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Abstract: In this work, cuprous oxide (Cu2O) thin films were prepared using a simplistic sputtering
technique. The films were grown on both traditional fluorine-doped tin oxide (FTO) and Ti-metallic
substrates. X-ray diffraction applied for investigation of the crystal structure proved that the Cu2O
layer acquires the cubic structure with a (111) main peak at 2θ of 36.46◦. The optical absorption and
transmission were detected through the utilization of a UV-Vis spectrophotometer, and the optical
bandgap for the Cu2O layer was determined to be ~2.15 eV using Tauc’s equation. XPS and scanning
electron microscopy were also performed for chemical structure and morphological investigation,
respectively. The optoelectronic behaviors for the prepared samples were carried out using a Keithley
source meter; the photocurrent density was measured in a range of applied voltage between −1
and 1 volt under the illumination of a xenon lamp with a power density of 100 mWcm−2. External
quantum efficiency, sensitivity, responsivity, and detectivity were computed using proprietary models
based on the experimental data.

Keywords: photodetectors; Cu2O thin films; RF sputtering; external quantum efficiency; responsivity

1. Introduction

Photodetectors are devices that instantaneously convert light into an electrical signal.
They are utilized in a variety of applications, including ozone sensing, biochemical analysis,
material identification, and night vision [1]. The absorption of light photons with energy
higher than the energy gap of the selected material leads to the excitation of the electrons
from valence band levels to the conduction band giving rise to electron-hole pairs. The
conversion of the light signal into an electrical pulse is accomplished using this approach.
Accordingly, semiconducting materials are intriguing competitors for photodetector appli-
cations. For the photodetection process in the range from ultraviolet to infrared wavelength
silicon is the dominant material, which is utilized in several applications, such as cameras
and other electronic devices [2].

Semiconducting materials with substantially broader bandgaps include ZnO, TiO2,
GaN, ZnTe, and ZnS [3–8], in addition to copper oxides, and are utilized for the pho-
todetection of ultraviolet rays. The following are some of the most widely used types of
copper oxides: Cu4O3 (paramelaconite), cupric oxide (CuO), and cuprous oxide (Cu2O).
Paramelaconite represents a meta-stable form of copper oxide, considered an intermediate
or transitional compound between CuO and Cu2O. Both CuO and Cu2O are stable forms
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of copper oxides and have numerous applications as a result of their electrical and optical
characteristics [9–11]. They are p-type semiconductors with small band gaps that can
recognize a wide range of light, including UV, visible, and infrared radiation [12,13].

Cu2O has been a favorable candidate for photodetectors and photovoltaic cells owing
to its fascinating structural, magnetic, and optoelectronic properties, such as good car-
rier mobility and high absorption coefficient. Furthermore, it has high chemical stability
in electrolytic solutions, whether acidic or basic, and is a non-toxic material with high
abundance in nature. Besides, it exhibits a doping level of NA < 1015 cm−3 and a direct
bandgap varying from 2.0 to 2.4 eV, which is better for energy conversion technology
advancement [14,15]. Different techniques are utilized for the deposition of Cu2O thin
films, including pulsed laser, copper foil oxidation within a thermal technique, chemical
bath deposition, electrodeposition, spin coating, and radio frequency (RF) sputtering. Films
prepared using RF techniques are characterized by low imperfections, favorable homo-
geneity, in addition to good coherent and adherent properties [16–18]. It is widely utilized
in numerous scientific applications, including gas sensors, biosensors, supercapacitors,
lithium-ion batteries, photocatalytic dye removal, solar cells, and photoelectrochemical
water splitting [19–24].

Depositions of Cu2O have been made on a variety of substrates, including stainless
steel substrates, soda-lime glass, glass quartz, silicon wafers, polyethylene terephthalate
and plastic substrates, fiber glass, and co-fred ceramics substrates [25]. Metallic substrates
have reasonable features including high thermal and electrical properties, which makes
them interesting to use in various scientific applications [26]. Herein, the research is
based on the comparison between the growth of Cu2O thin films on the traditional FTO
substrate and metallic titanium on a Mo-glass substrate (Ti/Mo-metal) in photodetection
applications. Ti-metal exhibits a low resistivity of 4.2 × 10−5 Ohm and a large work
function of ~4.33 eV; in addition, it represented an excellent Ohmic contact for different
semiconductors materials. Thus, the usage of a Ti-metal as a substrate for the growth of
semiconductors can offer a conductive path for the charge carriers produced by incident
photons, which in turn, improves the effectiveness of carrier extraction [9].

2. Results and Discussion

To examine the phase purity, in addition to the crystal structure, Cu2O thin films grown
on FTO and Ti-Mo substrates were subjected to X-ray diffraction (XRD) patterns detection.
Figure 1a depicts the XRD diffraction patterns belonging to the Cu2O layer deposited
on the traditional FTO substrate, three peaks appeared which were assigned to (1 1 0),
(1 1 1), and (2 2 0) crystallographic planes as presented in (JCPDS-06-3281) card, the other
remaining peaks corresponding to FTO substrate as recorded in (JCPDS-077-0447) card. The
most prevalent growth plane for the Cu2O layer is the (1 1 1) plane at 2θ = 36.46 degrees.
On the other hand, Figure 1b represents the diffraction patterns in the case of the film
deposited on metallic Ti-Mo substrate corresponding to (1 1 0), (1 1 1), (2 0 0), (1 1 2), (2 2 0)
crystallographic planes, also the plane (1 1 1) is the main peak as in case of Cu2O grown on
FTO glass. The elemental Ti, which emerged from the Ti substrate, is primarily responsible
for the peak appearing at 2θ = 40.58 degrees. Following database no. PDF 06-3281, the
XRD pattern depicts peaks typical of the cubic structure of Cu2O and a Pn-3 m group space.
Additionally, the XRD pattern showed no distinctive peak from CuO or Cu, proving that
just Cu2O was produced. In other words, no additional phases developed.

For the detection of optical transmission and absorption, a UV-Vis spectrophotometer
is utilized in the range of 400 to 900 nm. As shown in Figure 2a, Cu2O film displayed
a high absorption peak up to 450 nm, which corresponds to the visible light spectrum.
Furthermore, there was a low-transmission region in the range of 400 to 500 nm and then
the transmission increased irregularly from 550 to 900 nm. The transmission value was
around 58% at 900 nm, revealing that the deposited Cu2O films exhibit high transparency
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with respect to IR light. The allowed band gap (Eg) is estimated by using Tauc’s relation,
Equation (1) [27].

(αhν)2 = B (hν − Eg) (1)

where B is a constant, ν is the frequency of the incident photon, h is Planck’s constant, and
α represents the absorption coefficient. Eg was estimated via the extrapolating of a straight
line at the x-axis as shown in Figure 2b. The calculated Eg value was 2.15 eV; this value is
very close to the typical value for Cu2O film (2.5 eV). This value makes the deposited films
unique for use in solar light exploitation applications, as well as photodetector applications.
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Figure 1. The XRD diffraction patterns belong to Cu2O layer deposited on (a) traditional FTO and
(b) Ti-metallic substrate.

XPS measurements were utilized for the chemical composition of the deposited Cu2O
films grown on a Ti-Mo metallic substrate. As seen in Figure 3a, the deconvoluted XPS
spectra for oxygen reveal the presence of a signal at 530 eV corresponding to O 1s. The
high-resolution spectrum attributed to Cu 2p depicts in Figure 3b, two signals appeared at
933 eV and 952.8 eV, which are attributed to Cu 2p3/2 and Cu 2p1/2. This gives evidence for
the presence of Cu2+ in Cu2O film [28]. The sole single phase found is Cu2O, as evidenced
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by the lack of any distinctive or shake-up satellite peaks connected to Cu2+ species. The
XPS results and the XRD data are in agreement with each other.
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The morphological structure for Cu2O-grown films was detected using FE-SEM. As
shown in Figure 4a, Cu2O grown on the traditional FTO substrate initially looked like
scattered fragmented particles; it can be described as having a granular structure. Addi-
tionally, the existence of observable pinholes on the Cu2O film surface suggests that the
FTO substrate does not support sputtering well, which may have an impact on the optical
properties and the performance of the deposited film. On the other hand, as depicted in
Figure 4b, it is clear that the Cu2O coated on the Ti-metallic wafer appears to be tightly
packed and entirely covers the surface of the Ti-Mo substrate. The enhancement of the
morphological properties in the case of the Cu2O layer grown on the Ti-Mo substrate
could be primarily assigned to better Ohmic contact in addition to the higher electrical
conductivity of the metallic substrate, which encouraged the growth of sputtered Cu2O
film on its surface. Conversely, the usage of traditional FTO with a lower conductivity
leads to suppression of the surface passivation with the Cu2O layer.
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Figure 4. The morphological structure for Cu2O grown on (a) traditional FTO and (b) Ti-metallic substrate.

For optoelectronic behavior, the prepared Cu2O samples act as a photodetector and
are connected to the Keithley source meter. The response of the samples to incident light
was known by measuring the photocurrent density in a voltage range from 1 V to −1 V
using different wavelengths. Using the variation of the wavelengths via the utilization of
optical filters in the range of 410 nm to 636 nm, the photocurrent is captured at the applied
voltage from −1 to 1 volt for both Cu2O layers grown on FTO and Ti-Mo substrate. As
shown in Figure 5a, the maximum photocurrent obtained from Cu2O on FTO was around
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10 mA at 588 nm, whereas the dark current is comparable to zero. In contrast, as shown in
Figure 6a, the Cu2O layer on the Ti-Mo substrate shows an enhancement in the value of the
maximum photocurrent where it reaches about 50 mA also at 588 nm. More photocurrent
is obtained using Ti-Mo substrate as it can provide a conductive path for the generated
electron-hole pair under solar light illumination leading to boosting the carrier separation.
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wavelength. (c) Responsivity. (d) Detectivity.

Catalysts 2023, 13, x FOR PEER REVIEW 7 of 14 
 

 

 

Figure 5. Optoelectronic characteristics of Cu2O/FTO photodetectors. (a) The photocurrent density 

at different wavelengths from 410 to 636 nm. (b) The maximum photocurrent density at every wave-

length. (c) Responsivity. (d) Detectivity. 

 

Figure 6. Optoelectronic characteristics of Cu2O/Ti-Mo photodetectors. (a) The photocurrent density 

at different wavelengths from 410 to 636 nm. (b) The maximum photocurrent density at every wave-

length. (c) Responsivity. (d) Detectivity. 
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at different wavelengths from 410 to 636 nm. (b) The maximum photocurrent density at every
wavelength. (c) Responsivity. (d) Detectivity.
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The photodetector responsivity, which indicates the electrical signal that can be gen-
erated at a given light power, is defined as the ratio of photocurrent to the power of the
illumination source. The responsivity is (Rλ) measured using Equation (2) [29]:

Rλ = Iph/P (A/W) (2)

where Iph represents the photocurrent, and P is the power of the illumination source at a
specific wavelength. As depicted in Figure 5c, the responsivity of Cu2O grown on FTO
varies between 0.065 to 0.11 A/W and the wavelength altered from 410 to 636 nm. The
maximum value of R in this case was obtained at 588 nm and reached about 0.11 A/W.
In contrast, for the sample deposited on the Ti-Mo substrate, the responsivity exhibits a
greater value (~0.50 A/W) also at 588 nm as shown in Figure 6c. The maximum value of
the responsivity at 588 nm may be attributed to the higher absorption and the response of
the Cu2O to the light falling on it at this wavelength, which matches the optical bandgap as
mentioned in Figure 2b.

The detection ability of the photodetector for weak signals is usually known as the
detectivity (D) and it can be measured using the following equation [30]:

D = R
√

(A)/
√

(2eId) (Jones) (3)

where A is the active area, R is the responsivity, e is the charge of the electron, and
Id represents the dark current. Moreover, the detectivity for the samples calculated at
specific wavelengths from 410 to 636 nm; the general behavior of the detectivity at various
wavelengths for Cu2O on FTO and Ti-Mo substrate is completely identical to the behavior
of the responsivity as it depends on it as mentioned in Equation (3). The detectivity for
Cu2O grown on FTO as shown in Figure 5d varies between 7 × 109 to 1.2 × 1010 Jones,
with the maximum value at 588 nm corresponding to the maximum responsivity at this
wavelength. In Figure 6d, the detectivity of Cu2O grown on Ti-Mo substrate exhibited a
higher value at 588 nm of 2.8 × 1010 Jones than the sample deposited the traditional FTO
as a result of the higher responsivity of Cu2O than in the case of on Ti-Mo substrate at this
wavelength. The previous studies that reported Cu2O as a photodetector are mentioned in
Table 1.

Table 1. Previous studies reported Cu2O as a photodetector.

Photodetecror R (AW−1) D (Jones) Reference

GO/Cu2O 0.0005 1.0 × 106 [31]
n-InGaN/p-Cu2O 0.000173 4.3 × 108 [32]
α-Ga2O3/Cu2O 0.00057 - [33]
GaN/p-Cu2O 0.00096 5.35 × 109 [34]

Cu2O–Au 0.314 3.7 × 1010 [35]
Cu2O/Si 0.013 - [36]

n-Cu2O/p-CuI 0.25 - [37]
Cu2O/Ti 0.50 2.81 × 1010 This work

To know the samples’ response to the incident light at the wavelength of 588 nm, a
voltage from −1 to 1 volt was applied across both samples while using an optical filter
of 588 nm and then the photocurrent was collected in mA as depicted in Figure 7a. For
Cu2O/FTO heterojunction, the maximum obtained photocurrent reaches ~10 mA. On the
other hand, for Cu2O/Ti, the maximum photocurrent at 588 nm was ~50 mA. This explains
the vast difference and the extent to which Ti is superior to FTO as a substrate to obtain
more photocurrent. As in Figure 7b, the dark current (Id) was ~1 mA for Cu2O/Ti. It is
greater than the dark current in the case of Cu2O/FTO and this is due to the excellent
conductive properties of the metallic titanium wafer.
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changing the wavelengths from 410 nm to 636 nm.

The relationship between the generated electrons and the incident light’s photon flux
is known as the external quantum efficiency (EQE). The photon flux and light intensity
are directly related to each other. According to Equation (4) [38], the R-value is used to
calculate the EQE value based on the light wavelength (λ).

EQE = R × (1240/λ) × 100 (4)

Figure 7c depicts the calculated values of the EQE at different wavelengths. As shown,
for Cu2O/FTO, the maximum value was 20% at 588 nm, whilst for Cu2O/Ti, the maximum
value for EQE was around 110% at 450 nm. The proportion of the photocurrent to the dark
current can be used to measure the photosensitivity of the prepared photodetectors. The
photosensitivity is measured using Equation (5) [39].

Photosensitivity = (Ip/Id) × 100 (5)

where Ip represents the photocurrent and Id is the current without illumination. As seen in
Figure 7d, the photosensitivity value varies with changing the wavelengths from 410 nm
to 636 nm. Cu2O/FTO has a maximum photosensitivity of 4 × 103% at 588 nm, whereas
the maximum sensitivity for Cu2O/Ti equals 5 × 103% also at 588 nm. The maximum
sensitivity of Cu2O/Ti is greater than Cu2O/FTO because Cu2O/Ti is more responsive
to light falling on it and when electrons and holes are generated, electrons have a good
conductive path to the external circuit, which leads to an increase in the value of the
photocurrent (Ip) and then an increase in the sensitivity.

Figure 8 depicts the structure of the band energy of the photodetectors based on Cu2O;
it also demonstrates how electron-hole pairs transfer during the illumination process. The
following illustration demonstrates how Cu2O works as a photodetector. On the surface
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of the Cu2O electrode, oxygen molecules are adsorbed in the absence of light and free
electrons in the conduction band are, therefore, trapped as shown in Equation (6) [38].

1/2 O2 + 2e2− → O2− (6)

This raises the resistance and reduces the current density in dark conditions. Electron-
hole pairs form under light irradiation with energy greater than the Eg for the Cu2O layer
and, as a result of that, both the photo-induced electrons and holes migrate towards the
Ag electrodes. The oxygen ions in this case are desorbed by the holes as they move to the
surface, as shown by Equations (7) and (8).

hv→ e− + h+ (7)

2h+ + O2− → O (8)

The photocurrent rises as the conductivity of Cu2O photoelectrode is increased by the
remaining electrons. It is important to shed light on the interpretation of the relationship
between the photocurrent and the applied voltage. As depicted in the presented results,
the prepared electrodes exhibit a linear or Ohmic behavior for I-V curves. The linearity of
I-V curves is attributed to the Ohmic contact between the prepared photoelectrode and
the metallic contact deposited on it. The work function of both the semiconductor and
the metallic contact determines whether the contact is Ohmic or Schottky. For p-type
semiconductors, Schottky contact is formed when its work function is more than the work
function of the metallic contact. Herein, Ag past is utilized as a metallic contact for Cu2O
photoelectrode. The work function of Cu2O and Ag equal 5 eV and 4.74 eV, respectively,
this suggests the formation of a Schottky barrier and, therefore, a non-linear I-V curve. The
linear behavior of the I-V curve can be explained as follows, any structural or chemical
alterations at the metal-oxide contact should be taken into account, in addition to the work
function values. Most metals with low-work functions, such as Ag, are known to reduce
Cu2O to create an area of metallic copper (Cu) at the interface. This is connected to the fact
that in the presence of oxygen, metallic Ag readily oxidizes (reducing Cu2O) to create stable
oxides. Here, Ag was used to coat both sides of the sample, as it acts as an electrical contact
to facilitate the transfer of charges generated by light on the Cu2O layer. It is thought that
the ensuing oxygen-deficient area at the interface will eventually produce another sort of
barrier with characteristics somewhat resembling those of the Cu-Cu2O Ohmic contact [40].
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3. Materials and Methods
3.1. Materials and Preparation

First, using an electron beam evaporator (Syskey, Taiwan), 500-nm-thick Ti-metal
(99.6%, Sigma Aldrich (St. Louis, MO, USA)) was deposited on a commercial Mo-glass
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substrate. The cuprous oxide (Cu2O) layer was then deposited on a Ti-coated Mo-glass
substrate using an RF sputtering process (AJA-Orion-312RF- sputtering system, Cornel
Inc., Scituate, MA, USA). The sputtering target was a 4-inch-diameter copper (I) oxide
target (99.999% purity, Kurt J. Lesker Company Ltd., East Sussex, UK). A total of 200 W
of RF power was used for 2 h at 5 × 10−3 Torr of chamber pressure for the deposition of
a 1 µm Cu2O layer. High-purity Argon was used as a sputtering gas at a constant flow
rate of 20 standard cubic centimetres per minute. Rapid thermal annealing was utilized
for annealing the deposited Cu2O layer in a nitrogen environment for 90 s at 550 ◦C. For
comparison, a layer of Cu2O also was deposited on a traditional FTO substrate (8 Ω/sq,
Sigma Aldrich).

3.2. Characterization Techniques

(X’pert PRO, Philips, Eindhoven, Netherlands) diffractometer was utilized for deter-
mining the diffraction patterns of the Cu2O deposited films at (1.540598 Å) with a scan rate
of 1 min−1 and 2θ from 20:80 degree. Using a (Lambda 950 spectrometer, Perkin-Elmer,
Rodgau, Germany) spectrophotometer, the optical behavior for Cu2O films was detected
in the range of 400 to 900 nm. The surface morphologies were examined with the aid
of field emission scan electron microscope (FE-SEM) (model: JSM-6700F, JEOL, Tokyo,
Japan) operated at a voltage of 20 kV. X-ray photoelectron spectroscopy XPSPHI 5000
Versa Probe II (Chanhassen, MN, USA) and the multi-peak computer software version 9,
ULVAC-PHI, Inc. (Kanagawa, Japan) were used for determining the elemental composition
of the deposited films.

3.3. Photodetection Process Measurements

A Keithley source meter (model: 2400, Tektronix Company (Beaverton, OR, USA))
was utilized for investigating the photodetection properties of the prepared Cu2O samples
on both FTO and Ti-metallic substrates. The measurements were explored by using a
Xenon lamp as a light source (100 mwcm−2) between −1 and + 1 V applied voltage. The
fabricated samples with an area of 1 cm2 were connected to two electrodes of the Keithly
device via the usage of silver paste performing as an Ohmic contact. The impact of the
incident light with diverse wavelengths on the selected sample was detected. External
quantum efficiency, sensitivity, responsivity, and detectivity were calculated using custom
equations from the experimental data. All testing on the manufacturing samples was done
in a standard environment and at ambient temperature. Figure 9 shows the device structure
of the Cu2O/Ti/Mo-glass photodetector under light illumination.
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4. Conclusions

Cu2O photosensitive layers grown on FTO and Ti-Mo metallic substrate were used
to create a unique optoelectronic photodetector. The facile RF sputtering technique was
utilized for the deposition process. The morphological structures for the grown Cu2O/FTO
samples appear scattered and fragmented and the pinholes were clearly observed in
contrast to the Cu2O/Ti samples, which appear free from pinholes. The diffraction patterns
related to the XRD study for both Cu2O/FTO and Cu2O/Ti reveal that the (111) plane
appeared as the main peak at around 2θ = 36.46◦. The optical bandgap for the Cu2O
layer equals 2.15 eV was calculated using Tauc’s relation extracted from the absorption
data. The XPS study reveals the attendance of two peaks related to both Cu 2p3/2 and
Cu 2p1/2. The prepared photoelectrodes can detect and sense the UV and Vis regions of
the electromagnetic spectrum. The optoelectronic behavior for the prepared samples was
tested by measuring the photocurrent density under variable wavelengths of illumination
from 410 to 636 nm. Cu2O/Ti photoelectrode exhibited more effective optoelectronic
properties than Cu2O/FTO photoelectrode. The maximum detectivity and photosensitivity
for Cu2O/Ti samples at 588 nm were 2.8 × 1010 Jones and 5 × 103%, respectively, whereas
the external quantum efficiency was around 110% at 450 nm. The present development is
the first step toward realizing mass-scale high-efficiency photodetectors over a wide range
of wavelengths for various applications in the future.
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