Ultra-Low Loading of Iron Oxide and Platinum on CVD-Graphene Composites as Effective Electrode Catalysts for Solid Acid Fuel Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Platinum-Free CVD-Graphene Electrode
2.2. Platinum-Decorated CVD-Graphene Electrode
3. Materials and Methods
3.1. CVD-Graphene Preparation
3.2. CVD-Graphene Transfer
3.3. Oxygen Plasma Treatment
3.4. Catalyst Deposition
3.5. Electrochemical Cell Characterization
3.5.1. Preparation of Membrane-Electrode Assembly (MEA)
3.5.2. Electrochemical Testing
3.6. Characterization Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karim, N.A.; Kamarudin, S.K. An Overview on Non-Platinum Cathode Catalysts for Direct Methanol Fuel Cell. Appl. Energy 2013, 103, 212–220. [Google Scholar] [CrossRef]
- Andújar, J.M.; Segura, F. Fuel Cells: History and Updating. A Walk along Two Centuries. Renew. Sustain. Energy Rev. 2009, 13, 2309–2322. [Google Scholar] [CrossRef]
- Ahmad, M.M.; Kamarudin, S.K.; Daud, W.R.W.; Yaakub, Z. High Power Passive ΜDMFC with Low Catalyst Loading for Small Power Generation. Energy Convers. Manag. 2010, 51, 821–825. [Google Scholar] [CrossRef]
- Basri, S.; Kamarudin, S.K. Process System Engineering in Direct Methanol Fuel Cell. Int. J. Hydrogen Energy 2011, 36, 6219–6236. [Google Scholar] [CrossRef]
- Dwivedi, K.A.; Huang, S.-J.; Wang, C.-T. Integration of Various Technology-Based Approaches for Enhancing the Performance of Microbial Fuel Cell Technology: A Review. Chemosphere 2022, 287, 132248. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.Z.; Colella, W.G.; Golden, D.M. Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles. Science 2005, 308, 1901–1905. [Google Scholar] [CrossRef] [Green Version]
- Haile, S.M.; Boysen, D.A.; Chisholm, C.R.I.; Merle, R.B. Solid Acids as Fuel Cell Electrolytes. Nature 2001, 410, 910–913. [Google Scholar] [CrossRef] [Green Version]
- Sanghvi, S.; Haile, S.M. Crystal Structure, Conductivity, and Phase Stability of Cs3(H1.5PO4)2 under Controlled Humidity. Solid State Ion. 2020, 349, 115291. [Google Scholar] [CrossRef]
- Navarrete, L.; Andrio, A.; Escolástico, S.; Moya, S.; Compañ, V.; Serra, J.M. Protonic Conduction of Partially-Substituted CsH2PO4 and the Applicability in Electrochemical Devices. Membranes 2019, 9, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, M.; Dreßler, C.; Lohmann-Richters, F.P.; Hanus, K.; Sebastiani, D.; Varga, A.; Abel, B. Mechanism of Ion Conductivity through Polymer-Stabilized CsH2PO4 Nanoparticular Layers from Experiment and Theory. J. Mater. Chem. A 2019, 7, 27367–27376. [Google Scholar] [CrossRef]
- Lohmann-Richters, F.P.; Odenwald, C.; Kickelbick, G.; Abel, B.; Varga, Á. Facile and Scalable Synthesis of Sub-Micrometer Electrolyte Particles for Solid Acid Fuel Cells. RSC Adv. 2018, 8, 21806–21815. [Google Scholar] [CrossRef] [PubMed]
- Naumov, O.; Naumov, S.; Abel, B.; Varga, A. The Stability Limits of Highly Active Nitrogen Doped Carbon ORR Nano-Catalysts: A Mechanistic Study of Degradation Reactions. Nanoscale 2018, 10, 6724–6733. [Google Scholar] [CrossRef]
- Afroze, S.; Reza, M.S.; Somalu, M.R.; Azad, A.K. Super–Protonic Conductors for Solid Acid Fuel Cells (SAFCs): A Review. Eurasian J. Phys. Funct. Mater. 2023, 7, 6–37. [Google Scholar] [CrossRef]
- Hatahet, M.H.; Wagner, M.; Prager, A.; Helmstedt, U.; Abel, B. Functionalized and Platinum-Decorated Multi-Layer Oxidized Graphene as a Proton, and Electron Conducting Separator in Solid Acid Fuel Cells. Catalysts 2021, 11, 947. [Google Scholar] [CrossRef]
- Papandrew, A.B.; Chisholm, C.R.I.; Elgammal, R.A.; Özer, M.M.; Zecevic, S.K. Advanced Electrodes for Solid Acid Fuel Cells by Platinum Deposition on CsH2PO4. Chem. Mater. 2011, 23, 1659–1667. [Google Scholar] [CrossRef] [Green Version]
- Uda, T. Thermodynamic, Thermomechanical, and Electrochemical Evaluation of CsHSO4. Solid State Ion. 2005, 176, 127–133. [Google Scholar] [CrossRef]
- Debe, M.K.; Schmoeckel, A.K.; Vernstrom, G.D.; Atanasoski, R. High Voltage Stability of Nanostructured Thin Film Catalysts for PEM Fuel Cells. J. Power Source 2006, 161, 1002–1011. [Google Scholar] [CrossRef]
- Gasteiger, H.A.; Marković, N.M. Just a Dream—Or Future Reality? Science 2009, 324, 48–49. [Google Scholar] [CrossRef]
- Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H.; et al. Lattice-Strain Control of the Activity in Dealloyed Core–Shell Fuel Cell Catalysts. Nat. Chem. 2010, 2, 454–460. [Google Scholar] [CrossRef]
- Wang, C.; van der Vliet, D.; More, K.L.; Zaluzec, N.J.; Peng, S.; Sun, S.; Daimon, H.; Wang, G.; Greeley, J.; Pearson, J.; et al. Multimetallic Au/FePt3 Nanoparticles as Highly Durable Electrocatalyst. Nano Lett. 2011, 11, 919–926. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Peng, Z.; Yang, S.; Wagner, F.T.; Yang, H. Truncated Octahedral Pt 3 Ni Oxygen Reduction Reaction Electrocatalysts. J. Am. Chem. Soc. 2010, 132, 4984–4985. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.-P.; Sasaki, K.; Su, D.; Zhu, Y.; Wang, J.X.; Adzic, R.R. Gram-Scale-Synthesized Pd2 Co-Supported Pt Monolayer Electrocatalysts for Oxygen Reduction Reaction. J. Phys. Chem. C 2010, 114, 8950–8957. [Google Scholar] [CrossRef]
- Fang, B.; Chaudhari, N.K.; Kim, M.-S.; Kim, J.H.; Yu, J.-S. Homogeneous Deposition of Platinum Nanoparticles on Carbon Black for Proton Exchange Membrane Fuel Cell. J. Am. Chem. Soc. 2009, 131, 15330–15338. [Google Scholar] [CrossRef] [PubMed]
- Tennyson, W.D.; Tian, M.; Papandrew, A.B.; Rouleau, C.M.; Puretzky, A.A.; Sneed, B.T.; More, K.L.; Veith, G.M.; Duscher, G.; Zawodzinski, T.A.; et al. Bottom up Synthesis of Boron-Doped Graphene for Stable Intermediate Temperature Fuel Cell Electrodes. Carbon 2017, 123, 605–615. [Google Scholar] [CrossRef]
- Lohmann, F.P.; Schulze, P.S.C.; Wagner, M.; Naumov, O.; Lotnyk, A.; Abel, B.; Varga, Á. The next Generation Solid Acid Fuel Cell Electrodes: Stable, High Performance with Minimized Catalyst Loading. J. Mater. Chem. A 2017, 5, 15021–15025. [Google Scholar] [CrossRef]
- Liu, X.; Hu, W. Iron Oxide/Oxyhydroxide Decorated Graphene Oxides for Oxygen Reduction Reaction Catalysis: A Comparison Study. RSC Adv. 2016, 6, 29848–29854. [Google Scholar] [CrossRef]
- Wang, K.; Chen, H.; Zhang, X.; Tong, Y.; Song, S.; Tsiakaras, P.; Wang, Y. Iron Oxide@graphitic Carbon Core-Shell Nanoparticles Embedded in Ordered Mesoporous N-Doped Carbon Matrix as an Efficient Cathode Catalyst for PEMFC. Appl. Catal. B Environ. 2020, 264, 118468. [Google Scholar] [CrossRef]
- Fan, Z.; Li, J.; Yang, W.; Fu, Q.; Sun, K.; Song, Y.-C.; Wei, Z.; Liao, Q.; Zhu, X. Green and Facile Synthesis of Iron Oxide Nanoparticle-Embedded N-Doped Biocarbon as an Efficient Oxygen Reduction Electrocatalyst for Microbial Fuel Cells. Chem. Eng. J. 2020, 385, 123393. [Google Scholar] [CrossRef]
- Ayyubov, I.; Tálas, E.; Berghian-Grosan, C.; Románszki, L.; Borbáth, I.; Pászti, Z.; Szegedi, Á.; Mihály, J.; Vulcu, A.; Tompos, A. Nitrogen Doped Carbonaceous Materials as Platinum Free Cathode Electrocatalysts for Oxygen Reduction Reaction (ORR). React. Kinet. Mech. Catal. 2023, 136, 125–147. [Google Scholar] [CrossRef]
- Sudarsono, W.; Tan, S.Y.; Wong, W.Y.; Omar, F.S.; Ramya, K.; Mehmood, S.; Numan, A.; Walvekar, R.; Khalid, M. From Catalyst Structure Design to Electrode Fabrication of Platinum-Free Electrocatalysts in Proton Exchange Membrane Fuel Cells: A Review. J. Ind. Eng. Chem. 2023, 122, 1–26. [Google Scholar] [CrossRef]
- Chen, X.; Yu, L.; Wang, S.; Deng, D.; Bao, X. Highly Active and Stable Single Iron Site Confined in Graphene Nanosheets for Oxygen Reduction Reaction. Nano Energy 2017, 32, 353–358. [Google Scholar] [CrossRef]
- Ferrandon, M.S.; Park, J.H.; Wang, X.; Coleman, E.; Jeremy Kropf, A.; Myers, D.J. Enhancing the Activity of Fe-N-C Oxygen Reduction Reaction Electrocatalysts by High-Throughput Exploration of Synthesis Parameters. Electrochim. Acta 2023, 441, 141850. [Google Scholar] [CrossRef]
- Nielander, A.C. Deploying Cerium to Stabilize Iron-Nitrogen-Carbon Catalysts during the ORR. Chem. Catal. 2023, 3, 100566. [Google Scholar] [CrossRef]
- Villanueva-Martínez, N.I.; Alegre, C.; Martínez-Visús, I.; Lázaro, M.J. Bifunctional Oxygen Electrocatalysts Based on Non-Critical Raw Materials: Carbon Nanostructures and Iron-Doped Manganese Oxide Nanowires. Catal. Today 2023, 420, 114083. [Google Scholar] [CrossRef]
- Youn, D.H.; Jang, J.-W.; Kim, J.Y.; Jang, J.S.; Choi, S.H.; Lee, J.S. Fabrication of Graphene-Based Electrode in Less than a Minute through Hybrid Microwave Annealing. Sci. Rep. 2015, 4, 5492. [Google Scholar] [CrossRef] [Green Version]
- Smaisim, G.F.; Abed, A.M.; Al-Madhhachi, H.; Hadrawi, S.K.; Al-Khateeb, H.M.M.; Kianfar, E. Graphene-Based Important Carbon Structures and Nanomaterials for Energy Storage Applications as Chemical Capacitors and Supercapacitor Electrodes: A Review. Bionanoscience 2023, 13, 219–248. [Google Scholar] [CrossRef]
- Jehad, A.K.; Fidan, M.; Ünverdi, Ö.; Çelebi, C. CVD Graphene/SiC UV Photodetector with Enhanced Spectral Responsivity and Response Speed. Sens. Actuators A Phys. 2023, 355, 114309. [Google Scholar] [CrossRef]
- Li, P.; Jing, G.; Zhang, B.; Sando, S.; Cui, T. Single-Crystalline Monolayer and Multilayer Graphene Nano Switches. Appl. Phys. Lett. 2014, 104, 113110. [Google Scholar] [CrossRef]
- Bahri, M.; Gebre, S.H.; Elaguech, M.A.; Dajan, F.T.; Sendeku, M.G.; Tlili, C.; Wang, D. Recent Advances in Chemical Vapour Deposition Techniques for Graphene-Based Nanoarchitectures: From Synthesis to Contemporary Applications. Coord. Chem. Rev. 2023, 475, 214910. [Google Scholar] [CrossRef]
- Varshney, V.; Patnaik, S.S.; Roy, A.K.; Froudakis, G.; Farmer, B.L. Modeling of Thermal Transport in Pillared-Graphene Architectures. ACS Nano 2010, 4, 1153–1161. [Google Scholar] [CrossRef]
- Al Busaidi, H.; Suhail, A.; Jenkins, D.; Pan, G. Developed Graphene/Si Schottky Junction Solar Cells Based on the Top-Window Structure. Carbon Trends 2023, 10, 100247. [Google Scholar] [CrossRef]
- Hwang, J.; Lee, J.; Ryu, S.; Woo, Y.S. Role of Graphene towards Long-Term Stability of Flexible Heaters Made of Graphene-Coated Silver Nanowire Networks under Repeated Deformation. J. Mater. Sci. Mater. Electron. 2023, 34, 130. [Google Scholar] [CrossRef]
- Aiswaria, P.; Mohamed, N.S.; Singaravelu, D.L.; Brindhadevi, K.; Pugazhendhi, A. A Review on Graphene/Graphene Oxide Supported Electrodes for Microbial Fuel Cell Applications: Challenges and Prospects. Chemosphere 2022, 296, 133983. [Google Scholar] [CrossRef]
- Fisichella, G.; Di Franco, S.; Fiorenza, P.; Lo Nigro, R.; Roccaforte, F.; Tudisco, C.; Condorelli, G.G.; Piluso, N.; Spartà, N.; Lo Verso, S.; et al. Micro- and Nanoscale Electrical Characterization of Large-Area Graphene Transferred to Functional Substrates. Beilstein J. Nanotechnol. 2013, 4, 234–242. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; He, P.; Chen, S.; Chen, Z.; Zang, Y.; Li, Y.; Duan, Y. ALD-Assisted Graphene Functionalization for Advanced Applications. J. Electron. Mater. 2022, 51, 2766–2785. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Li, J.; Liu, G.; Gao, M.; Ren, S.; Liu, B.; Zhang, L.; Han, G.; Yu, J.; et al. Platinum Cluster/Carbon Quantum Dots Derived Graphene Heterostructured Carbon Nanofibers for Efficient and Durable Solar-Driven Electrochemical Hydrogen Evolution. Small Methods 2022, 6, 2101470. [Google Scholar] [CrossRef]
- Bouwman, P.J.; Dmowski, W.; Stanley, J.; Cotten, G.B.; Swider-Lyons, K.E. Platinum-Iron Phosphate Electrocatalysts for Oxygen Reduction in PEMFCs. J. Electrochem. Soc. 2004, 151, A1989. [Google Scholar] [CrossRef]
- Duchesne, P.N.; Chen, G.; Zheng, N.; Zhang, P. Local Structure, Electronic Behavior, and Electrocatalytic Reactivity of CO-Reduced Platinum–Iron Oxide Nanoparticles. J. Phys. Chem. C 2013, 117, 26324–26333. [Google Scholar] [CrossRef]
- Yu, B.; Liu, Q.; Nichols, F.; Mayford, K.; Pan, D.; Kuo, H.-L.; Lu, J.Q.; Bridges, F.; Chen, S. Platinum-Anchored Iron Oxide Nanostructures for Efficient Hydrogen Evolution Reaction in Acidic Media. J. Phys. Chem. C 2023, 127, 3996–4005. [Google Scholar] [CrossRef]
- Xu, J.; Hua, K.; Sun, G.; Wang, C.; Lv, X.; Wang, Y. Electrooxidation of Methanol on Carbon Nanotubes Supported Pt–Fe Alloy Electrode. Electrochem. Commun. 2006, 8, 982–986. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, Y.; Guo, Z.; Wang, X.; Yang, Y. Promoted Aerobic Oxidation of Benzyl Alcohol on CNT Supported Platinum by Iron Oxide. Chem. Commun. 2011, 47, 7473. [Google Scholar] [CrossRef]
- Krauß, P.; Engstler, J.; Schneider, J.J. A Systematic Study of the Controlled Generation of Crystalline Iron Oxide Nanoparticles on Graphene Using a Chemical Etching Process. Beilstein J. Nanotechnol. 2017, 8, 2017–2025. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.C.; Girit, C.O.; Crommie, M.F.; Zettl, A. Imaging and Dynamics of Light Atoms and Molecules on Graphene. Nature 2008, 454, 319–322. [Google Scholar] [CrossRef] [Green Version]
- Alemán, B.; Regan, W.; Aloni, S.; Altoe, V.; Alem, N.; Girit, C.; Geng, B.; Maserati, L.; Crommie, M.; Wang, F.; et al. Transfer-Free Batch Fabrication of Large-Area Suspended Graphene Membranes. ACS Nano 2010, 4, 4762–4768. [Google Scholar] [CrossRef]
- Chandra, V.; Park, J.; Chun, Y.; Lee, J.W.; Hwang, I.-C.; Kim, K.S. Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. ACS Nano 2010, 4, 3979–3986. [Google Scholar] [CrossRef]
- Han, T.; Wei, Y.; Jin, X.; Jiu, H.; Zhang, L.; Sun, Y.; Tian, J.; Shang, R.; Hang, D.; Zhao, R. Hydrothermal Self-Assembly of α-Fe2O3 Nanorings@graphene Aerogel Composites for Enhanced Li Storage Performance. J. Mater. Sci. 2019, 54, 7119–7130. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, M.; Liu, P.; Wang, S.; Liu, S.; Feng, H.; Zheng, H.; Cheng, F. Advanced Negative Electrode of Fe2O 3/Graphene Oxide Paper for High Energy Supercapacitors. Mater. Res. Bull. 2017, 96, 413–418. [Google Scholar] [CrossRef]
- Li, L.; Zhou, G.; Weng, Z.; Shan, X.-Y.; Li, F.; Cheng, H.-M. Monolithic Fe2O3/Graphene Hybrid for Highly Efficient Lithium Storage and Arsenic Removal. Carbon 2014, 67, 500–507. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, H.-B.; Xu, J.; Wu, X.; Yang, D.; Qu, J.; Yu, Z.-Z. Highly Efficient High-Pressure Homogenization Approach for Scalable Production of High-Quality Graphene Sheets and Sandwich-Structured α-Fe2O3/Graphene Hybrids for High-Performance Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 11025–11034. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Xuan, Y.; Jiang, B.; Zhang, S.; Xia, C. Hollow La0.6Sr0.4Ni0.2Fe0.75Mo0.05O3-δ Electrodes with Exsolved FeNi3 in Quasi-Symmetrical Solid Oxide Electrolysis Cells for Direct CO2 Electrolysis. Electrochem. Commun. 2022, 134, 107188. [Google Scholar] [CrossRef]
- Cao, K.; Jiao, L.; Liu, H.; Liu, Y.; Wang, Y.; Guo, Z.; Yuan, H. 3D Hierarchical Porous α-Fe2O3 Nanosheets for High-Performance Lithium-Ion Batteries. Adv. Energy Mater. 2015, 5, 1401421. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Hawn, D.D.; DeKoven, B.M. Deconvolution as a Correction for Photoelectron Inelastic Energy Losses in the Core Level XPS Spectra of Iron Oxides. Surf. Interface Anal. 1987, 10, 63–74. [Google Scholar] [CrossRef]
- Muhler, M. The Nature of the Iron Oxide-Based Catalyst for Dehydrogenation of Ethylbenzene to Styrene 2. Surface Chemistry of the Active Phase. J. Catal. 1992, 138, 413–444. [Google Scholar] [CrossRef]
- Mills, P.; Sullivan, J.L. A Study of the Core Level Electrons in Iron and Its Three Oxides by Means of X-Ray Photoelectron Spectroscopy. J. Phys. D Appl. Phys. 1983, 16, 723–732. [Google Scholar] [CrossRef]
- Petnikota, S.; Maseed, H.; Srikanth, V.V.S.S.; Reddy, M.V.; Adams, S.; Srinivasan, M.; Chowdari, B.V.R. Experimental Elucidation of a Graphenothermal Reduction Mechanism of Fe2O3: An Enhanced Anodic Behavior of an Exfoliated Reduced Graphene Oxide/Fe3O4 Composite in Li-Ion Batteries. J. Phys. Chem. C 2017, 121, 3778–3789. [Google Scholar] [CrossRef]
- Lota, G.; Lota, K.; Frackowiak, E. Nanotubes Based Composites Rich in Nitrogen for Supercapacitor Application. Electrochem. Commun. 2007, 9, 1828–1832. [Google Scholar] [CrossRef]
- Lu, X.; Yang, X.; Tariq, M.; Li, F.; Steimecke, M.; Li, J.; Varga, A.; Bron, M.; Abel, B. Plasma-Etched Functionalized Graphene as a Metal-Free Electrode Catalyst in Solid Acid Fuel Cells. J. Mater. Chem. A 2020, 8, 2445–2452. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Qu, Y.; Yuan, T.; Wang, W.; Wu, Y.; Li, Y. Review of Metal Catalysts for Oxygen Reduction Reaction: From Nanoscale Engineering to Atomic Design. Chem 2019, 5, 1486–1511. [Google Scholar] [CrossRef]
- Cao, B.; Veith, G.M.; Diaz, R.E.; Liu, J.; Stach, E.A.; Adzic, R.R.; Khalifah, P.G. Cobalt Molybdenum Oxynitrides: Synthesis, Structural Characterization, and Catalytic Activity for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2013, 52, 10753–10757. [Google Scholar] [CrossRef]
- Cui, G.; Bi, Z.; Zhang, R.; Liu, J.; Yu, X.; Li, Z. A Comprehensive Review on Graphene-Based Anti-Corrosive Coatings. Chem. Eng. J. 2019, 373, 104–121. [Google Scholar] [CrossRef]
- Wang, H.; Cui, L.-F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J.T.; Liang, Y.; Cui, Y.; Dai, H. Mn3O4−Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Song, H.; Ma, L.; Chen, X. Magnetite/Graphene Nanosheet Composites: Interfacial Interaction and Its Impact on the Durable High-Rate Performance in Lithium-Ion Batteries. RSC Adv. 2011, 1, 782. [Google Scholar] [CrossRef]
- Wang, H.; Casalongue, H.S.; Liang, Y.; Dai, H. Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. J. Am. Chem. Soc. 2010, 132, 7472–7477. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Wang, D.-W.; Yin, L.-C.; Li, N.; Li, F.; Cheng, H.-M. Oxygen Bridges between NiO Nanosheets and Graphene for Improvement of Lithium Storage. ACS Nano 2012, 6, 3214–3223. [Google Scholar] [CrossRef]
- Yamamoto, S.; Kendelewicz, T.; Newberg, J.T.; Ketteler, G.; Starr, D.E.; Mysak, E.R.; Andersson, K.J.; Ogasawara, H.; Bluhm, H.; Salmeron, M.; et al. Water Adsorption on α-Fe2O3 (0001) at near Ambient Conditions. J. Phys. Chem. C 2010, 114, 2256–2266. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.; Duan, X. Graphene–Dielectric Integration for Graphene Transistors. Mater. Sci. Eng. R Rep. 2010, 70, 354–370. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, H.; Jiang, C.; Chen, X.; Chen, C.; Kong, Z.; Wang, H. Plasma Assisted Approaches toward High Quality Transferred Synthetic Graphene for Electronics. Nano Express 2023, 4, 012001. [Google Scholar] [CrossRef]
- Tamargo-Martínez, K.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J.M.D. Surface Modification of High-Surface Area Graphites by Oxygen Plasma Treatments. Appl. Surf. Sci. 2022, 575, 151675. [Google Scholar] [CrossRef]
- Qi, Z.; Zhu, X.; Jin, H.; Zhang, T.; Kong, X.; Ruoff, R.S.; Qiao, Z.; Ji, H. Rapid Identification of the Layer Number of Large-Area Graphene on Copper. Chem. Mater. 2018, 30, 2067–2073. [Google Scholar] [CrossRef]
- Yen, W.-C.; Chen, Y.-Z.; Yeh, C.-H.; He, J.-H.; Chiu, P.-W.; Chueh, Y.-L. Direct Growth of Self-Crystallized Graphene and Graphite Nanoballs with Ni Vapor-Assisted Growth: From Controllable Growth to Material Characterization. Sci. Rep. 2015, 4, 4739. [Google Scholar] [CrossRef] [Green Version]
- Yusoff, F.; Suresh, K.; Noorashikin, M.S. Synthesis and Characterization of Reduced Graphene Oxide-Iron Oxide Nanocomposite as a Potential Fuel Cell Electrocatalyst. IOP Conf. Ser. Earth Environ. Sci. 2020, 463, 012078. [Google Scholar] [CrossRef]
- Mari, E.; Tsai, P.-C.; Eswaran, M.; Ponnusamy, V.K. Efficient Electro-Catalytic Oxidation of Ethylene Glycol Using Flower-like Graphitic Carbon Nitride/Iron Oxide/Palladium Nanocomposite for Fuel Cell Application. Fuel 2020, 280, 118646. [Google Scholar] [CrossRef]
- Chen, L.; Bock, C.; Mercier, P.H.J.; MacDougall, B.R. Ordered Alloy Formation for Pt3Fe/C, PtFe/C and Pt5.75Fe5.75Cuy/CO2−Reduction Electro-Catalysts. Electrochim. Acta 2012, 77, 212–224. [Google Scholar] [CrossRef] [Green Version]
- Valisi, A.N.; Maiyalagan, T.; Khotseng, L.; Linkov, V.; Pasupathi, S. Effects of Heat Treatment on the Catalytic Activity and Methanol Tolerance of Carbon-Supported Platinum Alloys. Electrocatalysis 2012, 3, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Jia, Q.; Segre, C.U.; Ramaker, D.; Caldwell, K.; Trahan, M.; Mukerjee, S. Structure–Property–Activity Correlations of Pt-Bimetallic Nanoparticles: A Theoretical Study. Electrochim. Acta 2013, 88, 604–613. [Google Scholar] [CrossRef]
- Li, X.; An, L.; Wang, X.; Li, F.; Zou, R.; Xia, D. Supported Sub-5nm Pt–Fe Intermetallic Compounds for Electrocatalytic Application. J. Mater. Chem. 2012, 22, 6047. [Google Scholar] [CrossRef]
- Duan, H.; Hao, Q.; Xu, C. Nanoporous PtFe Alloys as Highly Active and Durable Electrocatalysts for Oxygen Reduction Reaction. J. Power Source 2014, 269, 589–596. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, M.; Liu, J.; Liu, R.; Zhao, J. Glycerol-Stabilized NaBH4 Reduction at Room-Temperature for the Synthesis of a Carbon-Supported PtxFe Alloy with Superior Oxygen Reduction Activity for a Microbial Fuel Cell. Electrochim. Acta 2014, 141, 331–339. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, X.; Chen, S.; Li, H.; Fu, X.; Wu, Q.; Li, S.; Li, Y.; Su, B.-L.; Ruoff, R.S. One-Pot Fabrication of FePt/Reduced Graphene Oxide Composites as Highly Active and Stable Electrocatalysts for the Oxygen Reduction Reaction. Carbon 2014, 68, 755–762. [Google Scholar] [CrossRef]
- Zheng, J.; Fu, R.; Tian, T.; Wang, X.; Ma, J. Effect of the Microwave Thermal Treatment Condition on Pt–Fe/C Alloy Catalyst Performance. Int. J. Hydrogen Energy 2012, 37, 12994–13000. [Google Scholar] [CrossRef]
- Yang, D.-S.; Kim, M.-S.; Song, M.Y.; Yu, J.-S. Highly Efficient Supported PtFe Cathode Electrocatalysts Prepared by Homogeneous Deposition for Proton Exchange Membrane Fuel Cell. Int. J. Hydrogen Energy 2012, 37, 13681–13688. [Google Scholar] [CrossRef]
- Karunagaran, R.; Coghlan, C.; Tung, T.T.; Kabiri, S.; Tran, D.N.H.; Doonan, C.J.; Losic, D. Study of Iron Oxide Nanoparticle Phases in Graphene Aerogels for Oxygen Reduction Reaction. New J. Chem. 2017, 41, 15180–15186. [Google Scholar] [CrossRef]
- Antolini, E. Iron-Containing Platinum-Based Catalysts as Cathode and Anode Materials for Low-Temperature Acidic Fuel Cells: A Review. RSC Adv. 2016, 6, 3307–3325. [Google Scholar] [CrossRef]
- Jalan, V.; Taylor, E.J. Importance of Interatomic Spacing In The Catalytic Reduction Of Oxygen In Phosphoric Acid. Electrochem. Soc. 1984, 84–12, 546–557. [Google Scholar] [CrossRef]
- Paffett, M.T.; Beery, J.G.; Gottesfeld, S. Oxygen Reduction at Pt0.65Cr0.35, Pt0.2Cr0.8 and Roughened Platinum. J. Electrochem. Soc. 1988, 135, 1431–1436. [Google Scholar] [CrossRef]
- Beard, B.C.; Ross, P.N. The Structure and Activity of Pt-Co Alloys as Oxygen Reduction Electrocatalysts. J. Electrochem. Soc. 1990, 137, 3368–3374. [Google Scholar] [CrossRef]
- Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co. J. Electrochem. Soc. 1999, 146, 3750–3756. [Google Scholar] [CrossRef]
- Stamenković, V.; Schmidt, T.J.; Ross, P.N.; Marković, N.M. Surface Segregation Effects in Electrocatalysis: Kinetics of Oxygen Reduction Reaction on Polycrystalline Pt3Ni Alloy Surfaces. J. Electroanal. Chem. 2003, 554–555, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Mukerjee, S.; Srinivasan, S.; Soriaga, M.P.; McBreen, J. Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction: An In Situ XANES and EXAFS Investigation. J. Electrochem. Soc. 1995, 142, 1409–1422. [Google Scholar] [CrossRef]
- Kolmakov, A.; Gregoratti, L.; Kiskinova, M.; Günther, S. Recent Approaches for Bridging the Pressure Gap in Photoelectron Microspectroscopy. Top. Catal. 2016, 59, 448–468. [Google Scholar] [CrossRef] [Green Version]
- Wagner, M.; Lorenz, O.; Lohmann-Richters, F.P.; Varga, A.; Abel, B. On the Role of Local Heating in Cathode Degradation during the Oxygen Reduction Reaction in Solid Acid Fuel Cells. Sustain. Energy Fuels 2020, 4, 5284–5293. [Google Scholar] [CrossRef]
- Prokop, M.; Drakselova, M.; Bouzek, K. Review of the Experimental Study and Prediction of Pt-Based Catalyst Degradation during PEM Fuel Cell Operation. Curr. Opin. Electrochem. 2020, 20, 20–27. [Google Scholar] [CrossRef]
- Prokop, M.; Kodym, R.; Bystron, T.; Drakselova, M.; Paidar, M.; Bouzek, K. Degradation Kinetics of Pt during High-Temperature PEM Fuel Cell Operation Part II: Dissolution Kinetics of Pt Incorporated in a Catalyst Layer of a Gas-Diffusion Electrode. Electrochim. Acta 2020, 333, 135509. [Google Scholar] [CrossRef]
- Zeis, R. Materials and Characterization Techniques for High-Temperature Polymer Electrolyte Membrane Fuel Cells. Beilstein J. Nanotechnol. 2015, 6, 68–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehnert, J.; Spemann, D.; Hamza Hatahet, M.; Mändl, S.; Mensing, M.; Finzel, A.; Varga, A.; Rauschenbach, B. Graphene on Silicon Dioxide via Carbon Ion Implantation in Copper with PMMA-Free Transfer. Appl. Phys. Lett. 2017, 110, 233114. [Google Scholar] [CrossRef]
- Wang, X.; Dolocan, A.; Chou, H.; Tao, L.; Dick, A.; Akinwande, D.; Willson, C.G. Direct Observation of Poly(Methyl Methacrylate) Removal from a Graphene Surface. Chem. Mater. 2017, 29, 2033–2039. [Google Scholar] [CrossRef]
- Uda, T.; Haile, S.M. Thin-Membrane Solid-Acid Fuel Cell. Electrochem. Solid-State Lett. 2005, 8, A245–A246. [Google Scholar] [CrossRef] [Green Version]
- Olesik, J.W.; Gray, P.J. Considerations for Measurement of Individual Nanoparticles or Microparticles by ICP-MS: Determination of the Number of Particles and the Analyte Mass in Each Particle. J. Anal. At. Spectrom. 2012, 27, 1143. [Google Scholar] [CrossRef]
- Dos Anjos, S.L.; Alves, J.C.; Rocha Soares, S.A.; Araujo, R.G.O.; de Oliveira, O.M.C.; Queiroz, A.F.S.; Ferreira, S.L.C. Multivariate Optimization of a Procedure Employing Microwave-Assisted Digestion for the Determination of Nickel and Vanadium in Crude Oil by ICP OES. Talanta 2018, 178, 842–846. [Google Scholar] [CrossRef] [Green Version]
- Yoshii, K.; Yamaji, K.; Tsuda, T.; Matsumoto, H.; Sato, T.; Izumi, R.; Torimoto, T.; Kuwabata, S. Highly Durable Pt Nanoparticle-Supported Carbon Catalysts for the Oxygen Reduction Reaction Tailored by Using an Ionic Liquid Thin Layer. J. Mater. Chem. A 2016, 4, 12152–12157. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatahet, M.H.; Bryja, H.; Lotnyk, A.; Wagner, M.; Abel, B. Ultra-Low Loading of Iron Oxide and Platinum on CVD-Graphene Composites as Effective Electrode Catalysts for Solid Acid Fuel Cells. Catalysts 2023, 13, 1154. https://doi.org/10.3390/catal13081154
Hatahet MH, Bryja H, Lotnyk A, Wagner M, Abel B. Ultra-Low Loading of Iron Oxide and Platinum on CVD-Graphene Composites as Effective Electrode Catalysts for Solid Acid Fuel Cells. Catalysts. 2023; 13(8):1154. https://doi.org/10.3390/catal13081154
Chicago/Turabian StyleHatahet, Mhamad Hamza, Hagen Bryja, Andriy Lotnyk, Maximilian Wagner, and Bernd Abel. 2023. "Ultra-Low Loading of Iron Oxide and Platinum on CVD-Graphene Composites as Effective Electrode Catalysts for Solid Acid Fuel Cells" Catalysts 13, no. 8: 1154. https://doi.org/10.3390/catal13081154
APA StyleHatahet, M. H., Bryja, H., Lotnyk, A., Wagner, M., & Abel, B. (2023). Ultra-Low Loading of Iron Oxide and Platinum on CVD-Graphene Composites as Effective Electrode Catalysts for Solid Acid Fuel Cells. Catalysts, 13(8), 1154. https://doi.org/10.3390/catal13081154