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Abstract: The use of plentiful and renewable feedstock for producing chemicals is fundamental
for the development of sustainable chemical processes. Using fish scale as a biobased carrier, a
novel biochar SO4

2−/SnO2-FFS heterogeneous chemocatalyst was prepared to catalyze furfural
production from xylose-rich corncob-hydrolysates obtained from acid hydrolysis of corncob in a deep
eutectic solvent (DES)–water system. By characterizing the physical as well as chemical properties of
SO4

2−/SnO2-FFS by NH3-TPD, FT-IR, XPS, XRD, and SEM, it was shown that the chemocatalyst had
Lewis/Brönsted acid centers, and its surface roughness could be well expanded to contact substrates.
The corncob was initially hydrolyzed at 140 ◦C to obtain xylose-rich hydrolysate. Subsequently,
SO4

2−/SnO2-FFS (3.6 wt.%) was used to catalyze the corn cob hydrolysate containing D-xylose
(20.0 g/L) at a reaction temperature of 170 ◦C for 15 min. Additionally, ZnCl2 (20.0 g/L) was added.
Ultimately, furfural (93.8 mM, 70.5% yield) was produced in the deep eutectic solvent ChCl:maleic
acid–water (DESMLA–water = 10:90, v/v). A synergistic catalytic mechanism for transforming xylose-
rich corncob-hydrolysate into furfural and byproducts were proposed using SO4

2−/SnO2-FFS as
a chemocatalyst in DESMLA–water containing ZnCl2. Consequently, the efficient use of biochar
SO4

2−/SnO2-FFS chemocatalysts for the sustainable synthesis of biobased furan compounds from
biomass holds great promise in the future.

Keywords: biofuran; biochar catalyst; deep eutectic solvent; ZnCl2; lignocellulose

1. Introduction

The continued use of non-renewable energy has raised people’s awareness of nat-
ural resource depletion and global warming, shifting the focus of many countries to
renewable energy [1,2]. It is known that lignocellulosic biomass (LB) is renewable and
eco-friendly [3–5], which is considered a replacement for manufacture biofuels, ma-
terials, and high-value biobased compounds because it is plentiful, inexpensive, and
promising [6–10]. As one of the important chemical intermediates, furfural (FAL) can
be transformed from lignocellulose or its derivatives (e.g., xylan and D-xylose) via hy-
drothermal reaction [11]. In industrial production, FAL has been widely used. It has
become a raw material for pharmaceuticals, industrial solvents, and numerous fuel
additives [12]. By deeper processing, it can be transformed into various furan-based
compounds (e.g., tetrahydrofuran, furoic acid, tetrahydrofuran, dihydropyran, acetyl
furan, furfuryl alcohol, and furfurylamine) [13].

Generally, furfural (FAL) can be synthesized using both homogeneous and heteroge-
neous catalysts. Utilizing homogeneous catalysts such as hydrochloric acid, the highest
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FAL yield from xylose could reach 37.5% [14]. Combining Lewis acid (AlCl3) and Brønsted
acid (HCl) as homogeneous catalysts for the catalytic conversion of untreated cellulose
resulted in a remarkable FAL yield of 75% [15]. However, the use of homogeneous catalysis
might accelerate equipment corrosion and lead to difficulties in recycling, posing challenges
in terms of both economic efficiency and environmental sustainability [16]. Consequently,
more eco-friendly heterogeneous catalysts have been employed for FAL synthesis [17,18].
Among these, sulfonated carbon derived from biomass has garnered attention due to its
low cost, favorable thermal stability, and acidity. Using biochar-based SO4

2−/SnO2-CS as
a catalyst, the corn stalk was transformed into FAL with a yield of 68% at a temperature
of 170 ◦C for 0.5 h [19]. A total of 62% of FAL yield from D-xylose by carbonized and
sulfonated teff straw was achieved in a toluene-water system at 170 ◦C for 0.5 h [20]. FAL
was synthesized from corncob with sulfonated tin-loaded rice husk-activated carbon, and
the yield of FAL was 40.9% [21]. Employing 4-BDS as a sulfonating agent, sucrose was
carbonized into a solid acid catalyst, achieving a 61% FAL yield from a corn stalk in 100 min
at a temperature of 200 ◦C [22]. This highlights the significant potential of using biomass as
a catalyst carrier. Therefore, utilizing sulfonated carbon derived from biomass as a catalyst
or carrier is essential for achieving high-value utilization of biomass.

Appropriate solvents also play a crucial role in enhancing FAL productivity [23]. Deep
eutectic solvents (DESs) are defined as systems that combine eutectic Lewis (L) or Brönsted
(B) acids with various ionic species [24]. Compared to traditional reaction systems, DESs
offer several advantages including ease of preparation, non-toxicity, non-volatility, and
reusability [25]. Utilizing choline chloride (ChCl)-lactic acid as a chemical catalyst and
reaction medium, rice straw was transformed into FAL (12% yield) at 180 ◦C for 2 h [26].
Water–ChCl:oxalic acid was employed as a medium to convert corncob (CC) at 180 ◦C
for 0.5 h, achieving a FAL yield of 46% [27]. ChCl-carboxylic acid containing H+ and Cl−

might facilitate the dehydration of D-xylose to produce FAL [28]. Therefore, to further
enhance the FAL yield, a synergistic catalysis approach using carboxylic acid-based DES
and heterogeneous catalysts can be employed in the reaction system, providing a more
environmentally friendly and efficient means of catalyzing biomass-derived D-xylose
into FAL.

As one kind of bioresource, fish scales are rich in collagen, hydroxyapatite (HAP),
and lipids [29]. According to the statistics, the fish processing industry produces about
30 million tons of fish waste each year, which contains 4% of fish scales. In recent years,
fish scales have been used in the chemistry, medicine, and food industry [30]. As one
main component of fish scales, HAP is a calcium phosphate biomaterial, which serves
as an ideal catalyst carrier due to its ion exchange, adsorption, acid–base properties, and
stability. Currently, there is limited information on the effective transformation of biomass
or D-xylose to FAL using fish scale-based biochar solid acid catalysts. In order to realize the
reuse of fresh fish scales (FFS) and improve the efficiency of FAL production by biomass
catalysis, a novel biochar heterogeneous catalyst (SO4

2−/SnO2-FFS) was prepared using
FFS as a carrier. The structure and morphology of SO4

2−/SnO2-FFS were characterized
by NH3-TPD, FT-IR, XPS, XRD, and SEM. In addition, an attempt was made to synthesize
FAL from hydrolysate from CC in DESMLA–water system using SO4

2−/SnO2-FFS as a
heterogeneous catalyst. The process conditions for preparing FAL (such as SO4

2−/SnO2-
FFS dosage, catalytic temperature, catalytic time, cycle time, chloride salt, etc.) were
optimized. Finally, a sustainable strategy for the synthesis of FAL using fish scale-based
heterogeneous catalysts in an environmentally friendly catalytic reaction system was
established (Figure 1)
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strategy for synthesis of FAL from corncob with biochar-based heterogeneous chemocatalyst (b). 
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SO42−/SnO2-FFS was prepared by using carbonized FFS as biobased carrier. The surface 
area changes of SO42−/SnO2-FFS and FFS were tested by BET, and the results were dis-
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on solid acid catalyst and the substrate molecules, which would result in the enhancement 
of FAL productivity [32]. SO42−/SnO2-FFS appeared smaller pore size (4.7 nm) compared 
with the FFS pore size (14.5 nm), and a reduced pore volume of SO42−/SnO2-FFS (0.010 
cm3/g) was evident. The pore size of SO42−/SnO2-FFS was bigger than the molecular dy-
namics (MD) radius of FAL (0.68 nm) and D-xylose (0.86 nm) [33], suggesting that D-xy-
lose might be beneficial to spread into the acid sites on the surface of SO42−/SnO2-FFS and 
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lose. As described in FT-IR (Figure 3), SO42−/SnO2-FFS had obvious surface compared to 
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Figure 1. The process of catalytically converting the D-xylose solution obtained from the hydrolysis of
corncob at 140 ◦C for 40 min into FAL using SO4

2−/SnO2-FFS in a DES-water system (a); a chemical
strategy for synthesis of FAL from corncob with biochar-based heterogeneous chemocatalyst (b).

2. Results and Discussion

2.1. Characterization of Biochar-Based Catalyst SO4
2−/SnO2-FFS Using FFS as Biobased Carrier

FFS of carp is one of the underutilized fishery wastes [31]. Tin-based heterogeneous
chemocatalysts have been proven to be able to utilize to dehydrate corncob-derived D-
xylose to FAL. In this work, sulfonated tin-loaded heterogeneous chemocatalyst SO4

2−/
SnO2-FFS was prepared by using carbonized FFS as biobased carrier. The surface area
changes of SO4

2−/SnO2-FFS and FFS were tested by BET, and the results were displayed in
Table 1. The surface change of the carrier FFS and catalyst SO4

2−/SnO2-FFS was compared.
Specific surface area (SSA) of FFS was 12.4 m2/g. SO4

2−/SnO2-FFS had bigger SSA
(29.4 m2/g). Large SSA might promote the contact between the catalytic active sites on solid
acid catalyst and the substrate molecules, which would result in the enhancement of FAL
productivity [32]. SO4

2−/SnO2-FFS appeared smaller pore size (4.7 nm) compared with the
FFS pore size (14.5 nm), and a reduced pore volume of SO4

2−/SnO2-FFS (0.010 cm3/g) was
evident. The pore size of SO4

2−/SnO2-FFS was bigger than the molecular dynamics (MD)
radius of FAL (0.68 nm) and D-xylose (0.86 nm) [33], suggesting that D-xylose might be
beneficial to spread into the acid sites on the surface of SO4

2−/SnO2-FFS and was further
dehydrated into FAL.

Table 1. Surface and pore difference of FFS and SO4
2−/SnO2-FFS.

Sample BET Surface Area,
m2/g

Pore Volume,
cm3/g

Pore Size,
nm

FFS 12.4 0.03 14.5
SO4

2−/SnO2-FFS 29.4 0.01 4.7

The SEM image depicted that the surface of FFS was comparatively smooth, while
the surface of SO4

2−/SnO2-FFS was rough (Figure 2). It showed that SnO2 and SO4
2−

were loaded on the carrier FFS, and enhanced the contact between SO4
2−/SnO2-FFS and D-

xylose. As described in FT-IR (Figure 3), SO4
2−/SnO2-FFS had obvious surface compared to

FFS. The peaks near 3421 cm−1 and 2922 cm−1 were attributed to the presence of hydroxyl
groups and H+ of -COOH stretching [34]. The peak about 1628 cm−1 corresponded to the
stretching vibration of the amide in FFS [35]. The peak around 1404 cm−1 was associated
with O-H stretching [36]. The peak near 1128 cm−1 corresponded to sulfonic acid groups
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(SO3H) [37]. The peaks around 741 cm−1 and 592 cm−1 were related to the inorganic
phase, representing the bending mode of P-O groups, as well as hydroxyl stretching of
the adsorption water [38]. The XRD spectra of FFS and SO4

2−/SnO2-FFS were displayed
in Figure 4. The peak near 26.1◦ was associated with the crystal plane of amorphous
carbon [39], and the peak around 31.9◦ was assigned to hydroxyl apatite [40]. The sharp
characteristic peaks of crystalline SnO2 were reflected at 25.9◦, 33.8◦, and 51.9◦ through the
XRD analysis [41]. The observed XRD pattern was characteristic for HAP as reported in the
literature [42]. XRD patterns of SO4

2−/SnO2-FFS also indicated that SnO2 had been loaded.
By using NH3-TPD (temperature-programmed desorption of ammonia) (Figure 5), the acid
properties of SO4

2−/SnO2-FFS were measured. Through the analysis with desorption of
NH3 under the various temperatures, the weak-, medium-, and strong-acid sites on the
heterogeneous catalyst might be detected based on the temperature 100–200 ◦C, 200–400 ◦C,
and 400–800 ◦C, respectively. From the observation of Figure 5, it could be deduced that
SO4

2−/SnO2-FFS possessed a predominant type of acid site (weak acid site) only at 108 ◦C.
As displayed in XPS image (Figure 6), SO4

2−/SnO2-FFS had been accompanied by Sn, and
Sn had three valences (+4, +2, 0). The fraction of Sn4+3d5/2, Sn2+3d5/2, and Sn03d5/2 were
48.4%, 46.1%, and 5.5%, respectively.
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It has been reported that tin and sulfonic acid group have good catalytic activity for
FAL production, forming lignocellulose and xylose-rich hydrolysate [43]. By comparing
the surface structure, pore properties, and chemical groups, SO4

2−/SnO2-FFS preparation
process could slightly alter the surface structure of FFS. The preparation of SO4

2−/SnO2-
FFS involved the solvent immersion and sulfonation reaction by H2SO4, which would
result in the dissolution of FFS and the disordered structure. Sn4+ as the Lewis acid center
on the tin-based solid acid could promote the production of FAL [19].

2.2. Effects of SO4
2−/SnO2-FFS Load, Dehydration Temperature, and Reaction Duration on the

FAL Generation

To promote the generation of FAL, three key parameters including SO4
2−/SnO2-FFS

load (0–4.8 wt.%), dehydration temperature (160–190 ◦C), and reaction duration (10–50 min)
were tested on the dehydration of xylose. As displayed in Figure 7a, when the loading
of SO4

2−/SnO2-FFS increased from 0 to 3.6 wt.%, a significant enhancement in FAL yield
was observed, and a maximum (48.8% yield) was obtained in the existence of 3.6 wt.%
SO4

2−/SnO2-FFS at 160 ◦C in 15 min. With increasing the SO4
2−/SnO2-FFS content from

3.6 to 4.8 wt.%, the FAL yields did not change apparently. Significantly, the suitable load
of SO4

2−/SnO2-FFS was 3.6 wt.%. Sulfonated montmorillonite (2.0 wt.%) transformed
corncob to FAL (40% yield) under the temperature of 180 ◦C after 10 min [44]. Sulfonated
argil (3.6 wt.%) transformed D-xylose (20 g/L) to FAL (44% yield) after 20 min under the
temperature of 180 ◦C [45]. In this work, SO4

2−/SnO2-FFS (3.6 wt.%) catalyzed corncob
hydrolysates containing D-xylose under the temperature of 160 ◦C after 15 min to generate
FAL in the yield of 48.8% yield.

By comparing the yield of reaction at 160–190 ◦C for 10–50 min, the highest FAL
yield (58.8%) was achieved at 170 ◦C for 15 min, and the reaction temperature was higher
compared with the optimization measures in the previous step. When the dehydration tem-
perature was above 170 ◦C, the dehydration activity was weakened, achieving a declined
FAL yield. A higher performance temperature did not favor the formation of FAL [46],
and a low FAL yield could be obtained [47]. Although a higher dehydration temperature
might increase the dehydration activity for converting xylose into FAL, the unwanted
side-reaction potentially would happen [48]. Some unnecessary substances might deposit
in the catalytic centers on SO4

2−/SnO2-FFS, and significant influence the catalytic activity
and the FAL yield was thusly decreased [19]. When the reaction duration was more than
15 min, the generation of FAL was weakened (Figure 7b). SO4

2−/SnO2-FFS had good
catalytic activity to catalyze the synthesis of FAL from corncob-derived D-xylose within
15 min at 170 ◦C.

In order to analyze the impact of the SO4
2−/SnO2-FFS catalyst on FAL yield, xylose

aqueous solution was employed as the substrate in a DESMLA–water system, with the addi-
tion of ZnCl2, and the reaction was conducted at 170 ◦C for 15 min. The results are presented
in Table S1 (in Support Information), revealing that SnO2-FFS and SO4

2−/SnO2 could give
higher FAL yields compared to the control group without a catalyst. Furthermore, the FAL
was achieved in the highest yield (70.5%) through the catalysis of SO4

2−/SnO2-FFS. This
could be attributed to the synergistic effect of Lewis and Brønsted acidic sites in sulfonated
SnO2-FFS, resulting in more active acid sites [49,50]. In summary, the solid acid catalyst
SO4

2−/SnO2-FFS employed in this study exhibited enhanced catalytic activity in biomass
conversion to FAL.
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2.3. Effects of DES–Water Systems on the FAL Formation

DES acted as a reaction solvent in the catalytic transformation of lignocellulose and
its derived sugars [51,52]. Five kinds of carboxylic acids, including maleic acid (MLA)
(pKa = 1.9), malic acid (MA) (pKa = 3.46), lactic acid (LA) (pKa = 3.86), citric acid (CA)
(pKa = 3.13), and tartaric acid (TA) (pKa = 3.04), were selected to synthesize DESs (DESMLA,
DESMA, DESLA, DESCA, and DESTA) with ChCl (hydrogen bond acceptor, HBA). Using
3.6 wt.% SO4

2−/SnO2-FFS as a catalyst, xylose-rich hydrolysates were catalyzed to gen-
erate FAL in a DES–water (20:80, v/v) system. The dissociation constant (pKa) values of
carboxylic acids in DESs were close to those in water and also might be associated with the
FAL yield [53]. When xylose was dehydrated into FAL in acidic DESs, the pKa value of
carboxylic acid in DESs had a certain correlation with the yield of FAL. The results indicated
that a lower pKa value would give a higher the yield of FAL (Figure 8a). The carboxylic
acid with low pKa value in DES was beneficial to the FAL generation. As a hydrogen bond
donor (HBD), MLA has the lowest pKa value (1.9), which facilitated to the FAL formation
(FAL yield 63.0%). The dicarboxylic structure of MLA with stable positive anions might
form by hydrogen bonds due to the action of protonation. The cis-anion structure could
bind to ChCl to enhance the generation of a more stable liquid, which was necessary for
transforming D-xylose efficiently into FAL. Additionally, with the increase in the -OH
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group in the carbon chain, the pKa value of carboxylic acid in DESs would be lower and a
higher FAL yield would be obtained [54]. Using MLA (pKA = 1.9), CA (pKA = 3.13) and LA
(pKA = 3.86) as HBDs, the prepared ChCl-based DESs had apparently influenced the FAL
yields. In the water system, the yield of FAL was 58.8%, which was lower than the yield of
FAL in DESMLA–water (63.0% yield). The influence of the DESMLA–H2O volumetric ratio
(0:1−4:6, v/v) was examined on the FAL generation through the conversion of D-xylose-rich
corncob-hydrolysate into FAL with SO4

2−/SnO2-FFS (Figure 8b). In the DESMLA–water
system, the FAL yield exhibited a significant increase with the rising volumetric ratio of
DESMLA. When DES was absent from the reaction system, the FAL yield approached 60%.
However, with an increase in DESMLA volumetric ratio up to 10%, the yield of FAL ex-
ceeded 60%. The highest yield was achieved in DESMLA–water (1:9, v/v). Furthermore, as
the volumetric ratio of DESMLA was further increased, the FAL yield displayed a noticeable
decline. A high content of DESMLA (> 10%) would increase the viscosity of the reaction
medium, leading to the reduction in FAL yield. Accordingly, DESMLA–water (1:9, v/v) was
regarded as the most suitable reaction system.
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2−/SnO2-FFS, 170 ◦C, 15 min, 500 rpm) (a); effect of DESMLA–water system (0:1–7:3, v/v) on
the FAL yield (xylose-rich hydrolysate containing 20 g/L xylose, 3.6 wt.% SO4

2−/SnO2-FFS, 170 ◦C,
15 min, 500 rpm) (b).

2.4. Effect of Chloride Salts on the FAL Yield

Chloride salts are frequently employed to stabilize the transition state and interme-
diate structures in catalytic processes, thereby reducing undesirable side reactions and
significantly improving the yield of FAL [55]. Hence, different chloride salts (15 g/L) were
individually supplemented into the catalytic system, which would result in the promotion
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of the dispersion and yield of FAL. Distinct from the control group, SnCl4 and LiCl2 could
apparently hinder the production of FAL (Figure 9a). Most of the chloride salts (CaCl2,
MgCl2, NH4Cl, AlCl3, KCl, MnCl2, BaCl2, and NaCl) did not significantly promote the
catalytic activity. However, NiCl2 and ZnCl2 exhibited positive effects on the enhancement
of catalytic reactions. Particularly, the addition of ZnCl2 (15 g/L) facilitated the FAL for-
mation and resulted in the highest FAL yield of 66.6%. Moreover, different loads of ZnCl2
(0–30 g/L) were supplemented into DESMLA–water mediums (Figure 9b), and the catalytic
effect on the generation of FAL from D-xylose was tested. When the content of ZnCl2 was
20 g/L, the highest FAL yield reached 70.5% for 15 min in DESMLA–water (170 ◦C). In
the absence of ZnCl2, the FAL yield was only 63%. The addition of ZnCl2 enhanced the
selectivity of FAL production from xylan-rich biomass, reducing the occurrence of side
reactions and the formation of by-products [56]. As a result, this led to a further increase in
the overall FAL yield.
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ing 20 g/L xylose, 3.6 wt.% SO4

2−/SnO2-FFS, DESMLA–water system (1:9, v/v), 170 ◦C, 15 min,
500 rpm) (b).

To sum up, the yield of FAL was up to 70.5% from D-xylose-rich corncob-hydrolysate
(20 g/L) by 3.6 wt.% SO4

2−/SnO2-FFS and 20 g/L ZnCl2 in DESMLA–water (1:9, v/v) sys-
tem. Various solid acids prepared by different carriers were used to catalyze the synthesis
of FAL from biomass or xylose. Using Sn-adamellite or Sn-sepiolite as a catalyst, biomass
treated by an alkalic solution was catalyzed into FAL under acidic conditions, and the yields
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were below 60% [57]. Sn-zeolite, SO4
2−/SnO2-CS, and Sn-GP were also employed to trans-

form lignocellulose to FAL in the yield of 52.3%, 68.2%, and 47.3%, respectively [16,19,29].
Coconut shell-activated carbon-based biochar solid acid transformed sugarcane bagasse to
FAL with a yield of 49% [11]. Accordingly, SO4

2−/SnO2-FFS had high catalytic ability for
the catalysis of biomass to yield FAL (70.5% yield). Notably, this was the first report that
fish scale-based solid acids could be efficiently utilized to catalyze biomass into FAL with
high yield in DESMLA–water.

2.5. Recyclability of SO4
2−/SnO2-FFS and DESMLA–Water

The main benefit of using solid acid catalysts is that they can be easy to recycle and
reuse [58]. In order to test the stability of SO4

2−/SnO2-FFS used in D-xylose dehydration
to prepare FAL in DESMLA–water, a five-cycle experiment was carried out. Before each
use, the recovered catalyst was regenerated by sulfonation. As displayed in Figure 10, FAL
could reach 70.5% by using fresh SO4

2−/SnO2-FFS. Then, the yield of FAL dropped to
66.6% at 170 ◦C for 15 min in the DESMLA–water system at the first reuse of the catalyst,
and the FAL yield was weakened gradually to 54.2% after five cycles. The catalytic ability
of SO4

2−/SnO2-FFS decreased slightly but it still could achieve a yield of FAL up to 54%,
which had a favorable thermostability. Furthermore, the reduction in catalytic ability
might be related to the loss of the catalytic component SnO2. Sn-zeolite was reused seven
times, and the FAL yields were declined from 52% (1st batch) to 37% (seventh batch) [16].
After three cycles of Sn-MMT, the yield of FAL was weakened by 12% [59]. These results
displayed that SO4

2−/SnO2-FFS had good reusability and high thermostability. The good
reusability of SO4

2−/SnO2-FFS could effectively reduce operating costs. Furthermore,
DESMLA also could be reused. After being extracted and purified, DESMLA–water was
recycled for the next batch. It could be reused five times without a remarkable impact on
the productivity of FAL. In conclusion, well recyclability and stability of DESMLA–water
showed high potential for industrial production of FAL.
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(1:9, v/v), 20 g/L ZnCl2, 170 ◦C, 15 min, 500 rpm).

2.6. Mass Flow from Corncob to FAL

In Figure 11, the mass flow from CC to FAL in DESMLA–water system was summarized.
The 100 g of CC consisted of 41.5 g of glucan, 31.5 g of xylan, 22.5 g of lignin and 4.5 g of
others. 1 L of D-xylose hydrolysate (containing 20 g D-xylose) was obtained after acidolysis
of 100 g CC. After carbonization, sulfonation, and loading on FFS, SO4

2−/SnO2-FFS was
finally obtained. The FAL preparation was generally carried out in a 10 L stainless steel
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reactor which contained 20 g of D-xylose, 36 g of catalyst, 0.1 L DESMLA, 0.9 L water and
20 g ZnCl2, then the reaction was well-distributed and mixed at 170 ◦C for 15 min by
stirring at 500 rpm. In the DESMLA–water system, 20 g of D-xylose was converted into
9.0 g of FAL. The yield of FAL reached up to 70.5%. This result of mass balance confirmed
that CC could be utilized to produce FAL effectively via SO4

2−/SnO2-FFS. In the fish
processing industry, 1 million tons of fish scale are produced each year [60]. Fish scale is
an economic, abundant, and sustainable bioresource. In this study, the carbonized fish
scale was utilized as a carrier to synthesize biochar-based heterogeneous SO4

2−/SnO2-
FFS catalyst for producing FAL via the dehydration of D-xylose in a sustainable reaction
system (DESMLA–water). The waste FFSs were prepared into biochar-based solid acid and
catalyzed to produce FAL, which realized the efficient utilization of FFSs. A core-shell
sulfonated tin-loaded diatomite catalyst could be utilized to prepare FAL from xylose
with a yield of 66% [61]. SO4

2−/SnO2-FFS, which was produced by utilizing carbonized
FFS as a carrier, transformed xylose-rich hydrolysate to FAL with a yield of 70.5% at
170 ◦C for 15 min in DESMLA–water. Apparently, the abundant and renewable fish scale
could be utilized to prepare solid acid for the catalytic synthesis of FAL from biomass
hydrolysates efficiently.
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2.7. Proposed Mechanism for Synergistic Catalysis of D-Xylose-Rich Hydrolysate into FAL in
DESMLA–Water

In this study, the biochar catalyst SO4
2−/SnO2-FFS is a biomass-based carbon material

with a pore size of 4.5 nm (Table 1), high surface area, and contained uniform load content
(Figure 1). In the SO4

2−/SnO2-FFS catalyst, the induction effect of S=O might cause the
electron cloud on the Sn-O to deviate wildly, which would strengthen the L acid site [62].
The hydroxyl group (-OH) of HAP in FFSs might be replaced by fluoride, chloride, and
carbonate ions to form fluoroapatite or chloroapatite. The Ca2+ can be replaced with
various metal ions through an ion exchange reaction to generate apatite corresponding
to metal ions. Sn ions had been successfully loaded into SO4

2−/SnO2-FFS, which might
have a positive effect on the catalytic efficiency of FAL [63]. Furthermore, the L acid site
on SO4

2−/SnO2-FFS had a strong attraction to the electrons of water molecules, which
could dissociate the L acid site and then form the B acid site. In the dehydration reaction,
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DESMLA could be utilized as both catalyst and solvent with acidic and ionic properties to
transform biomass-derived sugars to FAL.

In an aqueous system, it was speculated that SO4
2−/SnO2-FFS and DESMLA had a

synergistic catalytic action in the production of FAL (Figure 12). According to the HPLC
analysis results, the reaction solution contained D-xylose, glucose, cellobiose, formic acid,
levulinic acid, and FAL (data not shown). Sn ions and acid ions were uniformly supported
on the catalyst carrier. The proposed catalytic mechanism was as follows: the loop-opening
reaction of D-xylose from D-xylose hydrolysate of CC produced chain structure, and the L
acid site of SO4

2−/SnO2-FFS cooperated with acyclic D-xylose to generate more reactive
isomer through hydrogen transfer reaction. FAL was further synthesized by loop-closing
and dehydration by B acid. The pore size of the FFS carbon base was suitable for contact
between D-xylose and the active center, which might promote the transformation of D-
xylose. Moreover, the HAP component in FFS was prone to ion exchange reactions with tin
ions, and tin ions had a certain attraction to sulfate ions and chloride ions, which improved
the acidity. ChCl might improve the proton availability and activity in the system under
acidic conditions. Additionally, Cl− from ChCl could be beneficial to the isomerization
of the D-xylose molecule and strengthen its attraction on the SO4

2− site, which might
increase the reaction rate [64]. It was worth noting that chloride salt might accelerate
the transformation of D-xylose from lignocellulose to FAL [65]. Hence, DESMLA played
a synergistic role in FAL production when SO4

2−/SnO2-FFS was used as a chemocata-
lyst. In addition, under this system, glucose from hydrolysate might be isomerized and
dehydrated to form HMF, which could be also partially decomposed into formic acid and
levulinic acid.
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Clean production of biobased chemicals from renewable lignocellulose is essential
in a sustainable biorefinery [66]. Lignocellulose, with its wide range of sources, low cost,
and sustainable production, can be derived from various biomass materials (e.g., straw,
bagasse, wheat husk, etc.) for the production of FAL [67]. In China, about 900 million tons
of crop waste are produced each year, 11.1% of which is CC [65]. In addition, FFS as a
waste bioresource has good biocompatibility and degradability, and excellent mechanical
properties due to their highly ordered layered microstructure and composition similar
to human hard tissue, which has been utilized in tissue engineering, biological filling,
sewage processing, and flexible electronics [30]. In this study, FFS was first used as a carrier
to prepare biochar chemocatalyst (SO4

2−/SnO2-FFS) for FAL production. The yield of
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FAL (70.5%) was obtained by catalyzing the CC-hydrolysate containing xylose to FAL in
DESMLA–water system using SO4

2−/SnO2-FFS as catalyst, verifying that available, cheap,
and renewable FFS could be used as a bio-based carrier for the synthesis of highly catalytic
activity of heterogeneous biochar catalysts to transform biomass-derived D-xylose into FAL
in a high yield. Compared with the conditions or yields of FAL production from biomass
or xylose catalyzed by other solid acids, the yield of FAL by SO4

2−/SnO2-FFS was higher,
the reaction time was shorter, and the reaction solution could be reused, which would not
only save energy, but also be more friendly to the environment. Apparently, the prepared
biochar catalyst catalyzed biomass for FAL production has full application prospects.

3. Materials and Methods
3.1. Reagents and Materials

Fresh fish scale of carp was collected from a fishery in Weifang (Weifang, China).
Choline chloride (ChCl), malic acid (MA), maleic acid (MLA), lactic acid (LA), Citric acid
(CA), tartaric acid (TA), MgCl2, NaCl, KCl, FeCl3, AlCl3, CrCl3, CuCl2, CoCl2, NH4Cl,
ZnCl2, furfural (FAL), SnCl4·5H2O, ammonia, ethanol, sulfuric acid (H2SO4), and other
chemicals were bought from other commercial sources (Shanghai, China).

3.2. Synthesis of DESs

DES was prepared according to the procedure as previously reported [68]. The seven
DESs used in this study were DESLA, DESMA DESCA, DESMLA, and DESTA. These DESs
were prepared by mixing ChCl and a corresponding organic acid at 80 ◦C. The ratio of
ChCl to organic acid was 1:1 (mol/mol).

3.3. Preparation of Xylose-Rich Hydrolysate from Corncob and SO4
2−/SnO2-FFS Catalyst

Xylose-rich hydrolysate from corncob was produced by hydrothermal reaction. Corn-
cob was hydrolyzed with DESMLA at 140 ◦C for 40 min. Then, xylose-rich hydrolysate was
obtained by filtration. By concentration, the xylose in hydrolysate reached 20 g/L.

FFS was thoroughly washed with tap water, followed by boiling in deionized water.
Subsequently, the boiled mixture was filtered to remove gelatin, proteins, and other impuri-
ties. The obtained wet fish scale was then dried in a 60 ◦C oven for 16 h. The desiccated
solid was finely ground using a milling machine to achieve particle sizes between 60 and
80 mesh. Finally, the powdered fish scale was placed in a muffle furnace and subjected to a
temperature of 300 ◦C for 1 h, resulting in the formation of biochar. The obtained powders
were immersed in 4 M H2SO4 at 60 ◦C for 4 h for sulfonation. The sulfonated solid powders
were obtained by filtration and rinsed continuously with deionized water until neutral.
The acid-treated FFS (AT-FFS) was blended with SnCl4·5H2O and anhydrous ethanol, and
then ammonia (25.0 wt.%) was slowly dripped into this mixture to regulate the pH to 6.0.
This generated colloidal liquor was dried in an oven (70 ◦C) for 12 h and then oven dried at
90 ◦C for another 12 h. The collected powders were steeped in 500 mM H2SO4 for 180 min.
The acidic solid powders were separated by filtration. The powders ware dried for 12 h in
an oven (80 ◦C), and then calcined in a muffle furnace (500 ◦C) for 4 h. Finally, the formed
SO4

2−/SnO2-FFS was collected for further use.

3.4. Transformation of Xylose-Rich Hydrolysate into FAL by SO4
2−/SnO2-FFS in DES–Water System

In 40 mL DES-water system, xylose-rich hydrolysate (20 g/L) was mixed with SO4
2−/

SnO2-FFS in a 100 mL stainless-steel autoclave (TGYF-A-0.1L, Zhengzhou Huate Instrument
Equipment Co., Ltd., Zhengzhou, China) by stirring (500 rpm). After the xylose-rich
corncob-hydrolysate was catalyzed with SO4

2−/SnO2-FFS (0–4.8 wt.%) at 160–180 ◦C for
10–50 min in DES−water (0:1–4:6, v/v) containing chlorite salts (0–30.0 g/L), the autoclave
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was quenched in an ice-water bath to room temperature. FAL yields were calculated as
below equation:

FAL yield (%) =
FAL produced (g)

D-Xylose (g)
× 150

96
×100

3.5. Reuse of SO4
2−/SnO2-FFS and DES

To evaluate the activity and stability of solid acid, SO4
2−/SnO2-FFS was recovered and

repeatedly reused five times to catalyze D-xylose into FAL. After each use, SO4
2−/SnO2-

FFS was extracted by suction flask, washed thoroughly with deionized water, and dried
in an oven (60 ◦C). Then it was calcined in the muffle furnace to remove product residues
and further sulfonation. The recovered SO4

2−/SnO2-FFS was used in the next batch of
reaction to measure its effect. Each batch was performed for 15 min in an autoclave (170 ◦C)
containing 40 mL of DES−water (10:90, v/v), 20.0 g/L of D-xylose, and 20.0 g/L of ZnCl2.
Subsequently, the reaction media were extracted with ethyl acetate three times, and the
reaction liquid was reused five times.

3.6. Analytical Methods

Through FTIR, XRD, and BET and XPS [69], the diversity between SO4
2−/SnO2-FFS

and FFS was discovered. FAL was measured with HPLC as reported in reference [45]. NH3-
TPD was carried out by using a ChemiSorb 2720 chemisorption system (Micromeritics,
Norcross, GA, USA) to measure the acid strength of SO4

2−/SnO2-FFS. SO4
2−/SnO2-FFS

(0.10 g) was treated for 120 min with helium (300 ◦C). After the NH3 adsorption for 60 min
at 50 ◦C, SO4

2−/SnO2-FFS was pretreated with helium to remove excessive NH3 until a
stable baseline was obtained. SO4

2−/SnO2-FFS was heated to 850 ◦C for NH3 desorption
at a flow rate of 30–50 mL per minute and a heating rate of 10 ◦C per minute.

4. Conclusions

In this work, the abundant biobased FFS was used as a carrier to prepare the biochar
SO4

2−/SnO2-FFS catalyst. After the acid hydrolysis of corncob, xylose-rich corncob-
hydrolysate was used as a substrate to produce FAL through the catalysis with biochar
SO4

2−/SnO2-FFS catalyst. In DESMLA–water (DESMLA, 10 vol%), the FAL yield was ob-
tained at 70.5% by SO4

2−/SnO2-FFS (3.6 wt.%) with ZnCl2 (20.0 g/L) for 15 min under
the temperature of 170 ◦C. The potential catalytic mechanism for the production of FAL
from corncob catalyzed by SO4

2−/SnO2-FFS in DESMLA–water was proposed. An efficient
method for the synthesis of biofuran from lignocellulose was successfully developed by
using a biochar solid acid catalyst in a green reaction system.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13091277/s1. Table S1. The FAL production from xylose
catalyzed by FFS-based solid acids in DESMLA–water (1/9, v/v) system.
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Abbreviations

DES deep eutectic solvent
LB lignocellulosic biomass
FFS fresh fish scale
L Lewis
B Brönsted
ChCl choline chloride
CC corncob
HAP hydroxyapatite
MA malic acid
MLA maleic acid
LA lactic acid
CA citric acid
TA tartaric acid
HBD hydrogen bond donor
XPS X-ray photoelectron spectroscopy
HPLC high performance liquid chromatography
FAL furfural
FOL furfuryl alcohol
XRD X-ray diffraction
BET Brunner–Emmet–Teller measurements
TG thermogravimetric analysis
SEM scanning electron microscopy
FT-IR Fourier transform infrared spectroscopy
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