Integration of WO3-Doped MoO3 with ZnO Photocatalyst for the Removal of 2-Nitrophenol in Natural Sunlight Illumination
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Surfactant-Assisted Synthesis of WO3, MoO3, and ZnO
3.2. Synthesis of WO3 Doped MoO3 and WDM-ZnO Composite
3.3. Characterization of Materials
3.4. Photocatalytic Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, A.C.; Jin, X.; Nakada, N.; Sumpter, J.P. Learning from the past and considering the future of chemicals in the environment. Science 2020, 367, 384–387. [Google Scholar] [PubMed]
- Varjani, S.; Rakholiya, P.; Ng, H.Y.; You, S.; Teixeira, J.A. Microbial degradation of dyes: An overview. Bioresour. Technol. 2020, 314, 123728. [Google Scholar] [PubMed]
- Wang, X.; Jiang, J.; Gao, W. Reviewing textile wastewater produced by industries: Characteristics, environmental impacts, and treatment strategies. Water Sci. Technol. 2022, 85, 2076–2096. [Google Scholar]
- Ardila-Leal, L.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; Quevedo-Hidalgo, B.E. A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Molecules 2021, 26, 3813. [Google Scholar] [PubMed]
- Collivignarelli, M.C.; Abbà, A.; Miino, M.C.; Damiani, S. Treatments for color removal from wastewater: State of the art. J. Environ. Manag. 2019, 236, 727–745. [Google Scholar]
- Xiong, Z.; Zhang, H.; Zhang, W.; Lai, B.; Yao, G. Removal of nitrophenols and their derivatives by chemical redox: A review. Chem. Eng. J. 2019, 359, 13–31. [Google Scholar]
- Deng, F.; Zhang, Q.; Yang, L.; Luo, X.; Wang, A.; Luo, S.; Dionysiou, D.D. Visible-light-responsive graphene-functionalized Bi-bridge Z-scheme black BiOCl/Bi2O3 heterojunction with oxygen vacancy and multiple charge transfer channels for efficient photocatalytic degradation of 2-nitrophenol and industrial wastewater treatment. Appl. Catal. B Environ. 2018, 238, 61–69. [Google Scholar]
- Balakrishnan, A.; Gaware, G.; Chinthala, M. Heterojunction photocatalysts for the removal of nitrophenol: A systematic review. Chemosphere 2022, 310, 136853. [Google Scholar]
- Sathya, K.; Nagarajan, K.; Carlin Geor Malar, G.; Rajalakshmi, S.; Raja Lakshmi, P. A comprehensive review on comparison among effluent treatment methods and modern methods of treatment of industrial wastewater effluent from different sources. Appl. Water Sci. 2022, 12, 70. [Google Scholar]
- Nagda, A.; Meena, M.; Shah, M.P. Bioremediation of industrial effluents: A synergistic approach. J. Basic Microbiol. 2022, 62, 395–414. [Google Scholar]
- Rashed, M.N. Adsorption technique for the removal of organic pollutants from water and wastewater. Org. Pollut. Monit. Risk Treat. 2013, 7, 167–194. [Google Scholar]
- Ghazal, H.; Koumaki, E.; Hoslett, J.; Malamis, S.; Katsou, E.; Barcelo, D.; Jouhara, H. Insights into current physical, chemical and hybrid technologies used for the treatment of wastewater contaminated with pharmaceuticals. J. Clean. Prod. 2022, 361, 132079. [Google Scholar]
- Paumo, H.K.; Dalhatou, S.; Katata-Seru, L.M.; Kamdem, B.P.; Tijani, J.O.; Vishwanathan, V.; Kane, A.; Bahadur, I. TiO2 assisted photocatalysts for degradation of emerging organic pollutants in water and wastewater. J. Mol. Liq. 2021, 331, 115458. [Google Scholar]
- Quddus, F.; Shah, A.; Iftikhar, F.J.; Shah, N.S.; Haleem, A. Environmentally Benign Nanoparticles for the Photocatalytic Degradation of Pharmaceutical Drugs. Catalysts 2023, 13, 511. [Google Scholar]
- Alhogbi, B.G.; Aslam, M.; Hameed, A.; Qamar, M.T. The efficacy of Co3O4 loaded WO3 sheets for the enhanced photocatalytic removal of 2, 4, 6-trichlorophenol in natural sunlight exposure. J. Hazard. Mater. 2020, 397, 122835. [Google Scholar] [PubMed]
- Qamar, M.T.; Iqbal, S.; Aslam, M.; Alhujaily, A.; Bilal, A.; Rizwan, K.; Farooq, H.M.U.; Sheikh, T.A.; Bahadur, A.; Awwad, N.S. Transition metal doped CeO2 for photocatalytic removal of 2-chlorophenol in the exposure of indoor white light and antifungal activity. Front. Chem. 2023, 11, 1126171. [Google Scholar]
- Krishnan, A.; Swarnalal, A.; Das, D.; Krishnan, M.; Saji, V.S.; Shibli, S. A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants. J. Environ. Sci. 2023, 139, 389–417. [Google Scholar]
- Singh, K.; Kaur, H.; Sharma, P.K.; Singh, G.; Singh, J. ZnO and cobalt decorated ZnO NPs: Synthesis, photocatalysis and antimicrobial applications. Chemosphere 2023, 313, 137322. [Google Scholar]
- Aslam, M.; Ismail, I.M.; Salah, N.; Chandrasekaran, S.; Qamar, M.T.; Hameed, A. Evaluation of sunlight induced structural changes and their effect on the photocatalytic activity of V2O5 for the degradation of phenols. J. Hazard. Mater. 2015, 286, 127–135. [Google Scholar] [PubMed]
- Le, A.T.; Duy, H.L.T.; Cheong, K.-Y.; Pung, S.-Y. Immobilization of zinc oxide-based photocatalysts for organic pollutant degradation: A review. J. Environ. Chem. Eng. 2022, 10, 108505. [Google Scholar]
- Dhiman, P.; Rana, G.; Kumar, A.; Sharma, G.; Vo, D.-V.N.; Naushad, M. ZnO-based heterostructures as photocatalysts for hydrogen generation and depollution: A review. Environ. Chem. Lett. 2022, 20, 1047–1081. [Google Scholar]
- Phuruangrat, A.; Thongtem, S.; Thongtem, T. Hydrothermal synthesis, characterization, and photocatalytic performance of W-doped MoO3 nanobelts. Res. Chem. Intermed. 2016, 42, 7487–7499. [Google Scholar] [CrossRef]
- Mohammadi, M.; Negreiros, F.R.; Radlinger, T.; Edelmayer, P.; Netzer, F.P.; Surnev, S. Interaction of Na with 2D WO3 and MoO3 Layers on Pd (100): From Doping to 2D Bronze Formation. J. Phys. Chem. C 2022, 126, 3289–3300. [Google Scholar] [CrossRef]
- Klinbumrung, A.; Thongtem, T.; Thongtem, S. Characterization of orthorhombic α-MoO3 microplates produced by a microwave plasma process. J. Nanomater. 2012, 2012, 930763. [Google Scholar] [CrossRef]
- Gao, P.; Ru, Q.; Pan, Z.; Zhang, J.; Xu, W.; Ling, F.C.-C.; Wei, L. Robust hetero-MoO3/MoO2@ N-doped carbon nanobelts decorated with oxygen deficiencies as high-performance anodes for potassium/sodium storage. J. Colloid Interface Sci. 2021, 599, 730–740. [Google Scholar] [PubMed]
- Guo, M.; Luo, N.; Chen, Y.; Fan, Y.; Wang, X.; Xu, J. Fast-response MEMS xylene gas sensor based on CuO/WO3 hierarchical structure. J. Hazard. Mater. 2022, 429, 127471. [Google Scholar]
- Layegh, M.; Ghodsi, F.; Hadipour, H. Improving the electrochemical response of nanostructured MoO3 electrodes by Co doping: Synthesis and characterization. J. Phys. Chem. Solids 2018, 121, 375–385. [Google Scholar]
- Sen, S.K.; Dutta, S.; Khan, M.R.; Manir, M.; Dutta, S.; Al Mortuza, A.; Razia, S.; Hakim, M. Characterization and antibacterial activity study of hydrothermally synthesized h-MoO3 nanorods and α-MoO3 nanoplates. Bionanoscience 2019, 9, 873–882. [Google Scholar]
- Balaji, M.; Chandrasekaran, J.; Raja, M.; Rajesh, S. Structural, optical and electrical properties of Ru doped MoO3 thin films and its P–N diode application by JNS pyrolysis technique. J. Mater. Sci. Mater. Electron. 2016, 27, 11646–11658. [Google Scholar]
- Yan, Y.; Li, S.; Yuan, B.; Hu, R.; Yang, L.; Liu, J.; Liu, J.; Wang, Y.; Luo, Z.; Ying, H. Flowerlike Ti-doped MoO3 conductive anode fabricated by a novel NiTi dealloying method: Greatly enhanced reversibility of the conversion and intercalation reaction. ACS Appl. Mater. Interfaces 2020, 12, 8240–8248. [Google Scholar] [CrossRef]
- Navarra, W.; Ritacco, I.; Sacco, O.; Caporaso, L.; Farnesi Camellone, M.; Venditto, V.; Vaiano, V. Density functional theory study and photocatalytic activity of ZnO/N-doped TiO2 heterojunctions. J. Phys. Chem. C 2022, 126, 7000–7011. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, W.; Li, Q.; Liu, H.; Wang, X. Preparations and applications of zinc oxide based photocatalytic materials. Adv. Sens. Energy Mater. 2023, 2, 100069. [Google Scholar] [CrossRef]
- Geng, Y.; Li, N.; Ma, J.; Sun, Z. Preparation, characterization and photocatalytic properties of BiOBr/ZnO composites. J. Energy Chem. 2017, 26, 416–421. [Google Scholar] [CrossRef]
- Pan, L.; Shen, G.-Q.; Zhang, J.-W.; Wei, X.-C.; Wang, L.; Zou, J.-J.; Zhang, X. TiO2–ZnO composite sphere decorated with ZnO clusters for effective charge isolation in photocatalysis. Ind. Eng. Chem. Res. 2015, 54, 7226–7232. [Google Scholar] [CrossRef]
- Kadam, V.V.; Shanmugam, S.D.; Ettiyappan, J.P.; Balakrishnan, R.M. Photocatalytic degradation of p-nitrophenol using biologically synthesized ZnO nanoparticles. Environ. Sci. Pollut. Res. 2021, 28, 12119–12130. [Google Scholar] [CrossRef]
- Qamar, M.T.; Aslam, M.; Rehan, Z.; Soomro, M.T.; Basahi, J.M.; Ismail, I.M.; Almeelbi, T.; Hameed, A. The influence of p-type Mn3O4 nanostructures on the photocatalytic activity of ZnO for the removal of bromo and chlorophenol in natural sunlight exposure. Appl. Catal. B Environ. 2017, 201, 105–118. [Google Scholar] [CrossRef]
- Luo, J.; Dai, Z.; Feng, M.; Gu, M.; Xie, Y. Graphitic carbon nitride/ferroferric oxide/reduced graphene oxide nanocomposite as highly active visible light photocatalyst. Nano Res. 2023, 16, 371–376. [Google Scholar] [CrossRef]
- Nadikatla, S.K.; Chintada, V.B.; Gurugubelli, T.R.; Koutavarapu, R. Review of Recent Developments in the Fabrication of ZnO/CdS Heterostructure Photocatalysts for Degradation of Organic Pollutants and Hydrogen Production. Molecules 2023, 28, 4277. [Google Scholar] [CrossRef]
- Bano, K.; Kaushal, S.; Kumar, A.; Singh, P. Sunlight-driven photocatalytic degradation of 4-nitrophenol and adsorptive removal of Mn (II) ions from industrial wastewater by biogenic synthesized CuO/SnO2 heterojunction. Mater. Today Chem. 2022, 26, 101193. [Google Scholar] [CrossRef]
- Cao, Q.; Li, Q.; Pi, Z.; Zhang, J.; Sun, L.-W.; Xu, J.; Cao, Y.; Cheng, J.; Bian, Y. Metal–organic-framework-derived ball-flower-like porous Co3O4/Fe2O3 heterostructure with enhanced visible-light-driven photocatalytic activity. Nanomaterials 2022, 12, 904. [Google Scholar] [CrossRef] [PubMed]
- Alnaggar, G.; Alkanad, K.; Chandrashekar, S.S.G.; Bajiri, M.A.; Drmosh, Q.A.; Krishnappagowda, L.N.; Ananda, S. Rational design of a 2D TiO2–MoO3 step-scheme heterostructure for boosted photocatalytic overall water splitting. New J. Chem. 2022, 46, 9629–9640. [Google Scholar] [CrossRef]
- Khani, M.; Sammynaiken, R.; Wilson, L.D. Electrocatalytic Oxidation of Nitrophenols via Ag Nanoparticles Supported on Citric-Acid-Modified Polyaniline. Catalysts 2023, 13, 465. [Google Scholar] [CrossRef]
- Tan, J.; Wei, G.; Wang, Z.; Su, H.; Liu, L.; Li, C.; Bian, J. Application of Zn1−xCdxS photocatalyst for degradation of 2-CP and TC, catalytic mechanism. Catalysts 2022, 12, 1100. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Kang, J.-K.; Park, S.-J.; Lee, C.-G.; Moon, J.-K.; Alvarez, P.J. Photocatalytic degradation of neonicotinoid insecticides using sulfate-doped Ag3PO4 with enhanced visible light activity. Chem. Eng. J. 2020, 402, 126183. [Google Scholar] [CrossRef]
Synthesized Material | 2θ (°) with Preferred Plane Orientation (hkl) | Interplanar Distance (d) (Å) | Crystallite Size (D) (nm) | Micro-Strain (ε) (10−4) | Dislocation Density (δ) (1014 m−2) | Stacking Fault (SF) (10−3) |
---|---|---|---|---|---|---|
WO3 | 24.32 (200) | 3.6569 | 38.5659 | 9.3839 | 6.7235 | 2.0927 |
MoO3 | 27.12 (021) | 3.2853 | 65.6305 | 5.5142 | 2.3216 | 1.1689 |
WDM ⁎ | 27.10 (021) | 3.2877 | 63.1970 | 5.7265 | 2.5038 | 1.2143 |
ZnO | 36.28 (101) | 2.4741 | 36.3663 | 9.9515 | 7.5614 | 1.8515 |
WDM-ZnO | 36.28 a (101) | 2.4741 | 36.3663 | 9.9515 | 7.5614 | 1.8515 |
WDM-ZnO | 27.10 b (021) | 3.2877 | 62.2745 | 6.2274 | 2.5786 | 1.2323 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateen, S.; Nawaz, R.; Qamar, M.T.; Ali, S.; Iqbal, S.; Aslam, M.; Raheel, M.; Awwad, N.S.; Ibrahium, H.A. Integration of WO3-Doped MoO3 with ZnO Photocatalyst for the Removal of 2-Nitrophenol in Natural Sunlight Illumination. Catalysts 2023, 13, 1262. https://doi.org/10.3390/catal13091262
Mateen S, Nawaz R, Qamar MT, Ali S, Iqbal S, Aslam M, Raheel M, Awwad NS, Ibrahium HA. Integration of WO3-Doped MoO3 with ZnO Photocatalyst for the Removal of 2-Nitrophenol in Natural Sunlight Illumination. Catalysts. 2023; 13(9):1262. https://doi.org/10.3390/catal13091262
Chicago/Turabian StyleMateen, Sofia, Rabia Nawaz, Muhammad Tariq Qamar, Shahid Ali, Shahid Iqbal, Mohammad Aslam, Muhammad Raheel, Nasser S. Awwad, and Hala A. Ibrahium. 2023. "Integration of WO3-Doped MoO3 with ZnO Photocatalyst for the Removal of 2-Nitrophenol in Natural Sunlight Illumination" Catalysts 13, no. 9: 1262. https://doi.org/10.3390/catal13091262
APA StyleMateen, S., Nawaz, R., Qamar, M. T., Ali, S., Iqbal, S., Aslam, M., Raheel, M., Awwad, N. S., & Ibrahium, H. A. (2023). Integration of WO3-Doped MoO3 with ZnO Photocatalyst for the Removal of 2-Nitrophenol in Natural Sunlight Illumination. Catalysts, 13(9), 1262. https://doi.org/10.3390/catal13091262