-doped carbon nanoparticles as metal-free electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 18677–18686. [Google Scholar] [CrossRef]
- Panomsuwan, G.; Saito, N.; Ishizaki, T. Electrocatalytic oxygen reduction activity of boron-doped carbon nanoparticles synthesized via solution plasma process. Electrochem. Commun. 2015, 59, 81–85. [Google Scholar] [CrossRef]
- Panomsuwan, G.; Saito, N.; Ishizaki, T. Electrocatalytic oxygen reduction on nitrogen-doped carbon nanoparticles derived from cyano-aromatic molecules via a solution plasma approach. Carbon 2016, 98, 411–420. [Google Scholar] [CrossRef]
- Kim, D.W.; Li, O.L.; Saito, N. Enhancement of ORR catalytic activity by multiple heteroatom-doped carbon materials. Phys. Chem. Chem. Phys. 2015, 17, 407–413. [Google Scholar] [CrossRef]
- Hieda, J.; Saito, N.; Takai, O. Exotic shapes of gold nanoparticles synthesized using plasma in aqueous solution. J. Vac. Sci. Technol. A 2008, 26, 854–856. [Google Scholar] [CrossRef] [Green Version]
- Sudare, T.; Ueno, T.; Watthanaphanit, A.; Saito, N. Verification of Radicals Formation in Ethanol-Water Mixture Based Solution Plasma and Their Relation to the Rate of Reaction. J. Phys. Chem. A 2015, 119, 11668–11673. [Google Scholar] [CrossRef]
- Hu, X.L.; Cho, S.-P.; Takai, O.; Saito, N. Rapid Synthesis and Structural Characterization of Well-Defined Gold Clusters by Solution Plasma Sputtering. Cryst. Growth Des. 2012, 12, 119–123. [Google Scholar] [CrossRef]
- Zhang, J.B.; Hu, X.L.; Yang, B.Q.; Su, N.; Huang, H.H.; Cheng, J.X.; Yang, H.; Saito, N. Novel synthesis of PtPd nanoparticles with good electrocatalytic activity and durability. J. Alloys Compd. 2017, 709, 588–595. [Google Scholar] [CrossRef]
- Thai, V.-P.; Nguyen, H.D.; Saito, N.; Takahashi, K.; Sasaki, T.; Kikuchi, T. Precise size-control and functionalization of gold nanoparticles synthesized by plasma-liquid interactions: Using carboxylic, amino, and thiol ligands. Nanoscale Adv. 2022, 4, 4490–4501. [Google Scholar] [CrossRef] [PubMed]
- Titov, V.; Nikitin, D.; Naumova, I.; Losev, N.; Lipatova, I.; Kosterin, D.; Pleskunov, P.; Perekrestov, R.; Sirotkin, N.; Khlyustova, A.; et al. Dual-Mode Solution Plasma Processing for the Production of Chitosan/Ag Composites with the Antibacterial Effect. Materials 2020, 13, 4821. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.; Mubarakali, D.; Kim, J. Characterization of Alginate/Silver Nanobiocomposites Synthesized by Solution Plasma Process and Their Antimicrobial Properties. J. Nanomater. 2016, 2016, 4712813. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.J.; Hu, X.L.; Zhang, J.B.; Tang, W.P.; Li, H.T.; Shen, X.D.; Saito, N. One-step facile synthesis of Pd nanoclusters supported on carbon and their electrochemical property. Prog. Nat. Sci. Mater. Int. 2014, 24, 593–598. [Google Scholar] [CrossRef]
- Watthanaphanit, A.; Panomsuwan, G.; Saito, N. A novel one-step synthesis of gold nanoparticles in an alginate gel matrix by solution plasma sputtering. RSC Adv. 2014, 4, 1622–1629. [Google Scholar] [CrossRef]
- Mukasa, S.; Masuda, T.; Kimura, E.; Sumoto, Y.; Toyota, H.; Nomura, S. Synthesis of Tin Nanoparticles by Pulse Discharge in Water and Aqueous Gelatin Solution. J. Jpn. Inst. Energy 2018, 97, 186–190. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.L.; Shen, X.D.; Takai, O.; Saito, N. Facile fabrication of PtAu alloy clusters using solution plasma sputtering and their electrocatalytic activity. J. Alloys Compd. 2013, 552, 351–355. [Google Scholar] [CrossRef]
- Hu, X.L.; Shi, J.J.; Zhang, J.B.; Tang, W.P.; Zhu, H.K.; Shen, X.D.; Saito, N. One-step facile synthesis of carbon-supported PdAu nanoparticles and their electrochemical property and stability. J. Alloys Compd. 2015, 619, 452–457. [Google Scholar] [CrossRef]
- Trad, M.; Nomine, A.; Noel, C.; Ghanbaja, J.; Tabbal, M.; Belmonte, T. Evidence of alloy formation in CoNi nanoparticles synthesized by nanosecond-pulsed discharges in liquid nitrogen. Plasma Process. Polym. 2020, 17, e1900255. [Google Scholar] [CrossRef]
- Panomsuwan, G.; Wongcharoen, S.; Chokradcharoen, C.; Tipplook, M.; Jongprateep, O.; Saito, N. Au nanoparticle-decorated TiO2 hollow fibers with enhanced visible-light photocatalytic activity toward dye degradation. RSC Adv. 2022, 12, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.L.; Ge, C.; Su, N.; Huang, H.H.; Xu, Y.Q.; Zhang, J.B.; Shi, J.J.; Shen, X.D.; Saito, N. Solution plasma synthesis of Pt/ZnO/KB for photo-assisted electro-oxidation of methanol. J. Alloys Compd. 2017, 692, 848–854. [Google Scholar] [CrossRef]
- Kim, S.-M.; Jo, Y.-G.; Lee, M.-H.; Saito, N.; Kim, J.-W.; Lee, S.-Y. The plasma-assisted formation of Ag@Co3O4 core-shell hybrid nanocrystals for oxygen reduction reaction. Electrochim. Acta 2017, 233, 123–133. [Google Scholar] [CrossRef]
- Nakasugi, Y.; Saito, G.; Yamashita, T.; Sakaguchi, N.; Akiyama, T. Solution plasma synthesis of Au nanoparticles for coating titanium dioxide to enhance its photocatalytic activity. Thin Solid Films 2015, 583, 135–141. [Google Scholar] [CrossRef]
- Park, J.; Lam, S.S.; Park, Y.-K.; Kim, B.-J.; An, K.-H.; Jung, S.-C. Fabrication of Ni/TiO2 visible light responsive photocatalyst for decomposition of oxytetracycline. Environ. Res. 2023, 216, 114657. [Google Scholar] [CrossRef]
- Panomsuwan, G.; Zettsu, N.; Saito, N. Gold Nanoparticles Supported on SrTiO3 by Solution Plasma Sputter Deposition for Enhancing UV- and Visible-light Photocatalytic Efficiency. Mater. Res. Soc. Symp. Proc. 2013, 1509, 914. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Ding, P.; Wu, W.B.; Kimura, H.; Shen, Y.H.; Wu, D.; Xie, X.B.; Hou, C.X.; Sun, X.Q.; Yang, X.Y.; et al. Facile synthesis of reduced graphene oxide@Co3O4 composites derived from assisted liquid-phase plasma electrolysis for high-performance hybrid supercapacitors. Appl. Surf. Sci. 2023, 609, 155188. [Google Scholar] [CrossRef]
- Zhong, Z.Y.; Wang, C.C.; Han, R.Y.; Gao, M.; Huang, Y.F.; Ramakrishna, S. Synthesis of zinc oxide/carbon fiber composites with improved piezoelectric response by plasma-liquid interaction. Compos. Commun. 2023, 38, 101495. [Google Scholar] [CrossRef]
- Lee, C.W.; Lee, S.-G.; Noh, J.H.; Jung, H.S.; Chung, K.-J.; Hong, K.S.; Kim, D.W.; Hwang, Y.S.; Kim, D.-W. Synthesis of carbon-incorporated titanium oxide nanocrystals by pulsed solution plasma: Electrical, optical investigation and nanocrystals analysis. RSC Adv. 2015, 5, 9497–9502. [Google Scholar] [CrossRef]
- Phan, P.Q.; Chae, S.; Pornaroontham, P.; Muta, Y.; Kim, K.; Wang, X.Y.; Saito, N. In situ synthesis of copper nanoparticles encapsulated by nitrogen-doped graphene at room temperature via solution plasma. RSC Adv. 2020, 10, 36627–36635. [Google Scholar] [CrossRef]
- Phan, P.Q.; Naraprawatphong, R.; Pornaroontham, P.; Park, J.; Chokradjaroen, C.; Saito, N. N-Doped few-layer graphene encapsulated Pt-based bimetallic nanoparticles via solution plasma as an efficient oxygen catalyst for the oxygen reduction reaction. Mater. Adv. 2021, 2, 322–335. [Google Scholar] [CrossRef]
- Dack, M.R.J. The importance of solvent internal pressure and cohesion to solution phenomena. Chem. Soc. Rev. 1975, 4, 211–229. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- Yu, J.G.; Li, X.; Jin, Z.L.; Tang, H.; Liu, E.Z. Preface to Solar Photocatalysis. Chin. J. Struct. Chem. 2022, 41, 2206001–2206002. [Google Scholar]
- Tao, S.R.; Wan, S.J.; Huang, Q.Y.; Li, C.M.; Yu, J.G.; Cao, S.W. Molecular Engineering of g-C3N4 with Dibenzothiophene Groups as Electron Donor for Enhanced Photocatalytic H2-Production. Chin. J. Struct. Chem. 2022, 41, 2206048–2206054. [Google Scholar]
- Zhang, B.; Hu, X.Y.; Liu, E.Z.; Fan, J. Novel S-scheme 2D/2D BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity. Chin. J. Catal. 2021, 42, 1519–1529. [Google Scholar] [CrossRef]
- Yu, F.; Wang, C.H.; Li, Y.Y.; Ma, H.; Wang, R.; Liu, Y.C.; Suzuki, N.; Terashima, C.; Ohtani, B.; Ochiai, T.; et al. Enhanced Solar Photothermal Catalysis over Solution Plasma Activated TiO2. Adv. Sci. 2020, 7, 2000204. [Google Scholar] [CrossRef]
- Cronemeyer, D.C. Infrared Absorption of Reduced Rutile TiO2 Single Crystals. Phys. Rev. 1959, 113, 1222–1226. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Che, G.S.; Wang, D.D.; Wang, C.H.; Yu, F.; Li, D.S.; Suzuki, N.; Terashima, C.; Fujishima, A.; Liu, Y.C.; Zhang, X.T. Solution plasma boosts facet-dependent photoactivity of decahedral BiVO4. Chem. Eng. J. 2020, 397, 125381. [Google Scholar] [CrossRef]
- Chen, X.B.; Liu, L.; Yu, P.Y.; Mao, S.S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.K.; Zhang, X.T.; Liu, H.; Wang, C.H.; Liu, S.P.; Sun, P.P.; Wang, L.L.; Liu, Y.C. Heterostructured TiO2/WO3 porous microspheres: Preparation, characterization and photocatalytic properties. Catal. Today 2013, 201, 195–202. [Google Scholar] [CrossRef]
- Shen, Y.; Nitta, A.; Takashima, M.; Ohtani, B. Do Particles Interact Electronically?—Proof of Interparticle Charge-transfer Excitation between Adjoined Anatase and Rutile Particles. Chem. Lett. 2021, 50, 80–83. [Google Scholar] [CrossRef]
- Chen, G.Y.; Takashima, M.; Ohtani, B. Direct Amorphous-structure Analysis: How are Surface/Bulk Structure and Activity of Titania Photocatalyst Particles Changed by Milling? Chem. Lett. 2021, 50, 644–648. [Google Scholar] [CrossRef]
- Łuczak, J.; Pancielejko, A.; Chen, G.Y.; Takashima, M.; Zaleska-Medynska, A.; Ohtani, B. How Do Ionic Liquids Affect the Surface Structure of Titania Photocatalyst? An Electron-Trap Distribution-Analysis Study. J. Phys. Chem. C 2021, 125, 28143–28149. [Google Scholar] [CrossRef]
- Shan, J.Q.; Ye, C.; Jiang, Y.L.; Jaroniec, M.; Zheng, Y.; Qiao, S.Z. Metal-metal interactions in correlated single-atom catalysts. Sci. Adv. 2022, 8, eabo0762. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.X.; Wang, L.J.; Yao, Z.B.; Hao, L.D.; Tan, X.Y.; Masa, J.T.; Robertson, A.L.; Sun, Z.Y. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction. Acta Phys.-Chim. Sin. 2022, 38, 2207024. [Google Scholar] [CrossRef]
- Liu, L.C.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.P.; Wang, Z.; Mao, S.J.; Chen, Z.R.; Wang, Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts. Chin. J. Catal. 2022, 43, 928–955. [Google Scholar] [CrossRef]
- Xing, Y.M. Liquid Phase Plasma Preparation of Single-Atom Metal on CeO2 Nanosheet for Photo-Enhanced Catalytic Oxidation Performance. Ph.D. Thesis, The Northeast Normal University, Changchun, China, 2023. [Google Scholar]
- Huang, Y.; Wang, C.H.; Wang, R.; Zhang, Y.Y.; Li, D.S.; Zhu, H.C.; Wang, G.R.; Zhang, X.T. Ethanol Solution Plasma Loads Carbon Dots onto 2D HNb3O8 for Enhanced Photocatalysis. ACS Appl. Mater. Interfaces 2023, 15, 1157–1166. [Google Scholar] [CrossRef]
- Li, Y.N.; Wang, Y.L.; Lin, J.F.; Shi, Y.M.; Zhu, K.Y.; Xing, Y.M.; Li, X.F.; Jia, Y.W.; Zhang, X.T. Solution-plasma-induced oxygen vacancy enhances MoOx/Pt electrocatalytic counter electrode for bifacial dye-sensitized solar cells. Front. Energy Res. 2022, 10, 924515. [Google Scholar] [CrossRef]
- Li, D.S.; Lu, J.X.; Wang, C.H.; Xing, Y.M.; Liang, S.; Wang, R.; Zhang, X.T.; Liu, Y.C. Photo-plasma catalytic degradation of high concentration volatile organic compounds. Appl. Catal. A 2022, 647, 118908. [Google Scholar] [CrossRef]
- Carreon, M.L. Plasma catalysis: A brief tutorial. Plasma Res. Express 2019, 1, 043001. [Google Scholar] [CrossRef]
- Neyts, E.C.; Ostrikov, K.K.; Sunkara, M.K.; Bogaerts, A. Plasma Catalysis: Synergistic Effects at the Nanoscale. Chem. Rev. 2015, 115, 13408–13446. [Google Scholar] [CrossRef] [PubMed]
No. | Reaction | No. | Reaction |
---|---|---|---|
1 | H2O → H2O * | 12 | eaq− + •H + H2O→ H2 + OH− |
2 | H2O * → •H + •OH | 13 | e− + O2 → O(3P) + O(1D) + e− |
3 | H2O * → H2 + •O | 14 | •OH + H2O2 → H2O + •HO2 |
4 | H2O → H2O+ + e− | 15 | O(1D) + H2O → 2•OH |
5 | e− + H2O → eaq− | 16 | •H + O2 → •O + •OH |
6 | e− + O2 → O2− | 17 | •H + •OH → H2O |
7 | H2O + e− * → •OH + •H + e− | 18 | •OH + •OH → H2O2 |
8 | H2O + e *− → H2O+ + 2e− | 19 | •H + •HO2 → H2O2 |
9 | H2O+ + H2O → H3O+ + •OH | 20 | •H + •H → H2 |
10 | eaq− + •OH → OH− | 21 | H2O+ + eaq− → H2O |
11 | eaq− + H2O → •H + OH− |
Oxides | SP Conditions | Ref. | |||
---|---|---|---|---|---|
Samples | Characteristics | Performance | Solution | Electrode | |
Anatase /Brookite TiO2 | surface amorphous layer, bulk brookite phase and oxygen defects | 96.6% of CO2 conversion rate in degradation of the gaseous acetaldehyde under a fluorescent lamp with 8000 lux intensity | water | W | [78] |
Blue TiO2 | oxygen defects | 105 μmol of H2 generated in 2 h irradiated by a xenon lamp with 5 mW/cm2 | aqueous ammonia | W | [79] |
Fluorine-doped TiO2 | anatase phase TiO2 with interstitial fluorine atoms | ~98% of MB degradation under stimulated sunlight for 30 min | TiOSO4 solution with NaF, a mixed solution of NaF and [C4MIM]BF4, or a mixed solution of NaF and [C4MIM]HSO4 | stainless steel | [80] |
Black TiO2−x spheres | a mixture of rutile, anatase, and oxygen-deficient TiO2; disordered structure; oxygen defects and Ti3+ | 90% of MB degradation under visible-light irradiation for 3 h | water | Ti | [81] |
Black TiO2 | disordered structure and Ti3+ | 58.49% of glycerol conversion under a 120W mercury lamp for 24 h | KCl or HNO3 | Ti | [82,83] |
ZnO nanobullets | the main exposed (100) facet, and the (101) facet at the inclined surfaces in the edges | — | water | Zn | [84] |
ZnO flowers | ZnO nanoflowers with a small number of Zn particles | 100% of MB degradation under UV light irradiation for 120 min | K2CO3 solution | Zn | [85] |
CuO nanorods | highly anisotropic CuO nanorods with 2–4 nm of diameter and 14–16 nm of length | — | NaNO3 solution | Cu | [86] |
Cu2O | large particles with sizes of 300–500 nm | — | NaNO3 solution and ascorbic acid | Cu | [86] |
Nanoporous MnO2 | a spherelike shape; nanoparticles and thin layered structure | >99% of MB degradation for 2 min | KMnO4 solution with glucose, fructose, or sucrose | W | [87] |
WO3 nanoparticles | monoclinic phase and an average particle diameter of ~60 nm | 100% of RB degradation under UV irradiation for 50 min | HNO3, NaOH, NaCl and glucose solution | W | [88] |
ZnO nanospheres | nanospheres with about 17 nm in diameter | 100% of MO degradation for 8 min under UV irradiation | ZnCl2, KCl and CO(NH2)2 aqueous solution | W | [89] |
Samples | Characteristics | SP Conditions | Ref. |
---|---|---|---|
Carbon nanospheres | amorphous carbon nanoparticles (25 kHz), turbostratic carbon nanoparticles (65 kHz) | benzene; W electrodes; 1.3 kV, 2.0 µs and 25–65 kHz; 20 min | [90] |
Carbon fibers | thick-bump fibers with a diameter of 150–220 nm; fiber bundles with a diameter of 90–140 nm; worm-like fibers with a diameter of 80–114 nm; thin fiber cluster with a diameter of <38 nm; flower-like fiber clusters with a diameter of 72–76 nm | benzene, o-dichlorobenzene, N-methylpyrrolidone, ethanol, or methanol; W electrodes; 5 kV, 20 kHz, and 1.0 µs; 15 min | [91] |
Graphite-like and amorphous carbon | graphite-like carbon: a lamellar stack structure; amorphous carbon: turbostratic carbon surrounding by multi-layer fullerene-like carbon | tributyl borate; W electrodes; 1.5 kV, 100 kHz, and 0.5 µs; 60 min | [92] |
Short carbon nanotubes | short carbon nanotubes of 100–400 nm in length | multi-wall carbon nanotubes in KCl solution; W electrodes; 450 V and 12 kHz; 30 min | [93] |
Oxygen-containing nanocarbon | carbon particles with a diameter of 20 to 50 nm, the graphite-like layered structure | benzene and 1,4-dioxane; W electrodes; 20 kHz, 1 µs and 1.2–1.6 kV; 10 min | [94] |
Fluorescent carbon dots | monocrystalline and semicrystalline | fructose, glucose, and sucrose; W electrodes; 20 kHz, and 0.9 µs; 20 min | [95] |
Samples | Doping Amount | SP Conditions | Ref. |
---|---|---|---|
Boron-carbon-nitrogen nanocarbon | N: 3.8 at% B: 1.2 at% | pyridine, boric acid; W electrodes; 2 kV, 0.5 µs and 100 kHz; 30 min | [96] |
Graphitic-N and amino-N in nitrogen-doped carbon | N: 2.01 at%; 2.50 at%; 2.54 at%; 2.97 at% | anthracene, pyridine, acrylonitrile; W electrodes; 2.0 kV, 1.0 µs and 20 kHz; 20 min | [97] |
Fluorine-doped carbon | F: 4.52 at% | toluene, trifluorotoluene; W electrodes; ~1.0 kV, 0.60 µs and 20 kHz; 20 min | [98] |
Nitrogen-doped carbon nanoparticles | N: 4.78 at%; 1.33 at% | acrylonitrile; W electrodes; ~1.5 kV, 1.0 µs and 20 kHz; 30 min | [99] |
Nitrogen-doped carbons | N: 0.58 at% 1.29 at% 1.36 at% | cyanobenzene, 2-cyanopyridine, cyanopyrazine; W electrodes; 1.2–1.5 kV, 0.80 µs and 20 kHz; 30 min | [100] |
Graphitic nitrogen-doped graphene | N: 18.79 at% | benzene and N, N-dimethylformamide; W electrodes; 1.6 kV, 1.0 µs and 180 kHz; 15 min | [101] |
Cationic nitrogen-doped graphene | N: 13.4 at% | 1-ethyl-3-methylimidazolium dicyanamide, dimethylformamide; W electrodes; 2.0 kV, 200 kHz and 1.0 µs; 5 min | [102] |
Phosphorus-doped carbon balls | P: 4 at% | triphenylphosphine; WC electrodes; 2.0 kV, 100 kHz and 1.0 µs; 10 min | [103] |
Nitrogen-Doped Carbon Nanoparticle/Carbon Nanofiber Composite | N: 1.35 at% | a suspension of carbon nanofiber and 2-cyanopyridine; W electrodes; 20 kHz and 0.8 µs; 30 min | [104] |
Boron-doped, and boron/fluorine co-doped carbon nanoparticles | B: 0.91 at%, F: 1.95 at%; B: 1.08 at%, F: 3.38 at% | toluene, 2,4,6-Triphenylboroxin, 2,4,6-Tris(4-fluorophenyl) boroxin, 2,4,6-Tris(3,4-difluorophenyl) boroxin, 2,4,6-Tris(3,4,5-trifluorophenyl) boroxin; W electrodes; 1.5 kV, 0.50 µs and 100 kHz; 20 min | [105] |
Nitrogen-carbon nanosheets | N: 1.3 at% | N-methyl-2-pyrrolidone; W electrodes; 2.0 kV, 1.0 µs and 200 kHz; 5 min | [106] |
Nitrogen-doped carbon nanoparticles | N: 0.58 at% 0.51 at% 0.39 at% | benzene, pyrazine; W electrodes; 1.5 kV, 1.0 µs and 20 kHz; 20 min | [107] |
Boron-doped carbon nanoparticles | B: 0.67 at% | benzene, triphenyl borate; W electrodes; 1.0 µs and 20 kHz; 20 min | [108] |
Nitrogen-doped carbon nanoparticles | N: 1.94 at% 1.85 at%, 0.63 at% | benzonitrile, 2-cyanopyridine, cyanopyrazine; W electrodes; 0.80 µs and 20 kHz; 30 min | [109] |
Nitrogen, Boron, or Phosphorus doped carbon; Nitrogen-Boron co-doped carbon; Nitrogen-Phosphorus co-doped carbon | — | benzene, pyridine, phenylboronic acid, phenylphosphonic acid; W electrodes | [110] |
Samples | Characteristics | Electrode | Precursor Solution | Ref. |
---|---|---|---|---|
Au | ~50 nm, and hexagonal shape; ~10 nm, and triangular, pentagonal and hexagonal shapes | W | 0.3 mM and 0.65 mM HAuCl4 | [111] |
Au | PH = 12, 1~2 nm PH = 3, ~10 nm PH = 6, ~4 nm | Pt | HAuCl4·3H2O, hexadecyltrimethylammoni-um chloride, and NaOH | [68] |
Au | χ(ethanol) = 0, ~32 nm χ(ethanol) = 0.089, <10 nm χ(ethanol) = 1.0, ~25 nm | W | HAuCl4·3H2O, ethanol, methanol, 2-propanol | [71] |
Au | TA = 0 mM, 56.6 ± 19 nm TA = 0.42 mM, 47.8 ± 17.8 nm TA = 1.25 mM, 21 ± 6.1 nm TA = 5 mM, 11.2 ± 4.1 nm | Cu | HAuCl4 solution with L-cysteine, glucosamine, salicylic acid, or terephthalic acid, terephthalic acid (TA) | [115] |
Ag/chitosan | spherical shape and a mean diameter of <20 nm | Graphite | AgNO3 and chitosan solution | [116] |
Ag/alginate | spherical shape and size range of 5–40 ± 2.0 nm | W | 5 mM AgNO3 and 0.3%(w/w) alginate solution | [117] |
Au | spherical shape and the mean diameter of 1.25 ± 0.5 nm | Au | liquid nitrogen and pure water | [113] |
Pd | the average size of ~2 nm | Pd | Ketjen Black aqueous solution | [118] |
Au | the average particle diameters of 4.32 ± 0.85 nm, 3.54 ± 1.04 nm, and 2.87 ± 0.77 nm | Au | 0.2%, 0.5%, and 0.9% sodium alginate aqueous solution | [119] |
Sn | in pure water, ~5 nm Sn particles; in gelatin aqueous solution, Sn particles with a diameter of 40 to 400 nm | Sn | pure water or gelatin aqueous solution | [120] |
PtAu | 1.5 ± 1.0 nm clusters | Pt and Au | water or ethanol solution | [121] |
PdAu | the average size of 2–5 nm | Pd and Au | Ketjen Black aqueous solution | [122] |
CoNi | the size range of ~3–200 nm | Co and Ni | liquid nitrogen | [123] |
PtPd | the size range of 2–5 nm | Pt and Pd | water and methanol solution | [114] |
Samples | SP Conditions | Ref. |
---|---|---|
Au/hollow fibrous TiO2 | A solution of TiO2 hollow fibrous power and adipic acid; Au electrodes; 2.0 μs and 15 kHz; 4 min | [124] |
Pt/ZnO | Zn and Pt electrodes; 15–20 kHz and 1–2 μs | [125] |
Ag/Co3O4 | distilled water; Ag and Co electrodes; 0.9 kV, 2.0 μs and 20 kHz; 300 s | [126] |
Au/coating TiO2 | A solution of TiO2 particles and 0.01 M NaOH; Au electrodes; 400 V; 1 h | [127] |
Co3O4/reduced graphene | A solution of Co(NO3)2·6H2O and reduced graphene oxide; graphite as the anode, and Cu as the cathode; 190 V; 180 s | [130] |
ZnO/carbon fiber | ZnSO4 solution; a carbon fiber fabric as the negative electrode and a stainless-steel needle as the positive electrode; 1.5 kV | [131] |
TiOx/carbon nanosheets | Titanium tetraisopropoxide, distilled water, nitric acid, and ethanol; W electrodes; five capacitors in parallel with 0.1 μF capacitance, 100 times of discharging, the stored energy of 10–90 J per pulse in capacitor | [132] |
Pd/Ketjen Black | Ketjen Black aqueous solution; Pd electrodes; 15–20 kHz and 1–2 μs | [118] |
PdAu/Ketjen Black | Ketjen Black aqueous solution; Pd and Au electrodes; 15–20 kHz and 1–2 μs | [122] |
a core-shell structure with graphene as shell and Cu nanoparticles as core | Dimethylformamide; Cu electrodes; 1.0 kV, 1.0 μs and 100, 200 kHz; 60 min | [133] |
a core-shell structure with graphene as shell and metal nanoparticles (Pt, PtAu, PtAg or PtPd) as core | Dimethylformamide; Pt, Au, Ag, Pd electrodes; 1.0 μs and 30 kHz; 60 min | [134] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Wang, C.; Xing, Y.; Zhang, X. Solution Plasma for Surface Design of Advanced Photocatalysts. Catalysts 2023, 13, 1124. https://doi.org/10.3390/catal13071124
Wang R, Wang C, Xing Y, Zhang X. Solution Plasma for Surface Design of Advanced Photocatalysts. Catalysts. 2023; 13(7):1124. https://doi.org/10.3390/catal13071124
Chicago/Turabian StyleWang, Rui, Changhua Wang, Yanmei Xing, and Xintong Zhang. 2023. "Solution Plasma for Surface Design of Advanced Photocatalysts" Catalysts 13, no. 7: 1124. https://doi.org/10.3390/catal13071124
APA StyleWang, R., Wang, C., Xing, Y., & Zhang, X. (2023). Solution Plasma for Surface Design of Advanced Photocatalysts. Catalysts, 13(7), 1124. https://doi.org/10.3390/catal13071124