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Abstract: Blatter radicals 1-(3,4-difluorophenyl)-(1a) and 1-(2,4-difluorophenyl)-3-phenyl-1,4-
dihydrobenzo[e][1,2,4]triazin-4-yl (1b) were prepared in good yields through oxidation of the corre-
sponding amidrazones using MnO2 in dry CH2Cl2. Cyclic voltammetry showed that both radicals
are oxidized and reduced chemically and electrochemically reversibly in accordance with −1/0
and 0/+1 processes. EPR spectroscopy indicated that spin density is mainly delocalized on the
triazinyl moiety of the heterocycle. The structure of all paramagnets was unambiguously con-
firmed by single-crystal X-ray diffraction, and two different 1D chains of alternating radicals were
identified. 3,4-difluorophenyl-derivatives 1a are packed into columns composed of two kinds of alter-
nating centrosymmetric dimers, having comparatively short intermolecular distances. In crystals of
2,4-difluorophenyl-derivative 1b, the parallel arrangement of bicyclic moieties and phenyl rings
favors the formation of 1D regular chains wherein the radicals are related by translation parallel
to the crystallographic stacking axis. Magnetic susceptibility measurements in the 2–300 K region
showed that in crystals of the radicals, strong antiferromagnetic interactions are dominant. Sub-
sequent fitting of the dependence of χT on T with 12-membered looped stacks gave the following
best-fit parameters: for 1a, g = 2.01 ± 0.05, J1/kB = −292 ± 10 K (according to BS-DFT calculations
J2 = 0.12 × J1 and J3 = 0.61 × J1); for 1b, g = 2.04 ± 0.01 J1/kB = −222 ± 17 K. For comparison, in a
nonfluorinated related radical, there are only very weak intermolecular interactions along the columns
(J/kB = −2.2 ± 0.2 K). These results illustrate the magnitude of the influence of the difluorophenyl
substituents introduced into Blatter radicals on their structure and magnetic properties.

Keywords: Blatter radicals; fluorinated organic compounds; electrochemically reversible processes;
antiferromagnetically coupled chains; magneto-structural correlations

1. Introduction

1,3-diphenyl-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl, also known as the Blatter rad-
ical [1], was first prepared in 1968 and did not received much attention [2,3] until the
end of the last century when F. Wudl et al. showed that a benzotriazinyl radical forms
a pressure-sensitive semiconductor with tetracyanoquinodimethane [4] and Neugebauer
et al. reported another paramagnetic derivative with short-range antiferromagnetic or-
dering [5,6]. Since the appearance of these landmark articles, there has been explosive
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growth of the number of publications about Blatter radicals, covering a wide range of
research areas. Blatter radicals have been applied as photodetectors [7], emissive materials
for OLEDs [8], and liquid crystal photoconductors [9,10] used in controllable polymeriza-
tion reactions [11,12], molecular electronics [13], and molecular magnetism [14–19]. They
are actively used as building blocks to construct magnetic bistable materials [17,20] and
high-spin polyradicals and biradicaloids [21–23] or as organic paramagnetic ligands in
hydride metal–radical complexes [24,25]. Moreover, Blatter-type radicals can be transferred
via a vapor phase to create stable thin films (without degradation) while retaining their
paramagnetic nature [26,27]. Active research is being conducted toward the creation and
study of Blatter radical–inorganic “spin interfaces”, which may open up opportunities
for using these radicals in spintronics devices [28–30]. As for comprehensive reviews,
Zheng et al. summarized the synthesis, properties and specific role of Blatter radicals
in devices and other technologies [31]. Coote et al. have discussed various methods to
synthesize and customize Blatter radicals as well as their broad applications, including as
sensors, spin labels, magnetic materials, liquid crystals and in polymer and small-molecule
synthesis [32].

Owing to this broad interest in Blatter radicals, their chemistry has been systemati-
cally and successfully developed thereby considerably expanding structural diversity of
Blatter radicals, bi- and polyradicals [33–36]. Special attention was given to the prepa-
ration of fluorinated derivatives of Blatter radicals [37]. For example, Koutentis et al.
replaced the phenyl group at the C3 position in the Blatter heterocyclic system with a
CF3-group and revealed an abrupt spin transition for the radical at 58(2) K related to the
phase transition [17]. In a series of other works, a trifluoromethyl group was introduced
to the C7 position of the Blatter radical to give radicals with significantly improved chem-
ical stability [38,39]. Herein, as part of our increasing interest in “structure–property”
correlations inherent in fluorinated organic radicals [40–52], we report synthesis, struc-
ture and complete characterization of novel difluorophenyl-substituted Blatter radicals,
namely 1-(3,4-difluorophenyl)-3-phenyl-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl (1a) and
1-(2,4-difluorophenyl)-3-phenyl-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl (1b).

2. Results and Discussion

The syntheses of 1-(3,4-difluorophenyl)-(1a) and 1-(2,4-difluorophenyl)-3-phenyl-1,4-
dihydrobenzo[e][1,2,4]triazin-4-yl (1b) were carried out via the classic route involving
oxidation of amidrazones 3a,b in situ, giving 1,2,4-triazabutadienes 6a,b, which then un-
derwent electrocyclic ring closure thus affording benzotriazines, which were next oxidized
to the desired 1,2,4-benzotriazinyls 1a,b (Scheme 1). Initial amidrazones 3a,b were pre-
pared by a reaction of corresponding arylhydrazines 2a,b with N-phenylbenzimidoyl
chloride [53]. The amidrazones 3a,b, due to limited stability, were subjected to subsequent
reactions without isolation. The yields of radicals 1a,b were moderate because the synthe-
ses of amidrazones 3a,b were accompanied by the formation of corresponding backside
products since the hydrazino group can attack via either the α or β nitrogen atom.

Analytically pure samples of 1,2,4-benzotriazinyls 1a,b were obtained by column
chromatography on silica gel, followed by procedures of recrystallization from a mixture
of CH2Cl2 with n-heptane. Both 1,2,4-benzotriazinyls were comprehensively studied in
solution and in the solid state.

Determination of electrochemical parameters of the processes of oxidation and reduc-
tion of 1,2,4-benzotriazinyls 1a,b was carried out by cyclic voltammetry (CV) on a glassy car-
bon disc electrode in acetonitrile. It was found that radicals 1a,b are oxidized and reduced
chemically and electrochemically reversibly (Figures 1 and S1), which is typical of 1,2,4-
benzotriazinyls [54–57]. This is evidenced by our analysis of the CV curves of oxidation
and reduction obtained at potential sweep rates of 0.05–1.00 V/s (Figures 2, 3, S2 and S3).
It was shown that for each process, the ratio of currents in the reverse and forward peaks
does not depend on the potential sweep rate and is close to 1.0 (chemical reversibility), and
that the value of the interval between the forward and reverse peaks lies in the range of
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0.054–0.058 V and differs slightly from the theoretical value of 0.059 V for electrochemically
reversible processes [58]. It is worth noting that 1,2,4-benzotriazinyl 1b is oxidized and
reduced at higher potentials (E1/2

ox = 0.336 V and E1/2
red = −0.766 V) as compared with

derivative 1a (0.295 and −0.709 V, respectively).
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Figures 5 and S6 depict electronic absorption spectra of radicals 1a,b in acetonitrile 
at room temperature. One can see that both paramagnets 1a,b show rather strong absorp-
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Continuous-wave ESR spectra of 1,2,4-benzotriazinyls 1a,b were recorded at room
temperature in degassed toluene solutions of various concentrations. Dilute solutions of
1a,b produced EPR spectra typical of Blatter radicals (Figure 4 and Figure S5), which
consist of seven-line multiplets resulting from hyperfine interactions between an un-
paired electron and three similar but slightly nonequivalent 14N nuclei. The hyperfine
coupling (HFC) constants and giso determined by the modeling of the EPR spectra and
calculated at the UPBE0/def2-TZVP level are aN(1) = 0.73/0.57, aN(2) = 0.49/0.41, and
aN(4) = 0.51/0.45 mT with g = 2.0040/2.0044 in 1a and aN(1) = 0.72/0.57, aN(2) = 0.49/0.41,
and aN(4) = 0.51/0.45 mT with g = 2.0040/2.0044 in 1b. A comparison of the calculated HFC
constants and Mulliken spin populations of N atoms indicated that they do not correlate,
which can be explained by a slight deviation from the planarity of the triazinyl ring. The
deviation leads to a small difference in the hybridization of the N atoms and therefore in
populations of their s-type AOs.
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structure of 1a with the numbering of nitrogen atoms and their Mulliken spin populations.

Figures 5 and S6 depict electronic absorption spectra of radicals 1a,b in acetonitrile at
room temperature. One can see that both paramagnets 1a,b show rather strong absorption
bands in the ultraviolet region with maxima at 268 and 266 nm, respectively. Other
absorption bands in the near-UV and visible regions have substantially lower intensity; in
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1a, the maxima of the bands are at 314, 369, 425, and 491, and there is a shoulder (sh.) at
~540 nm; and in 1b, they are at 314, ~326 (sh.), 367, ~411 (sh.), ~454 (sh.), 486, and ~535 (sh.)
nm. On the whole, the observed spectra are characteristic of related 1,2,4-benzotriazinyl
radicals [59].
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Figure 5. (A) The experimental electronic absorption spectrum of an acetonitrile solution of radical
1a (10−4 M) (blue) recorded at room temperature [the inset shows enlarged spectra of 1a (blue) and
1b (red)] and the calculated positions and oscillator strengths (f) of the electronic transitions are
depicted as blue bars for 1a and as red bars for 1b. (B) The diagram of α- (left) and β-type (right)
molecular orbitals (MOs) calculated at the UB3LYP/def2-TZVP level for radical 1a and selected
electron transitions induced by UV and visible-light excitation as calculated by the TD-UB3LYP
method with the same basis set (Table S1 presents all corresponding MOs).

Figure 5A shows that the results of the time-dependent DFT calculations are in good
agreement with the experiment. According to the calculations, a series of 40 electronic transi-
tions contributes to the UV-Vis spectra of radicals 1a and 1b in the range 17,000–43,000 cm−1

(~230–600 nm). At the same time, the near-UV and visible region (17,000–34,000 cm−1

or ~295–600 nm) corresponds to excitations in approximately 20 excited states. Thus, the
structure of this moderate-intensity absorption region is mainly related to the superposi-
tion of absorption bands onto different excited states. Nonetheless, the manifestation of
vibrational structures of some bands could not be ruled out either.

Figure 5B displays a number of occupied and unoccupied molecular orbitals (MOs) in
the ground state of 1a. All MOs related to this diagram are presented in SI (Table S1). The
letters a–f denote transitions of electrons between higher occupied and lower unoccupied
MOs. According to the calculations, the main contribution (92%) to the lowest-energy
excited state (Figure 5A) comes from the configuration with the promotion of the α-electron
from SOMO to LUMO (excitation a). The main contribution (82%) to the second excited
state comes from the promotion of the β-electron from HOMO to the SOMO counterpart
(Figure 5B, excitation b). A similar description was also performed for transitions to the
4th and 6th excited states with the main contributions of promotions c and d (Figure 5A,B),
respectively. Of note, the most intense transition at 275 nm (f = 0.75) matches excitations to
the 21st excited state, whose wavefunction is the sum of a large number of configurations,
the predominant of which correspond to the promotions of both α (e, 26%) or β (f, 20%)
electrons from the HOMO to the LUMO (Figure 5B, excitations e and f).
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The structures of radicals 1a,b were successfully confirmed by single-crystal XRD.
Figure 6 shows the structure of molecules 1a and 1b as a projection onto the plane of the
bicyclic moiety. In structure 1a, two crystallographically independent molecules 1aA and
1aB are similar in bond lengths but differ in the rotation of the plane of the nonfluorinated
phenyl ring relative to the bicycle plane (Table 1); in 1aA, this angle (−22.8(3)◦) is much
larger than that in 1aB (5.0(3)◦), whereas in 1b, this angle has an intermediate value
(10.5(3)◦). In 1aA and 1aB, the fluorinated ring forms angles 51–52◦ with the heterocyclic
plane. By contrast, in 1b, it is turned at almost the same angle in the opposite direction
(−58.3(2)◦).
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Table 1. Selected bond lengths, contacts (Å) and torsion anglesω (deg.) in 1a and 1b.

Bond d

1aA 1aB 1b

N(1A)-C(2A) 1.330(2) 1.332(2) 1.333(2)
N(1A)-C(22A) 1.373(2) 1.366(2) 1.369(2)
C(2A)-N(9A) 1.332(2) 1.333(2) 1.337(2)

N(9A)-N(10A) 1.364(2) 1.358(2) 1.371(2)
N(10A)-C(17A) 1.386(2) 1.389(2) 1.385(2)
C(17A)-C(22A) 1.407(2) 1.412(2) 1.412(2)

Torsion angle ω

N(9)C(2)C(3)C(8) −22.8(3) 5.0(3) 10.5(3)
N(9)N(10)C(11)C(12) 51.2(2) 52.4(2) –58.3(2)

Contact d

N1B. . .C17B 3.351(3)
N9B. . .C21B 3.444(3)
N1A. . .C16A

(N. . .H-C) 3.427(3)

C4A. . .C12B′ 3.449(3)
N1A. . .N9B′ 3.646(2)

C12′ . . .N9 (N. . .H-C) 3.377(3)
N1. . .C4 3.388(2)

C19. . .C22′ 3.413(3)
N(9). . .N(10′) 3.784(2)

In radical 1a, the shortest intermolecular contacts in the structures (less than 3.5 Å)
are shown in Figure 7. Alternating centrosymmetric dimers 1aA···1aA and 1aB···1aB
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form stacks in the structure. Dimers 1aA···1aA arise due to H-bonds C–H···N [C···N
3.427(3) Å]. In 1aB···1aB dimers, the shortest distances between atoms of parallel bicyclic
parts are 3.351(3) and 3.444(3) Å. Short N···N contacts of 3.646(2) Å can be seen between
dimers (Figure 7). In structure 1b, the parallel arrangement of bicyclic parts and phenyl
rings favors the appearance of π-stacking interactions between them [the C···C and C···N
distances are 3.413(3) and 3.388(2) Å, respectively], which are complemented by C–H···N
hydrogen bonds [C···N 3.377(3) Å]. Considering these contacts, stacks of molecules can be
distinguished in the structure of 1b (Figure 7).
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intermolecular contacts (H atoms are omitted). The letters A and B denote two crystallographically
independent molecules 1aA and 1aB, respectively.

To estimate the strength of exchange interactions between radicals and to select model
magnetic motifs, parameters of exchange interactions within and between stacks were
calculated using the spin-unrestricted broken-symmetry approach. This approach has previ-
ously been shown to work well for evaluating intermolecular exchange interactions [60,61].
In the case of 1a, the stacks consist of two types of radicals, 1aA and 1aB, with three types
of contacts (···1aA···1aA···1aB···1aB···). Therefore, in the calculations for 1a, three consid-
erably different parameters J were obtained (Table 2, J1aA···1aA, J1aA···1aB, and J1aB···1aB) at a
ratio of 1.00:0.12:0.61. In the case of 1b, the structure consists of uniformly bound stacks
with a single parameter, J1b···1b. Table 2 indicates that J1aA···1aA, J1aB···1aB and J1b···1b are
of the same order of magnitude, while J1aA···1aB is much smaller. For both 1a and 1b, our
calculations predicted negligible exchange interactions between the radicals of neighboring
stacks (|J| ≤ 0.2 cm−1).

Table 2. Parameters of intrastack exchange interactions J calculated for crystal structures of 1a and
1b at the BS-UB3LYP/def2-TZVP level, and J values estimated from the best agreement between the
simulation and experimental dependences of χT on T.

Radical 1a 1b

Parameter J1aA···1aA J1aA···1aB J1aB···1aB J1b···1b

Jcalc, cm−1 −116.6 −14.3 −70.5 −86.0
Jcalc/kB, K −167.8 −20.6 −101.4 −123.7
Jexp/kB, K −292 ± 10 − − −222 ± 17

The temperature dependence of χT for radicals 1a and 1b is shown in Figure 8. For
1a, χT at 300 K is 0.23 cm3 mol−1K and decreases with lowering temperature, reaching a
plateau of ~0.013 cm3 mol−1K below 60 K. The high-temperature value of χT is much lower
than the theoretical spin-only value of 0.375 cm3 mol−1K for the noninteracting radicals at
g = 2, and this finding indicates strong antiferromagnetic exchange interactions; the latter
result is consistent with our calculations (Table 2). We simulated the dependence of χT
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on T by means of a magnetic motif consisting of 12-membered radical stacks rolled into
rings. To avoid overparametrization, we fixed the ratio of J values (1:0.12:0.61) obtained
from the calculations. The following parameters correspond to the best fit: g = 2.01 ± 0.05
and J1aA···1aA/kB = −292 ± 10 K. Most likely, the nonzero value of χT below 60 K is due to
a small amount of monomeric radicals (ρ ≈ 2.0%).
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For 1b, χT at 300 K is also 0.23 cm3 mol−1K and diminishes with decreasing tem-
perature to 0.009 cm3 mol−1K at 2 K (Figure 8). Simulation of the dependence of χT on
T with 12-membered looped uniform stacks yielded the following best-fit parameters:
J1b···1b/kB = −222 ± 17 K, ρ ≈ 2.0%, and g = 2.04 ± 0.01.

Table 2 suggests that the results of BS-DFT calculations are in semiquantitative agree-
ment with the parameters extracted from the simulation of the experimental temperature
dependences of the molar magnetic susceptibility. This finding confirms the proposed
magnetic motifs of crystals of radicals 1a and 1b.

Given that it was possible to solve crystal structures of difluoro derivatives 1a and
1b, it was reasonable to compare the structures of their solid phases (as well as magnetic
properties) with those of nonfluorinated analog 1c (CSD refcode: TICMOH [6,62]). Ac-
cording to single-crystal X-ray analysis, radicals 1c are stacked along the b axis. In the
columns, the phenyl ring at C3 and the 1,2,4-triazin-4(1H)-yl ring lie alternately one on
top of the other (Figure 9). Within the array, the mean interplanar distance is 3.449 Å,
which can be considered the mean distance between adjacent π systems. Nevertheless,
the centers of the 1,2,4-triazin-4(1H)-yl rings, bearing most of the spin population, are
5.50 Å apart. Consequently, there are only very weak intermolecular interactions along
the columns, in agreement with the results of static magnetic susceptibility measurements
(J1c···1c/kB = −2.2 ± 0.2 K) [5].
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3. Conclusions

Thus, targeted synthesis of two isomeric Blatter’s radicals, 1-(3,4-difluorophenyl)-
(1a) and 1-(2,4-difluorophenyl)-3-phenyl-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl (1b), was
performed successfully. It was shown that the presence of two F atoms in the phenyl sub-
stituent has a substantial effect on the packing of radicals 1a and 1b and on their magnetic
properties. Magnetic susceptibility analyses revealed that in both radicals, the radical–
radical interactions are strong antiferromagnetic (J/kB = −292 ± 10 and =−222 ± 17 K,
respectively) due to an effective SOMO–SOMO overlap. The latter is related to peculiarities
of the packing of the radicals, which in turn is predetermined by the electrostatic potential
surfaces inherent in these paramagnetic molecules. This work shows that chemically, the
electrostatic potential surface can be modulated efficiently by partial fluorination of the
organic radicals, without expanding the geometry too much. To some extent, in the family
of Blatter radicals, this approach may be an effective way to alter their structural properties
in order to obtain materials with large magnetic couplings. Another important aspect that
motivates further investigation into partly fluorinated Blatter radicals is that they possess
an unprecedented combination of high thermal stability, reversibility of redox processes,
and magnetic properties suitable for fabrication of magnetically active films, especially of
double- and multi-layered films.

4. Experimental Part and Computational Details
4.1. Reagents and General Methods

All commercial reagents were used without further purification. Solvents were freshly
distilled. All reaction mixtures and column eluents were monitored by thin-layer chro-
matography (TLC) using commercial silica gel 60 F254 precoated aluminum TLC plates
(Merck KGaA, Darmstadt, Germany). The plates were visualized under UV radiation at
254 nm. Chromatography was performed on silica gel (0.063–0.200 mm) for column chro-
matography. Melting points were measured by means of Stuart melting point apparatus
SMP 30; solvents used for recrystallization are indicated after the melting points.

Measurement of absorption spectra in the UV and visible range was carried out on
an Agilent 8453 spectrometer (Agilent, Santa Clara, CA, USA) for 10−4 M solutions of
compounds in acetonitrile, using a 10 mm quartz cuvette with a Teflon cap. IR spectra
of samples in KBr were recorded on a BRUKER Vertex-70 FTIR spectrometer (Bruker
Corporation, Billerica, MA, USA), and strong, medium and weak peaks are labeled as s,
m and w, respectively. 1H and 13C NMR spectra were acquired on a Bruker Avance 300
spectrometer (Bruker Corporation, Billerica, MA, USA) at 300 and 75 MHz, respectively.
Deuterated solvents were used to achieve a homonuclear lock, and the signals are presented
in reference to the deuterated solvent peaks. Masses of molecular ions were determined by
high-resolution mass spectrometry (HRMS) by means of a DFS Thermo Scientific instrument
at an ionization energy of 70 eV (Thermo Fisher Scientific, Waltham, MA, USA). Elemental
analyses were performed using a Euro EA 3000 elemental analyzer.

4.2. Syntheses

N-Phenylbenzimidoyl chloride [63]. In a round-bottom Schlenk flask, N-phenylbenzamide
(3.0 g, 15.23 mmol) and SOCl2 (8.85 mL, 8 eq.) were heated at 70 ◦C. After 4 h, the excess
of SOCl2 was removed to obtain the corresponding imidoyl chloride as a greenish solid
(3.15 g, 96% yield), which was subjected to the next step without additional purification.
The NMR results are in agreement with previously reported data. 1H NMR (300 MHz,
DMSO-d6) δ 7.06–7.15 (m, 1 H), 7.30–7.41 (m, 2 H), 7.49–7.64 (m, 3 H), 7.78–7.86 (m, 2 H),
7.95–8.03 (m, 2 H). 13C NMR (76 MHz, DMSO-d6) δ 120.77, 124.07, 128.16, 128.82, 129.03,
131.99, 135.41, 139.59, and 165.93.

(3,4-Difluorophenyl)hydrazine. To a solution of 3,4-difluoroaniline (2 g, 15.59 mmol)
in a mixture of water (6 mL) and concentrated HCl (12 M, 10 mL), we added dropwise a
solution of NaNO2 (1.18 g, 17.04 mmol) in water (2 mL) at 0–5 ◦C, and the reaction mixture
was stirred at this temperature for 1 h. Then, a solution of SnCl2 (8.74 g, 39.73 mmol) in
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concentrated HCl (12 M, 7 mL) was introduced dropwise at 0–5 ◦C with vigorous stirring.
The mixture was then allowed to warm up to room temperature and incubated for 30 min.
The precipitate was filtered off, washed with Et2O (5 mL), and dried in vacuo at 40 ◦C
for 5 h, thus giving (3,4-difluorophenyl)hydrazine hydrochloride as a pale brown solid.
Next, the salt was treated with a 40% aqueous NaOH solution (10 mL), and the product
was extracted with CH2Cl2 (2 × 5 mL). The combined organic layers were dried over
Na2SO4 and concentrated in vacuo to obtain the desired products. Yield 1.69 g (75%),
yellow crystals. The product was used at the next reaction step without purification.

(2,4-Difluorophenyl)hydrazine [64]. To a solution of aniline (2 g, 15.59 mmol) in a
mixture of water (6 mL) and concentrated HCl (12 M, 10 mL), a solution of NaNO2 (1.18 g,
17.04 mmol) in water (2 mL) was added dropwise at 0–5 ◦C, and the reaction mixture
was stirred at this temperature for 1 h. Then, a solution of SnCl2 (8.74 g, 39.73 mmol)
in concentrated HCl (12 M, 7 mL) was introduced dropwise at 0–5 ◦C with vigorous
stirring. The mixture was then warmed to room temperature and incubated for 30 min. The
precipitate was filtered off, washed with Et2O (5 mL), and dried in vacuo at 40 ◦C for 5 h,
thereby affording (2,4-difluorophenyl)hydrazine hydrochloride as a violet solid. The salt
was treated with a 40% aqueous NaOH solution (10 mL), and the mixture was extracted
with CH2Cl2 (2 × 5 mL) to obtain the title product. Yield 1.69 g (75%), dark yellow crystals,
and mp 59–61 ◦C. The product was subjected to the next reaction step without purification.

N′-(3,4-Difluorophenyl)-N′′-phenylbenzohydrazonamide (3a) or N′-(2,4-difluorophenyl)-
N′′-phenylbenzohydrazonamide (3b). N-phenylbenzimidoyl chloride (0.3 g, 0.98 mmol) was
added to a stirred solution of (3,4-difluorophenyl)hydrazine or (2,4-difluorophenyl)hydrazine
(0.478 g, 2.22 mmol) and Et3N (0.336 g, 3.32 mmol) in dry THF (3 mL) at −10 ◦C. red at 0
◦C for 8 h. The solvent was evaporated under reduced pressure, the residue was treated
with a 2% aqueous acetic acid solution (10 mL), and the organic products were extracted
with CH2Cl2. The combined extracts were dried with Na2SO4, and the solvent was evap-
orated. Crude products 3a or 3b were partially purified by flash chromatography (SiO2,
hexane/CH2Cl2, 3:1), and due to limited stability, were quickly subjected to subsequent
reactions. Note that in one of the experiments crystals of compound 3a were obtained by
chance that allowed to solve its molecular and crystal structure (see Section 4.5).

1-(3,4-Difluorophenyl)-3-phenyl-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl (1a). MnO2
(0.81 g, 9.32 mmol) was added to a stirred solution of amidrazone 3a (0.3 g, 0.93 mmol) in
dry CH2Cl2 (4 mL), then the reaction mixture was stirred for 6 h at room temperature. After
evaporation of the solvent, the crude product was purified by column chromatography
(petroleum ether/ethyl acetate [9:1], Rf = 0.72). Yield 0.086 g (29%), crystals of dark-brown
color, and mp 110.2–110.7 ◦C (from a mixture of CH2Cl2 with n-heptane). IR (KBr): 3447 (m),
3058 (w), 2958 (w), 2927 (w), 2857 (w), 1728 (m), 1613 (m), 1513 (s), 1484 (s), 1450 (m),
1393 (s), 1328 (m), 1268 (m), 1203 (m), and 1175 (w) cm−1. EPR (toluene): g = 2.0040;
aN(1) = 0.73, aN(4) = 0.51, and aN(2) = 0.49 mT. HRMS (ESI): m/z [M]+ calcd for C19H12F2N3
320.0999, found 320.1002. Found, %: C, 71.37; H, 3.64; F, 11.39; and N, 13.07. Calcd. for
C19H12F2N3, %: C, 71.24; H, 3.78; F, 11.86; and N, 13.12.

1-(2,4-Difluorophenyl)-3-phenyl-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl (1b). MnO2
(0.81 g, 9.32 mmol) was added to a stirred solution of amidrazone 3b (0.3 g, 0.93 mmol) in
dry CH2Cl2 (4 mL), then the reaction mixture was stirred for 6 h at room temperature. After
evaporation of the solvent, the crude product was purified by column chromatography
(petroleum ether/ethyl acetate [9:1], Rf = 0.68). Yield 0.098 g (33%), swamp-colored crystals,
and mp 128.6–129.2 ◦C (from a mixture of CH2Cl2 with n-heptane). IR (KBr): 3471 (m),
3062 (w), 3030 (w), 1947 (w), 1877 (w), 1610 (s), 1508 (s), 1483 (s), 1452 (m), 1431 (m), 1395 (s),
1347 (w), 1269 (m), 1229 (m), 1203 (w), and 1141 (m) cm−1. EPR (toluene): g = 2.0040;
aN(1) = 0.72, aN(4) = 0.51, and aN(2) = 0.49 mT. HRMS (ESI): m/z [M]+ calcd for C19H12F2N3
320.0999, found 320.0998. Found, %: C, 71.64; H, 3.52; F, 11.41; and N, 13.10. Calcd. for
C19H12F2N3, %: C, 71.24; H, 3.78; F, 11.86; and N, 13.12.
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4.3. EPR Spectroscopy

EPR measurements were carried out on a Jeol JES-FA200 X-band spectrometer (Ak-
ishima, Tokyo 196-8558, Japan) using a Jeol X-Band Microwave Unit (9.8 GHz) at 290 K in
dilute (down to approximately 10−5 M) toluene solutions degassed by argon bubbling. The
spectra were recorded during one slow (~1 h) scan with a modulation of 0.2 mT at 100 kHz
and a power of 4 MW. Isotropic g-factor values were measured experimentally using MgO
doped with Mn(II) ions as a standard placed in the resonator simultaneously with the test
solution. The spectra were simulated in Winsim v.0.96 software [65]. Estimated accuracy of
determination of HFS constants and of the g value was 0.005 mT and 0.0001, respectively.

4.4. CV

CV measurements were performed in a dry glove box with an argon atmosphere and
humidity and oxygen levels not exceeding 1 ppm. The analyzed compounds dissolved
in acetonitrile (10−4 M) were subjected to electrochemical transformations in a standard
three-electrode glass cell at a potential sweep rate of 0.05–1.00 V·s−1. The working electrode
was a glassy carbon disc electrode with a diameter of 2.7 mm. Before use, its surface was
polished with sandpaper and then by means of chromium (III) oxide paste to achieve
a mirror finish. The auxiliary electrode was a platinum wire calcined in a gas burner
flame to remove oxides and other possible contaminants from the surface. Potentials of
the studied processes were measured relative to a reference electrode, which was a silver
wire coated with a layer of silver chloride, separated from the bulk of the electrolyte by
an electrolytic bridge filled with a solution of the supporting electrolyte. The reference
electrode was calibrated against a ferrocene/ferrocenium couple (E0 = 0.640 V with respect
to SHE). The supporting electrolyte was a 0.1 M solution of Bu4NBF4 (99%, Sigma-Aldrich,
Burlington, MA, USA) in acetonitrile, ≥99.9%, HPLC gradient grade (Fisher Chemical,
Loughborough, UK) with water content not exceeding 20 ppm, according to Karl Fischer
titration; Mettler-Toledo titrator C10SD was employed.

4.5. Single-Crystal X-ray Diffractometry

XRD data on single crystals of 1a, 1b, and 3a were collected on a Bruker AXS diffrac-
tometer, an Apex Duo (Cu Kα, λ = 1.54178 Å, room temperature). In addition, XRD data
on a single crystal of 3a were collected at 100 K on a Bruker D8 QUEST diffractometer.
Single-crystal X-ray analyses were carried out in the APEX3 software [66]. Absorption
correction was applied by means of Bruker SADABS (version 2.10) [67]. The structure
was solved by direct methods and refined by the full-matrix least-squares method in an
anisotropic approximation for all nonhydrogen atoms. Positions of the H atoms were
calculated geometrically and included in the refinement in a riding model. All calculations
for structure solution and refinement were performed in SHELXL-2018/3 [68,69].

Crystallographic data were deposited with the Cambridge Crystallographic Data
Centre and can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.
html, accessed on 28 July 2023 (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ,
UK; Fax: +44-1223-336033; E-mail: deposit@ccdc.cam.ac.uk).

Crystallographic data for 1a: C19H12F2N3, M = 320.32, T = 296 K, triclinic space
group P-1, a = 10.090(3), b = 13.144(3), c = 13.207(4) Å, α = 75.170(15), β = 89.178(15),
γ = 67.551(14)◦, V = 1558.0(7) Å3; Z = 4, ρcalc = 1.366 g·cm−3, µ(Cu Kα) = 0.829 mm−1, θ
range 3.477–68.110◦, Ihkl collected/unique 13,490/5451, Rint = 0.0582, 3797 Ihkl with I > 2σ(I),
542 refined parameters, GooF = 1.059, R1 = 0.0458, wR2 = 0.1357, and CCDC 2253805.

Crystallographic data for 1b: C19H12F2N3, M = 320.32, T = 296 K, monoclinic space
group C2/c, a = 24.2137(14), b = 4.3811(3), c = 29.4449(19) Å, β = 106.403(4)◦, V = 2996.5(3) Å3;
Z = 8, ρcalc = 1.420 g·cm−3, µ(Cu Kα) = 0.863 mm−1, θ range 3.806–66.727◦, Ihkl col-
lected/unique 9767/2575, Rint = 0.0464, 1800 Ihkl with I > 2σ(I), 217 refined parameters,
GooF = 1.030, R1 = 0.0451, wR2 = 0.1235, and CCDC 2253804.

Crystallographic data for 3a: C19H13F2N3, M = 321.32, T = 296 K, orthorhombic space
group Pbca, a = 19.7195(10), b = 7.2781(4), c = 22.1358(12) Å, V = 3176.9(3) Å3; Z = 8,

http://www.ccdc.cam.ac.uk/conts/retrieving.html
http://www.ccdc.cam.ac.uk/conts/retrieving.html
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ρcalc = 1.344 g·cm−3, µ(Cu Kα) = 0.81 mm−1, θ range 3.994–67.832◦, Ihkl collected/unique
18,569/2871, Rint = 0.0526, 2379 Ihkl with I > 2σ(I), 269 refined parameters, GooF = 1.030,
R1 = 0.0572, wR2 = 0.1690, and CCDC 2285424.

Crystallographic data for 3a: C19H13F2N3, M = 320.32, T = 100 K, orthorhombic space
group Pbca, a = 19.6798(5), b = 7.0705(2), c = 22.0254(6) Å, V = 3064.75(14) Å3; Z = 6,
ρcalc = 1.393 g·cm−3, µ(Mo Kα) = 0.101 mm−1, θ range 2.070–30.582◦, Ihkl collected/unique
19,008/4684, Rint = 0.0318, 4029 Ihkl with I > 2σ(I), 218 refined parameters, GooF = 0.918,
R1 = 0.0431, wR2 = 0.1147, and CCDC 2285423.

4.6. Magnetic Measurements

Magnetic susceptibility of the polycrystalline samples was measured with a Quantum
Design MPMSXL SQUID magnetometer in the temperature range 2–300 K in a magnetic
field of up to 5 kOe. Diamagnetic corrections were made using the Pascal constants.

4.7. Computational Details

Parameters of exchange interactions (
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,

where the energies of the high-spin (HS) and low-spin (LS) states were calculated at the
UB3LYP/def2-TZVP [72–74] level for XRD geometry of radical pairs.

Geometries of 1a and 1b optimized at the B97-D3/def2-SVP [75–77] level in acetonitrile
and toluene were used to calculate the EPR parameters (giso and HFC constants with 14N)
as well as the energies and oscillator strengths of electronic transitions in the UV-Vis spectra.
The solvent was taken into account using the CPCM model [78]. The EPR parameters were
computed at the PBE0/def2-TZVP level [79]. The UV/Vis spectra of radicals 1a and 1b
were calculated via the time-dependent DFT approach [80] with the B3LYP functional and
the def2-TZVP basis set.

All calculations were performed using the ORCA 5.0.1 software package [81].
To simulate the temperature dependence of the molar magnetic susceptibility, χ(T),

in the form of product χ(T) × T, we utilized custom-designed software [82]. For both
radicals, the magnetic motifs consist of stacks of exchange-coupled radicals. In the
case of 1b, these are uniformly bound stacks. For 1a, the situation is more compli-
cated: the stacks consist of two types of molecules, 1aA and 1aB, with three types of
contacts (···1aA···1aA···1aB···1aB···), and consequently, there are three different J param-
eters (J1aA···1aA, J1aA···1aB, and J1aB···1aB). To avoid overparametrization, the ratio of these
parameters was fixed based on the calculation results (Table 2).

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/catal13081206/s1, Figure S1. CV curves of oxidation and
reduction of 1b (3 × 10−3 M) in 0.1 M Bu4NBF4/MeCN on a glassy carbon disk electrode at a poten-
tial sweep rate of 0.1 V/s; Figure S2. (left) CV curves of the oxidation of 1b (3 × 10−3 M) in 0.1 M
Bu4NBF4/MeCN on a glassy carbon disk electrode at potential sweep rates of 0.05, 0.10, 0.20, 0.50,
and 1.00 V/s. (right) Dependences of the potentials of the peaks of oxidation and reciprocal reduction
on the current at the peak for the corresponding process; Figure S3. CV curves of reduction of 1b
(3 × 10−3 M) in 0.1 M Bu4NBF4/MeCN on a glassy carbon disc electrode at potential sweep rates of
0.05, 0.10, 0.20, 0.50, and 1.00 V/s. (right) Plots of reduction and reciprocal oxidation peak potentials
versus peak current for the respective process; Figure S4. The EPR spectrum of radical 1a (black) in
toluene solution (~10−5 M) at 298 K and its modeling (red); Figure S5. The EPR spectrum of radical
1b (black) in toluene solution (~10−5 M) at 298 K and its modeling (red); Figure S6. The experimental
electronic absorption spectrum of an acetonitrile solution of radical 1b (10-4 M) recorded at room
temperature [the inset shows enlarged spectra of 1b]; Table S1. A series of higher occupied and lower
unoccupied MOs of α and β type and their energies for radical 1a.
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