Cobalt Molybdenum Telluride as an Efficient Trifunctional Electrocatalyst for Seawater Splitting
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural and Morphological Characterization
2.2. Electrocatalytic Performance of CoMoTe in OER
2.3. Electrocatalytic Performance of CoMoTe for HER
2.4. Electrocatalytic Performance for ORR
3. Experimental
3.1. Materials
3.2. Synthesis of Cobalt Molybdenum Telluride
3.3. Materials Characterization
3.4. Electrochemical Characterization
3.5. Gas-Phase Product Identification from OER
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, X.; Sun, H.; Jiang, S.P.; Shao, Z. Modulating metal–organic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. SusMat 2021, 1, 460–481. [Google Scholar] [CrossRef]
- Hu, L.; Tan, X.; Zhang, K. Electrolysis of Direct Seawater: Challenges, Strategies, and Future Prospects. Chin. J. Chem. 2023, 41, 3484–3492. [Google Scholar] [CrossRef]
- Wang, H.-F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448. [Google Scholar] [CrossRef]
- Tahir, M.; Pan, L.; Idrees, F.; Zhang, X.; Wang, L.; Zou, J.-J.; Wang, Z.L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136–157. [Google Scholar] [CrossRef]
- Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct Electrolytic Splitting of Seawater: Opportunities and Challenges. ACS Energy Lett. 2019, 4, 933–942. [Google Scholar] [CrossRef]
- Gebremariam, G.K.; Jovanović, A.; Pašti, I.A. The Effect of Electrolytes on the Kinetics of the Hydrogen Evolution Reaction. Hydrogen 2023, 4, 776–806. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, Y.; Tian, G.; Yang, X.; Dong, Y.; Zhang, F.; Yang, X. Enhancing Resistance to Chloride Corrosion by Controlling the Morphologies of PtNi Electrocatalysts for Alkaline Seawater Hydrogen Evolution. Chemistry 2022, 29, e202202811. [Google Scholar] [CrossRef]
- Becker, H.; Murawski, J.; Shinde, D.V.; Stephens, I.E.L.; Hinds, G.; Smith, G. Impact of impurities on water electrolysis: A review. Sustain. Energy Fuels 2023, 7, 1565–1603. [Google Scholar] [CrossRef]
- Kafle, A.; Gupta, D.; Mehta, S.; Garg, K.; Nagaiah, T.C. Recent advances in energy-efficient chlorine production via HCl electrolysis. J. Mater. Chem. A 2024, 12, 5626–5641. [Google Scholar] [CrossRef]
- Maljusch, A.; Nagaiah, T.C.; Schwamborn, S.; Bron, M.; Schuhmann, W. Pt-Ag catalysts as cathode material for oxygen-depolarized electrodes in hydrochloric acid electrolysis. Anal. Chem. 2010, 82, 1890–1896. [Google Scholar] [CrossRef]
- Garg, K.; Kumar, M.; Kaur, S.; Nagaiah, T.C. Electrochemical Production of Hydrogen from Hydrogen Sulfide Using Cobalt Cadmium Sulfide. ACS Appl. Mater. Interfaces 2023, 15, 27845–27852. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jia, Q.; Ghoshal, S.; Liang, W.; Mukerjee, S. Highly Active and Stable Fe–N–C Catalyst for Oxygen Depolarized Cathode Applications. Langmuir 2017, 33, 9246–9253. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-Y.; Weng, C.-C.; Ren, J.-T.; Yuan, Z.-Y. An overview and recent advances in electrocatalysts for direct seawater splitting. Front. Chem. Sci. Eng. 2021, 15, 1408–1426. [Google Scholar] [CrossRef]
- Zhang, W.; Cui, L.; Liu, J. Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions. J. Alloys Compd. 2020, 821, 153542. [Google Scholar] [CrossRef]
- Liu, J.; Duan, S.; Shi, H.; Wang, T.; Yang, X.; Huang, Y.; Wu, G.; Li, Q. Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Angew. Chem. 2022, 61, e202210753. [Google Scholar] [CrossRef]
- Li, C.; Baek, J.-B. Recent Advances in Noble Metal (Pt, Ru, and Ir)-Based Electrocatalysts for Efficient Hydrogen Evolution Reaction. ACS Omega 2019, 5, 31–40. [Google Scholar] [CrossRef]
- Udayakumar, A.; Dhandapani, P.; Ramasamy, S.; Yan, C.; Angaiah, S. Recent developments in noble metal–based hybrid electrocatalysts for overall water splitting. Ionics 2023, 30, 61–84. [Google Scholar] [CrossRef]
- Pan, S.; Ma, Z.; Yang, W.; Dongyang, B.; Yang, H.; Lai, S.; Dong, F.; Yang, X.; Lin, Z. Magnesium incorporation activates perovskite cobaltites toward efficient and stable electrocatalytic oxygen evolution. Mater. Rep. Energy 2023, 3, 100212. [Google Scholar] [CrossRef]
- Qian, Y.; Khan, I.A.; Zhao, D. Electrocatalysts Derived from Metal-Organic Frameworks for Oxygen Reduction and Evolution Reactions in Aqueous Media. Small 2017, 13, 1701143. [Google Scholar] [CrossRef]
- Majhi, K.C.; Yadav, M. Transition Metal-Based Chalcogenides as Electrocatalysts for Overall Water Splitting. ACS Eng. Au 2023, 3, 278–284. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, L.; Shi, B.; Ryan, K.M.; Wang, J. Highly efficient oxygen evolution reaction enabled by phosphorus doping of the FE electronic structure in iron–nickel selenide nanosheets. Adv. Sci. 2021, 8, 2101775. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.-H.; Huang, Y.; Song, K.; Li, T.-T.; Cui, J.-Y.; Meng, C.; Zhang, H.; Wang, J.-J. Ir Single Atoms Boost Metal–Oxygen Covalency on Selenide-Derived NiOOH for Direct Intramolecular Oxygen Coupling. J. Am. Chem. Soc. 2024, 146, 6846–6855. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chi, J.; Mao, H.; Wang, L. Principles of Designing Electrocatalyst to Boost Reactivity for Seawater Splitting. Adv. Energy Mater. 2023, 13, 2301438. [Google Scholar] [CrossRef]
- Wu, Z.; Lu, X.F.; Zang, S.; Lou, X.W. Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Highly Efficient Oxygen Evolution Reaction Enabled byPhosphorus Doping of theReaction. Adv. Funct. Mater. 2020, 30, 1910274. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Z. Transition metal compounds: From properties, applications to wettability regulation. Adv. Colloid Interface Sci. 2023, 321, 103027. [Google Scholar] [CrossRef]
- Lei, Y.; Miao, N.; Zhou, J.; Hassan, Q.U.; Wang, J. Novel magnetic properties of CoTe nanorods and diversified CoTe2 nanostructures obtained at different NaOH concentrations. Sci. Technol. Adv. Mater. 2017, 18, 325–333. [Google Scholar] [CrossRef]
- Wiberg, H.; Johann, K.; Arenz, M. Investigation of the Oxygen Reduction Activity on Silver—A Rotating Disc Electrode Study. Fuel Cells 2010, 10, 575–581. [Google Scholar] [CrossRef]
- Anantharaj, S.; Noda, S. How properly are we interpreting the Tafel lines in energy conversion electrocatalysis? Mater. Today Energy 2022, 29, 101123. [Google Scholar] [CrossRef]
- Razaq, R.; Sun, D.; Xin, Y.; Li, Q.; Huang, T.; Zhang, Z.; Huang, Y. Nanoparticle Assembled Mesoporous MoO2 Microrods Derived from Metal Organic Framework and Wrapped with Graphene as the Sulfur Host for Long-Life Lithium-Sulfur Batteries. Adv. Mater. Interfaces 2018, 6, 1801636. [Google Scholar] [CrossRef]
- Saxena, A.; Singh, H.; Nath, M. Cobalt telluride electrocatalyst for selective electroreduction of CO2 to value-added chemicals. Mater. Renew. Sustain. Energy 2022, 11, 115–129. [Google Scholar] [CrossRef]
- Manikandan, M.; Subramani, K.; Sathish, M.; Dhanuskodi, S. Hydrothermal synthesis of cobalt telluride nanorods for a high-performance hybrid asymmetric supercapacitor. RSC Adv. 2020, 10, 13632–13641. [Google Scholar] [CrossRef] [PubMed]
- De Silva, U.; Masud, J.; Zhang, N.; Hong, Y.; Liyanage, W.P.R.; Zaeem, M.A.; Nath, M. Nickel telluride as a bifunctional electrocatalyst for efficient water splitting in alkaline medium. J. Mater. Chem. A 2018, 6, 7608–7622. [Google Scholar] [CrossRef]
- Gao, X.; Wang, Z.; Ashok, J.; Kawi, S. A comprehensive review of anti-coking, anti-poisoning and anti-sintering catalysts for biomass tar reforming reaction. Chem. Eng. Science. X 2020, 7, 100065. [Google Scholar] [CrossRef]
- Khan, M.A.; Zhao, H.; Zou, W.; Chen, Z.; Cao, W.; Fang, J.; Xu, J.; Zhang, L.; Zhang, J. Recent Progresses in Electrocatalysts for Water Electrolysis. Electrochem. Energy Rev. 2018, 1, 483–530. [Google Scholar] [CrossRef]
- Sun, F.; Qin, J.; Wang, Z.; Yu, M.; Wu, X.; Sun, X.; Qiu, J. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 2021, 12, 4182. [Google Scholar] [CrossRef]
- Mefford, J.T.; Zhao, Z.; Bajdich, M.; Chueh, W.C. Interpreting Tafel behavior of consecutive electrochemical reactions through combined thermodynamic and steady state microkinetic approaches. Energy Environ. Sci. 2020, 13, 622–634. [Google Scholar] [CrossRef]
- Kang, X.; Yang, F.; Zhang, Z.; Liu, H.; Ge, S.; Hu, S.; Li, S.; Luo, Y.; Yu, Q.; Liu, Z.; et al. A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer. Nat. Commun. 2023, 14, 3607. [Google Scholar] [CrossRef]
- Liu, G.; Xu, Y.; Yang, T.; Jiang, L. Recent advances in electrocatalysts for seawater splitting. Nano Mater. Sci. 2023, 5, 101–116. [Google Scholar] [CrossRef]
- Zhuang, L.; Li, S.; Li, J.; Wang, K.; Guan, Z.; Liang, C.; Xu, Z. Recent Advances on Hydrogen Evolution and Oxygen Evolution Catalysts for Direct Seawater Splitting. Coatings 2022, 12, 659. [Google Scholar] [CrossRef]
- Jin, H.; Wang, X.; Tang, C.; Vasileff, A.; Li, L.; Slattery, A.; Qiao, S. Stable and Highly Efficient Hydrogen Evolution from Seawater Enabled by an Unsaturated Nickel Surface Nitride. Adv. Mater. 2021, 33, 2007508. [Google Scholar] [CrossRef]
- Marimuthu, T.; Yuvakkumar, R.; Ravi, G.; Xu, X.; Xu, G.; Velauthapillai, D. Hydrothermal construction of flower-like CuS microsphere electrocatalysts for hydrogen evolution reactions in alkaline fresh water, alkaline seawater, and seawater. Int. J. Energy Res. 2022, 46, 19723–19736. [Google Scholar] [CrossRef]
- Nath, M.; De Silva, U.; Singh, H.; Perkins, M.; Wipula, P.R.L.; Umapathi, S.; Chakravarty, S.; Masud, J. Cobalt Telluride: A Highly Efficient Trifunctional Electrocatalyst for Water Splitting and Oxygen Reduction. ACS Appl. Energy Mater. 2021, 4, 8158–8174. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, Y.; Xiao, F.W.H.L.; Lyu, Y.; Liao, C.; Shao, M. Approaching a high-rate and sustainable production of hydrogen peroxide: Oxygen reduction on Co–N–C single-atom electrocatalysts in simulated seawater. Energy Environ. Sci. 2021, 14, 5444–5456. [Google Scholar] [CrossRef]
- Zhao, Z.; Shen, P.K. Mechanism of Oxygen Reduction Reaction. In Electrochemical Oxygen Reduction; Shen, P.K., Ed.; Springer: Singapore, 2021. [Google Scholar]
- Zhan, Y.; Ding, Z.-B.; He, F.; Lv, X.; Wu, W.-F.; Lei, B.; Liu, Y.; Yan, X. Active site switching of Fe-N-C as a chloride-poisoning resistant catalyst for efficient oxygen reduction in seawater-based electrolyte. Chem. Eng. J. 2022, 443, 136456. [Google Scholar] [CrossRef]
- Tylus, U.; Jia, Q.; Hafiz, H.; Allen, R.J.; Barbiellini, B.; Bansil, A.; Mukerjee, S. Engendering anion immunity in oxygen consuming cathodes based on Fe-N-x electrocatalysts: Spectroscopic and electrochemical advanced characterizations. Appl. Catal. B Environ. 2016, 198, 318–324. [Google Scholar] [CrossRef]
- Mukherjee, M.; Samanta, M.; Banerjee, P.; Chattopadhyay, K.K.; Das, G.P. Endorsement of Manganese Phthalocyanine microstructures as electrocatalyst in ORR: Experimental and computational study. Electrochim. Acta 2019, 296, 528–534. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786. [Google Scholar] [CrossRef]
- Yin, M.; Miao, H.; Hu, R.; Sun, Z.; Li, H. Manganese dioxides for oxygen electrocatalysis in energy conversion and storage systems over full pH range. J. Power Sources 2021, 494, 229779. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Qu, Y.; Yuan, T.; Wang, W.; Wu, Y.; Li, Y. Review of Metal Catalysts for Oxygen Reduction Reaction: From Nanoscale Engineering to Atomic Design. Chem 2019, 5, 1486–1511. [Google Scholar] [CrossRef]
- Nath, M.; Singh, H.; Saxena, A. Progress of transition metal chalcogenides as efficient electrocatalysts for energy conversion. Curr. Opin. Electrochem. 2022, 34, 100993. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Liu, B.; Yang, M.; Li, H.; Chen, H. Hypercrosslinked polymer-mediated fabrication of binary metal phosphide decorated spherical carbon as an efficient and durable bifunctional electrocatalyst for rechargeable Zn–air batteries. Nanoscale 2022, 14, 12431–12436. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, M.; Cullen, D.A.; Hwang, S.; Wang, M.; Li, B.; Liu, K.; Karakalos, S.; Lucero, M.; Zhang, H.; et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945. [Google Scholar] [CrossRef]
- Abdullahi, I.M.; Nath, M. Molecular Cluster Complex of High-Valence Chromium Selenide Carbonyl as Effective Electrocatalyst for Water Oxidation. Catalysts 2023, 13, 721. [Google Scholar] [CrossRef]
- Wang, L.; Lee, C.-Y.; Schmuki, P. Solar water splitting: Preserving the beneficial small feature size in porous α-Fe2O3photoelectrodes during annealing. J. Mater. Chem. A 2013, 1, 212–215. [Google Scholar] [CrossRef]
Elements | As Prepared CMT At% | Used CMT At% |
---|---|---|
Mo | 19.01 | 19.02 |
Co | 19.33 | 20.76 |
Te | 55.93 | 52.10 |
O | 5.73 | 8.13 |
Electrolyte Concentration | Onset vs. RHE * (V) | No. of Transferred Electrons | E1/2 * (V) | Diffusion Limited Current Density * (mA cm−2) |
---|---|---|---|---|
1 M KOH | 0.84 | 3.75 | 0.75 | 3.08 |
1 M KOH+ 0.1 M NaCl | 0.88 | 3.46 | 0.71 | 2.62 |
1 M KOH+ 0.3 M NaCl | 0.74 | 3.31 | 0.65 | 1.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kar, R.; Nouralishahi, A.; Singh, H.; Nath, M. Cobalt Molybdenum Telluride as an Efficient Trifunctional Electrocatalyst for Seawater Splitting. Catalysts 2024, 14, 684. https://doi.org/10.3390/catal14100684
Kar R, Nouralishahi A, Singh H, Nath M. Cobalt Molybdenum Telluride as an Efficient Trifunctional Electrocatalyst for Seawater Splitting. Catalysts. 2024; 14(10):684. https://doi.org/10.3390/catal14100684
Chicago/Turabian StyleKar, Rajarshi, Amideddin Nouralishahi, Harish Singh, and Manashi Nath. 2024. "Cobalt Molybdenum Telluride as an Efficient Trifunctional Electrocatalyst for Seawater Splitting" Catalysts 14, no. 10: 684. https://doi.org/10.3390/catal14100684
APA StyleKar, R., Nouralishahi, A., Singh, H., & Nath, M. (2024). Cobalt Molybdenum Telluride as an Efficient Trifunctional Electrocatalyst for Seawater Splitting. Catalysts, 14(10), 684. https://doi.org/10.3390/catal14100684