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Abstract: Most agro-industrial wastes are lignocellulosic biomass. Several technologies have been
developed to convert these residues to value-added products. Among these processes, pyrolysis
refers to the thermal degradation of organic materials. Microwave-assisted pyrolysis (MAP) is more
advantageous than conventional pyrolysis because it offers time savings, increases heating efficiency,
and promotes a more precise process control. In this work, the microwave-assisted pyrolysis (MAP)
of brewer’s spent grain (BSG), the main waste of the brewing industry, was studied, focusing on its
liquid product. The effects of temperature, moisture content, and catalyst (calcium oxide) percentage
on the product distribution and hydrocarbon content in the liquid product obtained were investigated.
Although a high liquid yield of 71.8% was achieved with a BSG moisture content of 14%, the quality
of the product (hydrocarbon yield) in this condition was not so attractive (21.60%). An optimization
study was carried out to simultaneously maximize bio-oil yield and quality. The optimum conditions
obtained were a temperature of 570 ◦C and a catalyst/biomass ratio of 12.17%. The results of the
liquid product composition at the optimum point are promising given the presence of aromatic
hydrocarbons, organic compounds of great interest to the industry.

Keywords: biomass; catalytic microwave-assisted pyrolysis; calcium oxide; hydrocarbons

1. Introduction

The valorization of underutilized agro-industrial wastes represents a significant op-
portunity in view of the growing demands for energy, the impacts of fossil fuel on the
global environment, and people’s concern with the improper disposal of solid wastes
because of their serious impact on global warming and land use. These concerns have
encouraged the development of alternative technologies to use these wastes for the genera-
tion of clean and renewable energy [1]. Pyrolysis is a thermochemical technique used to
decompose biomasses into different products, such as bio-oil or other high-value chemicals,
combustible gases, and biochar [2–4].

Brewer’s spent grain (BSG) is the main by-product of the brewing industry, represent-
ing 85% of the total by-products generated in the brewing process [5,6]. This lignocellulosic
material can be used in a thermochemical conversion process such as pyrolysis as a source
of high-value products or as a petroleum fuel substitute in the long term [7–9].

The valorization of BSG was recently studied using conventional sources of heating
in a fixed bed reactor to perform the slow pyrolysis, and a high liquid yield was achieved
(60.7%) at 650 ◦C [10]. In addition, some work was also performed to study the fast
pyrolysis and the fluid dynamics behavior of mixtures of sand and BSG in a spouted bed.
The authors found a bio-oil rich in phenolic and nitrogenated compounds [7]. Some kinetic
studies on the pyrolysis of BSG were also performed [9,11,12]. However, in these previous
works of the BSG pyrolysis, the heating was performed using an electrical source, which is
inefficient and energy-intensive.

Alternative heating systems for the pyrolysis process have been investigated in the last
decades [13–16]. The microwave-assisted pyrolysis (MAP) process offers some advantages
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over traditional pyrolysis, such as precise, controlled, and selective heating [17–21]. Despite
these advantages, there are still several challenges to be overcome—for instance, the low
bio-oil yield compared to that obtained in conventional configurations for some types of
biomass [22]. Therefore, in order to transfer this pyrolysis technology to the industrial
sector, further studies are needed to overcome this and other issues, e.g., the quality of the
obtained products [23–25].

The yield and quality of the bio-oil obtained via MAP can be significantly affected by
the characteristics of the raw material [26,27]. For example, although the moisture content of
biomass can improve the overall efficiency of microwave radiation energy absorption [28],
a very high moisture content can impair the bio-oil quality [29–31]. Most of the studies
employing MAP used a biomass moisture content lower than 16% (wet base) [32–35].
Nonetheless, it is still a challenge to find the best moisture content in order to improve the
yield and quality of pyrolysis products.

There is an increasing amount of research studies focused on the use of microwaves in
the pyrolysis of biomass feedstocks, such as corn stover [29,36], pine sawdust [32,37–39],
bamboo sawdust [39,40], oil palm male flowers [41], palm kernel shells [42], oil palm empty
fruit bunches [43], rice husks [44–46], macadamia shells [47], wood [48,49], sugar cane
bagasse [50,51], walnut shells [52], orange peels [53], banana peels [54], and seeds [55,56],
among others. According to these publications, the use of microwave heating in the
pyrolysis of biomass can enhance the production of biofuels and chemicals products.
However, the results are strongly dependent on process parameters.

Some of the latest research in microwave-assisted pyrolysis has demonstrated the
importance of this method to achieve the production of different products of interest,
especially liquid products. One of these publications addresses the production of aviation
oil using plastic waste as feedstock for the MAP. The authors point out that the liquid
product obtained showed many hydrocarbons of a long chain. For polypropylene, for
example, C8–C16 hydrocarbons were 91.02% of the area. This work highlights microwave-
assisted pyrolysis as a method to successfully achieve the production of fuels [57]. The
interest in contributing to the development of alternative sources of energy, such as biofuels,
has also led to some studies using MAP of microalgae (Chlorella vulgaris) and low-rank coal
with 1 wt.% HZSM-5 catalyst. The authors found a bio-oil yield of 33.8 wt.% in the best
conditions, with a composition composed of several groups, including hydrocarbons [58].
Another publication compared pyrolysis using microwave heating and electric heating of
spent bleaching clay, and the authors addressed that the microwave heating saved up to
53% of the energy consumption in the proposed comparison, resulting in high production
of aromatics in the bio-oil [59]. Several studies state the strong sensitivity of the yield and
quality of the microwave-assisted pyrolysis products to the operational parameters [60–65].

The effects of catalysts on thermochemical conversion processes of biomass have been
the focus of many researchers [35,66–69]. Catalyst selectivity is important for optimizing
the distribution of products and improve their quality. In this study, we choose calcium
oxide (CaO) as the catalyst because it is a cheap catalyst when compared to zeolites and
other catalysts. Additionally, a CaO catalyst has the ability to improve the composition of
the liquid product, especially related to its action in the decarbonylation of ketones, which
results in the formation of CO and hydrocarbons. Chen et al. [70] worked on the pyrolysis of
cellulose, hemicellulose, and lignin—the main components of lignocellulose biomasses—in
the presence of CaO, and they found that at temperatures ranging from 400 ◦C to 600 ◦C,
the use of CaO contributed to the conversion of acids. Regarding cellulose, the CaO
reduced the yield of sugars that suffer from catalytic cracking at higher temperatures.
Concerning the use of CaO in the pyrolysis of lignin, the authors found that at these
temperatures, phenol content decreases [70]. Thus, based on this and other results of the
literature [71–76], it is expected that the addition of calcium oxide in microwave-assisted
pyrolysis of BSG can produce a liquid product with low acids and phenols contents and
high hydrocarbon yields.
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Catalytic pyrolysis can be classified as in situ or ex situ. In the first case, the catalyst is
mixed with the biomass, and in ex situ configurations, the biomass is pyrolyzed separated
and the catalyst is kept in a catalyst bed [77]. The reusability of the spent catalyst is
an important factor. In this work, the use of spent CaO was not performed because
we used in situ configuration. However, many authors have reported these studies in
pyrolysis, especially in ex situ configurations. Yi et al. [78] studied the ex situ catalytic
pyrolysis of biomass (Jatropha seeds cake) in a fixed-bed reactor and compared the use
of different CaO (organic and conventional). In their study, they mentioned that ex situ
configuration contributes to the separation of char and CaO. Furthermore, they showed
that the regeneration of the spent CaO was performed via calcination in a muffle furnace
at 900 ◦C for 0.5 h, conditions capable of completely removing the coke deposition for the
conventional CaO regenerated 10 times over. Gupta et al. [79] performed fast pyrolysis
of oakwood using partially hydrated CaO, and according to them, the catalyst showed
good structural stability after catalytic tests. Kumagai et al. [80] studied the pyrolysis of
polyethylene terephthalate (PET) using calcium oxide. In terms of GC area percentages,
they found that over 10 repetitions, the product distribution in the CaO catalysts analyzed
did not show significant changes. Castello et al. [81] also reported that in catalytic pyrolysis
of biomass, the in situ configuration deals with the difficulty in distinguishing the catalyst
and biochar.

Despite many efforts made in many studies of the pyrolysis of different materials
using different catalysts, additional studies of the catalytic microwave-assisted pyrolysis
are necessary to overcome some limitations of this technique, mainly related to the
product quality, which is strongly affected by moisture content, type of catalyst, and
other operating parameters.

In this work, the microwave-assisted pyrolysis of BSG was investigated for the
first time with the aim of improving the performance of this methodology for the val-
orization of this underutilized agro-industrial waste. A detailed statistical analysis was
performed using regression techniques to quantify the effects of temperature (T), moisture
content (MC), and calcium oxide ratio (% Cat) on the yield of the three pyrolysis products,
i.e., gas, liquid, and char. An optimization study was also carried out to find the ideal
conditions for a high liquid product (bio-oil) yield with a high hydrocarbon yield.

2. Results and Discussion
2.1. MAP Products Yields

The yields of the three products obtained in the first central composite design (CCD)
for the MAP process of BSG are presented in Table 1.

Table 1. Product yields from the microwave-assisted pyrolysis of BSG.

Run T (◦C) MC (%) % Solid % Liquid % Gas *

1 450 5.43 34.9 48.4 16.7
2 450 12.57 23.8 66.0 10.2
3 550 5.43 43.3 35.3 21.4
4 550 12.57 17.1 70.0 12.9
5 430 9 28.6 56.9 14.5
6 570 9 17.6 42.4 40.0
7 500 3.95 46.9 38.4 14.7
8 500 14.05 11.3 71.9 16.8
9 500 9 23.5 62.0 14.5
10 500 9 26.1 64.5 9.3

* Determined by the difference based on the mass balance (wt.%).

Kinetic studies on the pyrolysis of BSG were performed previously by our research
group and is reported in a related paper [9]. The highest liquid yield was 71.9 wt.%, as
observed in run 8 carried out at a temperature of 500 ◦C and a BSG moisture content of 14%.
This result is higher than most of the values reported in the literature for microwave-assisted
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pyrolysis processes of various biomasses. Borges et al. [34] used samples of wood sawdust
with a moisture content (MC) of 5.15% and semi-continually dropped them into the reactor,
obtaining organic condensates with 65 wt.%. Huang et al. [82] studied the pyrolysis process
of rice straw with an MC of 5.46% and obtained liquid production with a maximum of
about 50 wt.%. Shang et al. [83] investigated the microwave-assisted pyrolysis of sawdust
with an MC of 15.87% and activated carbon as additive, achieving a liquid product yield of
approximately 28 wt.%. Mamaeva et al. [84] studied the catalytic microwave pyrolysis of
peanut shells with an MC of 8.03 wt.% using activated carbon in a ratio of 8:1 at 500 ◦C and
obtained a liquid yield of 16.62 wt.%.

As observed, high moisture contents of biomass, as is the case of run 8 (14%), favor
the overall efficiency of microwave radiation energy absorption; thus, the bio-oil yield is
significantly affected by the aqueous fractions [85]. According to some authors, the content
of water in the liquid product of pyrolysis is one of the main problems to promote its use
as fuel. In addition, the water content in pyrolytic liquid also impacts the storage step
due to the corrosiveness and microbial activity [30,86]. Further studies are still needed to
determine the entire effects of high moisture content on pyrolytic liquid product quality.
Based on comparative studies with different catalysts for the fast pyrolysis of cotton stalks,
Chen et al. [87] observed that CaO had the best behavior contributing to the low moisture
content in the liquid product.

The liquid product obtained from the MAP of BSC in each experiment of the first CCD
was analyzed by GC/MS. The detected compounds were classified into three different
groups (hydrocarbons, oxygenated compounds, and nitrogenous compounds), and the
respective results are listed in Table 2. The highest hydrocarbon content was obtained
in run 7, which was performed at 500 ◦C and with the lowest moisture content (3.95%).
Hydrocarbons are valuable components in bio-oil from the point of view of fuel application.
Aromatic hydrocarbons serve as important industrial chemicals and fuel additives to
increase the octane number [21].

Table 2. GC/MS results obtained from the microwave-assisted pyrolysis of BSG in the first CCD.

Run T (◦C) MC (%) * % Hydrocarbons % Oxygenated % Nitrogenous

1 450 5.43 22.04 58.32 11.18
2 450 12.57 14.31 45.97 7.09
3 550 5.43 35.72 48.85 9.04
4 550 12.57 17.51 58.96 11.68
5 430 9 11.83 50.6 27.5
6 570 9 32.65 41.75 14.5
7 500 3.95 48.85 51.15 0
8 500 14.05 21.6 52.95 12.96
9 500 9 29.21 45.37 13.96

10 500 9 31.58 45.96 11.17
* Moisture content of BSG (wt.%).

The experimental results of the first central composite design (Tables 1 and 2) were
used to quantify the effects of the studied independent variables (T and MC) on the liquid
and hydrocarbon yields using regression techniques. Table 3 shows the results of the statisti-
cal analysis with the significant values of each independent variable (T and MC), including
linear, quadratic, and interaction coefficients. The analysis of the variance framework was
used to determine the significance of the parameters. A factor or interaction was considered
significant when the p-value satisfied the relationship p < 0.05 for a confidence level of 95%.
Thus, factors or interactions with p > 0.05 were considered statistically non-significant.
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Table 3. Effects of temperature and moisture content on the liquid and hydrocarbon yield.

Factor
Liquid Product (R2 = 0.97) Hydrocarbon Yield (R2 = 0.89)

Effect Std. Err. p-Value * Effect Std. Err. p-Value *

Mean 63.26 2.09 <1 × 10−2 30.39 3.91 <1 × 10−2

T −3.69 1.04 0.02 5.79 1.95 0.04
T2 −6.17 1.38 0.01 −5.66 2.59 0.09

MC 12.45 1.04 <1 × 10−2 −8.05 1.95 0.01
MC2 −3.41 1.38 0.06 0.83 2.59 0.76
T.MC 4.30 1.48 0.04 −2.62 2.76 0.39

* Considering the confidence level of 95%.

Figure 1 shows the surface and contours for liquid and hydrocarbon fraction yields as
functions of the independent variables (T and MC) obtained by the parameters in Table 3.
As observed, the increase in temperature caused more volatile materials to be released,
resulting in greater bio-oil production. Therefore, the highest liquid yield was obtained at
temperatures around 500–550 ◦C (Figure 1a). The linear effect of MC on the bio-oil yield
indicates that higher BSG moisture contents also lead to a high liquid yield. This suggests
that high moisture contents in the wet biomass improve the efficiency of microwave
radiation energy absorption, which in turn favors the pyrolysis process. However, the
bio-oil obtained can be diluted by the aqueous fractions, which ends up affecting its quality,
as seen in Figure 1b. The condition that simultaneously improved both responses (liquid
and hydrocarbon yields) was a temperature around 500 ◦C and a low moisture content.
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Figure 1. Response surface of liquid (a) and hydrocarbon (b) yields.

2.2. Catalyst Characterization

The results obtained from the X-ray diffraction (XRD) analysis of the catalyst (calcium
oxide) used in the catalytic MAP experiments reveal characteristics of a homogeneous
catalyst consisting mainly of pure CaO, calcium carbonate, and calcium hydroxide, as
shown in Figure 2.
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Figure 2. X-ray diffraction analysis of the catalyst.

As it can be seen in Figure 2, the XRD pattern of the catalyst exhibits a strong peak
in the 2θ range of 28.5–30.0 and five small weak peaks in the 2θ range of 36.0–48.6 due
to the formation of calcium carbonate. In addition, there are peaks in the 2θ range of
33.4–54.3 which are typical of pure calcium oxide. There are also characteristic peaks
of calcium hydroxide that can be associated with the fact that water was absorbed from
the environment [88].

The results of the thermogravimetric (TG) and differential thermogravimetric (DTG)
analyses of the fresh CaO catalyst used in this work as well as the spent CaO catalyst (after
run 6) are shown in Figure 3.
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According to Figure 3a, the TG/DTG curves of the fresh CaO catalyst show two events
of mass losses. The first loss between 50 and 470 ◦C can be related to the water loss on
the CaO surface kept by hydrogen bonds [89]. The water adsorption on this metal oxide
happens due to the contact of CaO with moisture during exposure in the handling step [90,91].
The second mass loss occurs between approximately 650 and 762 ◦C and is related to the
decomposition of calcium carbonate (CaCO3), resulting in calcium oxide (CaO) and CO2
formation [89]. According to Figure 3b, the TG/DTG curves of the spent CaO after run 6
(570 ◦C and 15 cat %) also show two weight losses. The results of the spent catalyst and
the CaO prior to the experiment showed similar behavior, and as mentioned in previous
works [77,78], they show good potential for reusability. Zhang et al. [92] also reported analyzes
of CaO after the pyrolysis of poplar, cellulose, and lignin, and they showed that the slight
difference observed in the spent catalysts was due to the coke deposits.

2.3. Catalytic Effects on the Distribution of MAP Products

The results of the products obtained from the catalytic MAP of brewer’s spent grain
are summarized in Table 4. As can be seen, the formation of liquid product was significantly
affected by the presence of the catalyst.

Table 4. Product yields obtained from the catalytic microwave-assisted pyrolysis of BSG.

Run T (◦C) Cat (%) * % Solid % Liquid % Gas

1 450 10 37.68 29.89 32.43
2 450 20 40.65 27.72 31.63
3 550 10 30.04 31.70 38.28
4 550 20 37.70 24.90 37.40
5 430 15 45.22 28.90 25.88
6 570 15 35.35 32.82 31.83
7 500 8 31.58 33.87 34.55
8 500 22 47.85 23.86 28.29
9 500 15 40.68 19.97 39.35
10 500 15 42.40 23.34 34.26

* Catalyst/biomass ratios.

In general, the addition of the catalyst (CaO) to the microwave-assisted pyrolysis
process (Table 4) resulted in a reduced bio-oil yield compared to the values obtained
without the use of the catalyst at the same temperature (Table 1). The use of CaO promotes
the cracking of bio-oil components, consequently increasing the gas yield. This difference
is influenced by the pyrolysis temperature, since higher temperatures are more favorable
to the cracking of volatiles in the presence of CaO [93–95]. However, despite the decrease
in the liquid product yield, the quality of the bio-oil obtained in this study improved when
the pyrolysis process was carried out in the presence of the catalyst according to the results
of the GC/MS analysis (Table 5).

Table 5. GC/MS results from the catalytic microwave-assisted pyrolysis of BSG.

Run T (◦C) Cat (%) * % Hydrocarbons % Oxygenated % Nitrogenous

1 450 10 36.67 40.81 10.21
2 450 20 36.85 42.31 8.98
3 550 10 52.27 26.36 11.73
4 550 20 54.58 24.60 10.98
5 430 15 35.45 42.83 10.48
6 570 15 53.16 26.40 11.97
7 500 8 46.45 32.35 9.52
8 500 22 47.08 31.11 11.62
9 500 15 50.94 27.09 9.65

10 500 15 51.29 38.50 9.79
* Catalyst/biomass ratios.



Catalysts 2023, 13, 1170 8 of 21

The GC/MS analysis of the liquid product yields showed that the content of hy-
drocarbons present in the bio-oil drastically increased, while the content of oxygenated
compounds was reduced when the catalyst (calcium oxide) was used in the MAP. As
reported, the CaO can promote bio-oil deoxygenation through decarboxylation and dehy-
dration reactions, which ends up improving its quality [73,95]. The use of CaO can also
have a deacidification effect, decreasing the content of oxygenated species, such as formic
acid, acetic acid, and levo-glucose during the pyrolysis of biomasses [72,96].

The yield of ketones (oxygenated compounds) decreases in the presence of CaO
due to the catalytic decarbonylation of linear ketones to form carbon monoxide at high
temperatures [72]. CaO also reacts with phenols, promoting the cracking of the branched
chain of phenols at high temperatures to form hydrocarbons and CO [70,97]. Figure 4 shows
the composition of the bio-oil obtained from MAP of BSG carried out at a temperature of
550 ◦C using different CaO/biomass ratios (0%, 5%, 10%, 15% and 20%). As can be seen,
the increase in the catalyst ratio (Cat %) reduced the oxygenated compounds and increased
the hydrocarbons present in the liquid product.
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Figure 4. Catalyst effect on bio-oil quality at 550 ◦C (the red arrows show the behavior of hydrocar-
bons and oxygenated after catalytic MAP with different additive ratios of CaO).

The results of the liquid and hydrocarbon yields obtained in the experiments per-
formed with the catalyst (Tables 4 and 5) were statistically treated using regression tech-
niques to quantify the effects of the independent variables (T and Cat) on these responses.
Table 6 shows the results of parameters related to the linear, quadratic and interaction
effects of these variables, together with the respective variance analysis. The parameters
with a p-value higher than 0.05 were considered non-significant.

Table 6. Effects of temperature and catalyst on the liquid and hydrocarbon yield.

Factor
Liquid Product (R2 = 0.90) Hydrocarbon Yield (R2 = 0.98)

Effect Std. Err. p-Value * Effect Std. Err. p-Value *

Mean 21.65 1.493 <1 × 10−2 51.11 1.08 <1 × 10−2

T 0.56 0.74 0.49 7.29 0.54 <1 × 10−2

T2 4.27 0.98 0.01 −3.51 0.71 0.01
Cat −2.89 0.74 0.01 0.42 0.54 0.47
Cat2 3.27 0.98 0.03 −2.28 0.71 0.03
T.Cat −1.15 1.05 0.33 0.53 0.76 0.52

* Considering the confidence level of 95%.

As observed, both variables (T and Cat) significantly influenced the bio-oil and hy-
drocarbon yields but did so in a non-linear way. This non-linear effect can be explained by
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two competing factors: the higher gas residence time due to the presence of the catalyst in
the bed and the occurrence of secondary thermal cracking reactions [70,96].

Figure 5 shows the response surface and the respective contours for liquid and hy-
drocarbon fraction yields as functions of the studied independent variables. Considering
both responses simultaneously, the best conditions for the studied variables were higher
temperatures (T) and intermediate catalyst ratio (Cat) values. However, to find the most
precise optimum condition, it was necessary to perform an optimization study.
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Figure 5. Response surface of liquid product and hydrocarbon yields.

2.4. Optimization Study and Analysis of Products

In this work, a multi-response optimization was performed to find the operating con-
ditions that simultaneously maximized the bio-oil yield and its hydrocarbon content. The
optimization study was carried out using the Desirability function [98]. In this technique,
the composite function that combines the individual responses in the best way is named
Global Desirability [99] and is commonly used in the RSM framework. The desirability
values vary between 0 and 1, 0 being an undesirable response and 1 a desirable value [16].

Table 7 shows the optimization results with coded and real values of the independent
variables for the optimum conditions as well as the respective values of liquid product
(y1) and hydrocarbon (y4) yields calculated using the respective prediction equations.
The optimum conditions obtained were a temperature at the highest level (570 ◦C) and a
catalyst percentage of 12.17%. Table 7 also includes the results of a confirmatory experiment
performed under these optimum conditions. The experimentally obtained hydrocarbon
yield (y4) was higher than that achieved in all runs of the central composite design (CCD)
(Table 5) and in most of the results reported in the literature for biomass pyrolysis [29,33,84].
This result confirms the high quality of the bio-oil obtained from the MAP under these
optimum conditions.

Table 7. Optimization results: predicted and experimental data from the simultaneous maximization
of liquid and hydrocarbon yields.

Coded Variable Original Form Coded Values Uncoded Values

x2 T (◦C) 1.414 570 ◦C
x3 Cat (%) −0.565 12.17%

Yield (%) Predicted Value Experimental Data *

y1(Liquid) 32.87 30.88
y4(Hydrocarbons) 53.67 61.58

* Experiment performed under these optimum conditions.

The liquid product obtained in the experiment carried out under the optimum con-
ditions (a temperature of 570 ◦C and a catalyst percentage of 12.17%) was analyzed by
GC/MS. Table 8 lists the main compounds found.
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Table 8. Compounds in the bio-oil produced in the MAP optimization experiment.

RT (min) Compound * Formula % Area

25.318 Undecane C11H24 0.76
11.279 Toluene C7H8 6.28
18.124 Styrene C8H8 4.61
61.528 Phenanthrene C14H10 1.11
17.639 Orthoxylene C8 H10 2.06
14.899 Nonane C9H20 0.43
40.262 Isopropylmethylnaphthalene C14H16 4.84
26.972 Indene C9H8 4.35
39.589 Hexadecane C16H34 5.59
15.706 Ethylbenzene C8H10 1.74
30.345 Dodecane C12H26 0.67
20.087 Decano C10H22 0.66
42.442 Cyclopropylphenylmethane C10H12 0.54
48.224 Biphenylene (C6H4) 2 2.04
46.711 Biphenyl C12H10 0.74
20.499 Propylbenzene C9H12 0.55
31.043 Pentylbenzene C11H16 0.78
35.945 Hexylbenzene C12H18 0.62
25.935 butylbenzene C10H14 0.46
23.570 2-Propenylbenzene C9H10 0.81
22.179 1-Ethyl-2-Methylbenzene C9H12 0.53
23.685 1-Methyl-3-Vinylbenzene C9H10 0.91
16.144 1.3-Dimethylbenzene C8H10 1.97
36,475 1,3-Dimethylbutylbenzene C12H18 0.52
35.115 Azulene C10H8 8.98
47.979 3-Octadecene C18H36 0.39
25.445 1-Undecene C11H22 1.46
35.245 1-Tridecene C13H26 3.22
14.997 1-Noneno C9H18 0.54
32.131 1-Methylindene C10H10 1.25
30.477 1-Dodecene C12H24 1.35
20.196 1-Decene C10H20 0.82

Hydrocarbons 61.58
16.033 Pyrrole C4H5N 1.95
27.497 Benzonitrile C6H5CN 1.35
37.143 Benzyl cyanide C6H5CH2CN 0.8
39.209 Isoquinoline C9H7N 0.91
46.244 Indole C8H7N 3.1
49.338 1H-Indole, 3-methyl- C9H9N 0.38
64.417 Hexadecanenitrile C16H31N 1.16
78.132 Octadecanamide C18H37NO 1.07

Nitrogenated 10.72
31.642 Phenol C6H6O 3.88
33.955 Phenol, 2-methyl- C7H8O 3.75
35.679 Phenol, 4-methyl- C7H8O 4.75
37.857 Phenol, 2,3-dimethyl- C8H10O 1.37
43.689 2-Methoxy-4-vinylphenol C9H10O2 3.06

Phenols 16.81
29.886 2-Cyclopenten-1-one,2,3-imethyl- C7H10O 0.76
62.525 2-Nonadecanone ketones C19H38O 3.05

Ketones 3.81
39.748 2-Nonenal C9H16O 3.75

Aldehydes 3.73
* Main compounds found in the experiment performed under optimum conditions.

According to Table 8, the bio-oil produced has a diverse composition, in which the high
content of hydrocarbon compounds (61.58%) stands out. Although substantial amounts of
hydrocarbons are desirable for their use as fuel oil, this liquid product from the catalytic
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MAP can also be a source of value-added chemicals and therefore a supply of intermediary
chemical species, such as phenolic compounds and aromatic hydrocarbons, among others.
Phenolic compounds are also used in the food industry as flavorings, in the manufacture of
adhesives and polymers, and as intermediates in pharmaceutical syntheses [9,29,100–103].
In addition, as reported by other authors, CaO was effective in removing acids with high
oxygen content [95]. A low % area related to the acids was also found in all the experimental
runs of the catalytic MAP of BSG (see Supplementary Material).

Some experiments of the CCD of the catalytic MAP were selected to analyze the
physicochemical properties (water content and viscosity) of the liquid product generated.
The results obtained are presented in Table 9.

Table 9. Physicochemical properties of the liquid product of some tests of the catalytic MAP of BSG.

Physicochemical Properties of the Liquid Product

Run T(◦C) Cat (%) Water Content (%) Viscosity (Pa.s)

5 430 15 23.85 ± 2.03 0.01 ± 4.43 × 10−4

6 570 15 40.36 ± 2.22 0.01 ± 1.13 × 10−4

7 500 8 49.54 ± 1.75 0.02 ± 1.78 × 10−4

8 500 22 20.04 ± 1.36 0.01 ± 1.94 × 10−4

10 500 15 66.41 ± 3.70 0.02 ± 2.16 × 10−5

It can be seen that the lowest water content in the liquid product was obtained in
the experiment carried out with the highest catalyst loading (22%), evidencing the good
performance of the CaO catalyst in reducing the water content of the bio-oil. Similar
behavior for the water content in the liquid product was found in a study about the
catalytic MAP of corn stover [29].

2.5. Solid Product Characterization

Scanning electron microscopy (SEM) analysis was used to analyze the morphological
changes caused by the thermal degradation of brewer’s spent grain. Figure 6 shows SEM
photomicrographs of the BSG at 50 and 200× magnification and of the solid product
obtained from the microwave-assisted pyrolysis carried out under optimized conditions
(temperature equal to 570 ◦C and 12.17% catalyst ratio). The surface of the solid product
from the MAP optimization experiment is not homogeneous, with fibrous texture regions
due to the influence of the thermal degradation of the biomass [10].
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2.6. Catalyst Action

Calcium oxide is known to show significant deoxygenation activity when used in the
pyrolysis of biomass [104]. Wang et al. [75] studied the pyrolysis of corncob using CaO as
catalyst. They explained that the reduction in the number of acids generated as a product
can also be related to the neutralization reaction, which originates calcium carboxylate
and water. In addition, the authors also mention that some reactions involving CaO and
phenols can be responsible for the formation of hydrocarbons at low temperatures [75].
Chen et al. [95] reported in their publication that, the calcium carboxylate is decomposed to
CaCO3 and ketones. According to Li et al. [72] the deoxygenation reaction of oxygenated
compounds with calcium oxide catalyst can be represented by three pathways: neutraliza-
tion (represented by Equations (1) and (2), thermal cracking (represented by Equation (3)),
and catalytic cracking (Equation (4)), as shown below [75,105,106]:

CaO + 2R − COOH→ (R − COO)2Ca+H2O (1)

(R − COO)2Ca→ CaCO3+R − COR (2)

R − COOH CaO
→ CO2+RH (3)

CaO + R − COOH→ CaCO3+RH (4)

Neutralization reactions take place at a lower temperature, while thermal crack-
ing and catalytic cracking reactions occur at higher temperature [74,107]. Thus, the
increase in water content at lower pyrolysis temperatures may be associated with the
deoxygenation mechanism [108].

Chen et al. [70] demonstrated that the use of CaO in the pyrolysis of hemicellulose,
cellulose, and lignin generates lower amounts of pyrolitic compounds. The authors also
mentioned that the CaO could be related to the formation of CO due to the decarbonylation
of ketones (linear). In addition, these authors also explain with which compound of the
biomass the CaO would react. According to them, the CaO would react with acids/esters
and phenols (from hemicellulose). In cellulose, the reaction would be at a low temperature
and involve the anhydrosugars, and for lignin, the reaction would occur with the phenols.
The effect of the temperature was also analyzed by these authors, and they reported
that at high temperatures, to form ketones/furans, the dehydration and ring-opening
reaction occurs [70].

Based on experimental evidence, Case et al. [104] proposed that for the pyrolysis of
cellulose, one of the proposed pathways is based on the dehydration of sugar intermediates.
The authors mention that as a result, it will contribute to the formation of double bonds,
that can further follow some radical addition reactions, originating dimethyl- and trimethyl-
cyclopentenones [104]. In the analysis of the liquid product generated through the catalytic
MAP of BSG using CaO performed in the present study, we found these same compounds.

3. Materials and Methods
3.1. Raw Material

The BSG used in this work was supplied by Abadiana Microbrewery (Minas Gerais,
Brazil), which uses 100% malted barley (without the addition of other adjunct materials).
The main characteristics of dried BSG are summarized in Table 10.
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Table 10. Characteristics of brewer’s spent grain (BSG).

Proximate Analysis (wt.%)

HHV (MJ/kg) * 17.94 ± 3.74
Moisture 3.7 ± 0.35

Volatile matter 82.25 ± 0.03
Ash 3.19 ± 0.07

Fixed carbon 14.55 ± 0.03

Ultimate Analysis (wt.%)

C 47.2 ± 1.3
H 7.2 ± 0.1
N 3.6 ± 0.4
S 1.1 ± 0.1
O 37.6 ± 1.7

Chemical Composition (wt.%)

Extractives 5.26 ± 0.06
Lignin 29.37 ± 4.03

Cellulose 15.14 ± 0.03
Hemicellulose 50.23 ± 0.03

* HHV is the higher heating value.

The chemical composition of BSG was determined using a Perkin Elmer 2400 CHNS/O
elemental analyzer operating at 1198 K in an atmosphere of pure oxygen. The oxygen
content was calculated by difference considering the C, H, and S wt.% and the ash content.
The contents of cellulose, hemicellulose, lignin, and extractives were found following the
description used in our previous work [109]. Soxhlet extraction with acetone was used to
estimate the extractive content. The lignin content was determined according to modified
TAPPI standard T222 om-22 (2002c). Hemicellulose and α-cellulose constitute the holocel-
lulose content, which was measured using glacial acetic acid and sodium hypochlorite at
348 ± 2 K. The α-cellulose was determined by treating the holocellulose sample with potas-
sium hydroxide solutions of 5 and 24% (w/w). The hemicellulose content was calculated
subtracting the α-cellulose content from the holocellulose [109].

The BSG showed a high H/C ratio (0.15) and an O/C ratio of 0.80. Thus, BSG has good
thermal properties compared to other waste biomass materials, since for pinewood sawdust,
the H/C ratio is 0.12, and for wheat stalk, it is 0.14 [110]. For wood sawdust and corn stover,
the H/C ratios are both 0.12 [34]. The high quantities of carbon (47.2 ± 1.3 wt.%) are related
to the energy value of a fuel because of the energy present in C-C bonds [1]. Furthermore,
BSG showed high hemicellulose content compared to other major subcomponents, which
offers significant potential for interesting pyrolysis products.

3.2. Microwave-Assisted Pyrolysis

The MAP experiments were carried out in a Menumaster microwave oven (model
MCS10TSB, Middleby Brazil, SP, BR) at a maximum incident power of 1500 W and a
frequency of 2450 MHz. The schematic diagram of the experimental apparatus is illustrated
in Figure 7.

The experimental apparatus consisted of (1) gas sampling—nitrogen, (2) a heating
source, (3) a PID temperature controller, (4) a quartz reactor, (5) a microwave oven, (6) a
K-type thermocouple, (7) condensers, (8) a thermostatic bath, and (9) a vacuum pump.
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(8) thermostatic bath, and (9) vacuum pump.

Firstly, to determine the influence of moisture content on the results of the microwave-
assisted pyrolysis of BSG, 70 g of biomass with different moisture contents was used. After
sample preparation, the biomass was placed in the quartz reactor, which was then subjected
to microwave radiation using nitrogen as an inert carrier gas at a flow rate of 50 mL/min.
In order to maintain an inert atmosphere within the quartz reactor during pyrolysis, the
system was vacuumed at 80 mmHg. The experiments were carried out for 30 min. The
condensable components (liquid product) were collected in the condensers, while the solid
residue in the reactor after pyrolysis was collected as bio-char. The yields of liquid and
solid products were calculated on the basis of their actual weight, whilst the gas yield was
determined by the difference based on the mass balance, as indicated in Equations (5)–(7):

% Liquid =
Liquid Weight

Biomass Weight
×100 (5)

% Solid =
Solid Weight

Biomass Weight
×100 (6)

% Gas = 100− (% Liquid + % Solid) (7)

After the identification of the moisture content of BSG that favored the bio-oil and
hydrocarbon yields, a central composite design (CCD) for in situ catalytic pyrolysis was
proposed, varying the percentage of catalyst (CaO) and temperature. The same previous
conditions of vacuum and inert gas flow were used in these new experiments, in which
70 g of BSG (with the best moisture content identified in the first step) was initially mixed
with the corresponding amount of the catalyst until the creation of a homogeneous mixture
and then inserted into the reactor.
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3.3. Experimental Design

In a first step, a central composite design (CCD) with 2 repetitions at the central point
was used to estimate the effects of moisture content (x1 in coded values) and temperature
(x2 in coded values) on the products of MAP of BSG. The dependent output variables
were the yields of bio-oil (y1, %), gas fraction (y2, %), and biochar (y3, %) as well as the
yield of hydrocarbons present in the bio-oil (y4, %). Table 11 lists the coded (xi ) and real
values (moisture in % wb and T in ◦C) of the independent variables. The experimental
results were treated using regression techniques. The software Statistica 7.0 was used to
analyze the experimental data statistically. The analysis of variance (ANOVA) framework
was used to determine the significance of the parameters. A confidence level of 95% was
used. The central composite design (CCD), analyzed through this software, is a useful
tool to determine the effect of each variable and its interactions. The use of variables in
coded levels is an important way that enables the determination of the relative impact
of each variable on responses (at the same level range). This helps in the comparison of
the intensity of these effects on the desired responses. The coded levels are −α, −1, 0, +1,
and +α, in which α is the axial point of 1.414, according to the orthogonal design [16]. The
CCD was coupled with response surface methodology (RSM). The RSM technique creates
a relationship between the responses and control variables [111].

Table 11. Coded and real values of the independent variables in the first central composite design.

Variables Levels *

Coded values (x1andx2 ) −1.414 −1 0 +1 +1.414
Moisture content (% wb) 3.95 5.43 9 12.57 14.05

Temperature (◦C) 430 450 500 550 570
* Determined for the central composite design (CCD).

A second central composite design (CCD) with 2 repetitions at the central point was
used to estimate the effects of catalyst/biomass ratios (x3in coded values) and temperature
(x2 in coded values) on the results of the catalytic microwave-assisted pyrolysis of BSG in
an in situ configuration. The dependent output variables were the yields of bio-oil (y1, %),
gas fraction (y2, %), and biochar (y3, %) as well as the yield of hydrocarbons present in the
bio-oil (y4, %). Table 12 presents the coded and real values of the independent variables.

Table 12. Coded and real values of the independent variables in the second central composite design
for the catalytic MAP of BSG.

Variables Levels

Coded values (x3 and x2 ) −1.414 −1 0 +1 +1.414
Catalyst (% Cat) * 8 10 15 20 22
Temperature (◦C) 430 450 500 550 570

* Catalyst/biomass ratios.

3.4. Analysis of Products

The chemical compounds of bio-oil were characterized using the methodology de-
scribed in our previous work [10]. In broad terms, gas chromatography and mass spec-
trometry were performed using a Shimadzu device (GC/MS-QP2010 Plus, Japan) with a
an Rtx-1701 column (60 m × 0.25 mm × 0.25 µm) and helium as a carrier gas. Initially, the
GC oven maintained a temperature of 45 ◦C for 4 min. Then, it reached 270 ◦C at a rate
of 3 ◦C/min and maintained this temperature for 13 min. The temperature of the injector
was 250 ◦C, and the split ratio was set to 100:1. The MS in electronic impact mode (EI)
was operated at a mass range (m/z) of 30–300. The ion source and interface temperatures
were maintained at 235 ◦C for a total run time of 92 min. The data of the main peaks were
obtained using retention time (RT) information from the NIST library (version 08). The
compounds with a similarity index higher than 80% were identified.
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Bio-oil viscosity was measured following ASTM D445 standards using an R/S Plus
Rheometer (Brookfield, WI, USA) with an RC3-50-1 spindle at a shear rate of 0–700 s−1,
shear stress of 0–601,603 mPa, time of 200 s, and a temperature of 40 ◦C. The water content
of the bottom phase of the liquid product from the catalytic MAP was determined on a
Karl Fischer titrator (Methrom 870 KF Titrino Plus, Germany). Samples of 0.2 g were used
for each determination. The measurements were performed in triplicate and the results
were expressed as an average.

The surface morphologies of the BSG and the biochar produced in the MAP optimiza-
tion experiment were analyzed using a ZEISS EVO MA10 scanning microscope. The SEM
photographs were captured at 50 and 200×magnification using an electron acceleration
voltage of 5.00 kV. The samples were prepared on carbon tabs in an inert environment and
coated with gold via sputter coating.

3.5. Catalyst Analysis

The catalyst used in this work was calcium oxide (CaO) (p.a.) in powder form (chemi-
cal grade, CAS: 1305-78-8), was purchased from Dinâmica Química Contemporânea LTDA,
Indaiatuba, Brazil. This metal oxide was used without any further purification. The XRD
analysis of calcium oxide was performed on a SHIMADZU diffractometer (model LABX
XRD-6000, Japan). The XRD results were generated in a 2θ interval from 10 to 80◦ at a step
of 0.02◦ and a scan rate of 2 s per step. The measurements were made using a nickel filter
at a voltage of 30 kV and a current of 30 mA.

The thermogravimetric (TG) and differential thermogravimetric (DTG) analyses of the
CaO used in this work were obtained using a Shimadzu TGA/DTA analyzer (DTG-60H).
The purge gas used was nitrogen at a flow rate of 50 mL min−1. The experiments were
performed with 8 mg of sample from 303 to 1073 K at a heating rate of 5 K min−1. The data
were recorded using TG software to yield the mass loss (TG) and differential mass loss
(DTG) curves.

4. Conclusions

In this work, the microwave-assisted pyrolysis (MAP) of brewer’s spent grain (BSG),
the main waste of the brewing industry, was investigated with the aim of obtaining a liquid
product with a high yield and quality.

A high bio-oil yield of 71.8% was obtained with a BSG moisture content of 14%; how-
ever, the quality of this product was not so attractive (hydrocarbon yield of 21.60%). In order
to improve the bio-oil quality, a catalyst (calcium oxide) was used in the pyrolysis process.

An optimization study was successfully performed, aiming at the simultaneous maxi-
mization of the bio-oil yield and quality (hydrocarbon content). The optimum conditions
obtained were a temperature at the highest level (570 ◦C) and a catalyst percentage of
12.17%. The results of the composition of the liquid product under this optimum point
using a BSG moisture content of 4% pointed to a liquid yield of 30.88% with a hydrocarbon
content of 61.58%. Therefore, it can be concluded that the catalytic MAP process has an
enormous potential to transform agro-industrial wastes into high-value products.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13081170/s1, Table S1: % Area from GC/MS results for the
liquid product from the CCD runs of the catalytic MAP.
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