Reduction of Trinitrobenzene to Amines with Molecular Hydrogen over Chrysocolla-like Catalysts
Abstract
:1. Introduction
2. Results
2.1. Effect of Reaction Temperature, Initial Hydrogen Pressure, and Reaction Time
2.2. Effect of Thermal Treatment
2.3. Effect of Cu Loading in the Catalysts
2.4. Stability
2.5. Characterization of the Catalysts
3. Materials and Methods
3.1. Materials and Synthesis
3.2. Characterization of Materials
3.3. Catalytic Activity Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Busca, G.; Spennati, E.; Riani, P.; Garbarino, G. Mechanistic and Compositional Aspects of Industrial Catalysts for Selective CO2 Hydrogenation Processes. Catalysts 2024, 14, 95. [Google Scholar] [CrossRef]
- Bian, Z.; Zhong, W.; Yu, Y.; Jiang, B.; Kawi, S. Cu/SiO2 derived from copper phyllosilicate for low-temperature water-gas shift reaction: Role of Cu+ sites. Int. J. Hydrogen Energy 2020, 45, 27078–27088. [Google Scholar] [CrossRef]
- Mao, M.; Liu, L.; Liu, Z. Recent Insights into Cu-Based Catalytic Sites for the Direct Conversion of Methane to Methanol. Molecules 2022, 27, 7146. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.; Xiao, S.; Lai, Q.; Wang, D.; Huang, Y.; Feng, G.; Zhang, R.; Wang, T. Advances in Enhancing the Stability of Cu-Based Catalysts for Methanol Reforming. Catalysts 2022, 12, 747. [Google Scholar] [CrossRef]
- Zhang, H.; Tan, H.-R.; Jaenicke, S.; Chuah, G.-K. Highly efficient and robust Cu catalyst for non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen. J. Catal. 2020, 389, 19–28. [Google Scholar] [CrossRef]
- Averin, A.D.; Panchenko, S.P.; Murashkina, A.V.; Fomenko, V.I.; Kuliukhina, D.S.; Malysheva, A.S.; Yakushev, A.A.; Abel, A.S.; Beletskaya, I.P. Recent Achievements in the Copper-Catalyzed Arylation of Adamantane-Containing Amines, Di- and Polyamines. Catalysts 2023, 13, 831. [Google Scholar] [CrossRef]
- Zhu, Y.; Kong, X.; Peng, B.; Li, L.; Fang, Z.; Zhu, Y. Efficient Cu catalyst for 5-hydroxymethylfurfural hydrogenolysis by forming Cu–O–Si bonds. Catal. Sci. Technol. 2020, 10, 7323–7330. [Google Scholar] [CrossRef]
- Simakova, I.; Demidova, Y.; Simonov, M.; Prikhod’ko, S.; Niphadkar, P.; Bokade, V.; Dhepe, P.; Murzin, D.Y. Heterogeneously Catalyzed γ-Valerolactone Hydrogenation into 1,4-Pentanediol in Milder Reaction Conditions. Reactions 2020, 1, 54–71. [Google Scholar] [CrossRef]
- To, D.-T.; Lin, Y.-C. Copper Phyllosilicates-Derived Catalysts in the Production of Alcohols from Hydrogenation of Carboxylates, Carboxylic Acids, Carbonates, Formyls, and CO2: A Review. Catalysts 2021, 11, 255. [Google Scholar] [CrossRef]
- Redina, E.; Tkachenko, O.; Salmi, T. Recent Advances in C5 and C6 Sugar Alcohol Synthesis by Hydrogenation of Monosaccharides and Cellulose Hydrolytic Hydrogenation over Non-Noble Metal Catalysts. Molecules 2022, 27, 1353. [Google Scholar] [CrossRef]
- Wu, J.; Liu, G.; Liu, Q.; Zhang, Y.; Ding, F.; Wang, K. A Cu-SiO2 Catalyst for Highly Efficient Hydrogenation of Methyl Formate to Methanol. Catalysts 2023, 13, 1038. [Google Scholar] [CrossRef]
- Boddula, R.; Shanmugam, P.; Srivatsava, R.K.; Tabassum, N.; Pothu, R.; Naik, R.; Saran, A.; Viswanadham, B.; Radwan, A.B.; Al-Qahtani, N. Catalytic Valorisation of Biomass-Derived Levulinic Acid to Biofuel Additive—Valerolactone: Influence of Copper Loading on Silica Support. Reactions 2023, 4, 465–477. [Google Scholar] [CrossRef]
- Ren, X.; Zhou, M.; Yu, W.; Zheng, M.; An, Q. Catalytic Hydrogenation of γ-Butyrolactone to Butanediol over a High- Performance Cu-SiO2 Catalyst. Catalysts 2024, 14, 297. [Google Scholar] [CrossRef]
- Guo, K.; Wang, W.; Ye, Y.; Chen, L.; Wang, L.; Wang, J.; Zhu, J. Dehydrogenation of Diethylene Glycol to Para- Dioxanone over Cu/SiO2 Catalyst: Effect of Structural and Surface Properties. Catalysts 2024, 14, 20. [Google Scholar] [CrossRef]
- García-Sancho, C.; Mérida-Robles, J.M.; Cecilia-Buenestado, J.A.; Moreno-Tost, R.; Maireles-Torres, P.J. The Role of Copper in the Hydrogenation of Furfural and Levulinic Acid. Int. J. Mol. Sci. 2023, 24, 2443. [Google Scholar] [CrossRef]
- Cavuoto, D.; Ardemani, L.; Ravasio, N.; Zaccheria, F.; Scotti, N. Some Insights into the Use of Heterogeneous Copper Catalysts in the Hydroprocessing of Levulinic Acid. Catalysts 2023, 13, 697. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, J.; Liu, H.; Jiang, Z.; Liu, X.; Wang, W.; Peng, L.; Hu, C. Toward Value-Added Chemicals from Carbohydrates via C–C Bond Cleavage and Coupling Transformations. ACS Catal. 2024, 14, 5167–5197. [Google Scholar] [CrossRef]
- Formenti, D.; Ferretti, F.; Scharnag, F.K.; Beller, M. Reduction of nitro compounds using 3d-non-noble metal catalysts. Chem. Rev. 2019, 119, 2611. [Google Scholar] [CrossRef]
- Song, J.; Huang, Z.-F.; Pan, L.; Li, K.; Zhang, X.; Wang, L.; Zou, J.-J. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Appl. Catal. B Environ. 2018, 227, 386–408. [Google Scholar] [CrossRef]
- Hu, Z.-N.; Liang, J.; Ding, K.; Ai, Y.; Liang, Q.; Sun, H.-B. Insight into the selectivity of nano-catalytic nitroarenes reduction over other active groups by exploring hydrogen sources and metal components. Appl. Catal. A Gen. 2021, 626, 118339. [Google Scholar] [CrossRef]
- Kadam, H.K.; Tilve, S.G. Advancement in methodologies for reduction of Nitroarenes. RSC Adv. 2015, 5, 83391. [Google Scholar] [CrossRef]
- Zeynizadeh, B.; Aminzadeh, F.M.; Mousavi, H. Chemoselective reduction of nitroarenes, N-acetylation of arylamines, and one-pot reductive acetylation of nitroarenes using carbon-supported palladium catalytic system in water. Res. Chem. Intermed. 2021, 47, 3289–3312. [Google Scholar] [CrossRef]
- Mironenko, R.M.; Belskaya, O.B.; Stepanova, L.N.; Gulyaeva, T.I.; Trenikhin, M.V.; Likholobov, V.A. Palladium Supported on Carbon Nanoglobules as a Promising Catalyst for Selective Hydrogenation of Nitroarenes. Catal. Lett. 2020, 150, 888–900. [Google Scholar] [CrossRef]
- Bilal, M.; Bagheri, A.R.; Bhatt, P.; Chen, S. Environmental occurrence, toxicity concerns, and remediation of recalcitrant nitroaromatic compounds. J. Environ. Manag. 2021, 291, 112685. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, J.; Tarale, P.; Sivanesan, S.; Bafana, A. Environmental persistence, hazard, and mitigation challenges of nitroaromatic compounds. Environ. Sci. Pollut. Res. 2019, 26, 28650–28667. [Google Scholar] [CrossRef] [PubMed]
- Niakan, M.; Masteri-Farahani, M. Ultrafine and well-dispersed Pd-Ni bimetallic catalyst stabilized by dendrimer-grafted magnetic graphene oxide for selective reduction of toxic nitroarenes under mild conditions. J. Hazard. Mater. 2022, 424, 127717. [Google Scholar] [CrossRef]
- Budi, C.S.; Deka, J.R.; Hsu, W.C.; Saikia, D.S.; Chen, K.T.; Kao, H.M.; Yang, Y.C. Bimetallic Co/Zn zeolitic imidazolate framework ZIF-67 supported Cu nanoparticles: An excellent catalyst for reduction of synthetic dyes and nitroarenes. J. Hazard. Mater. 2021, 40, 124392. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, Y.; Zhou, F.; Lv, F.; Ye, Z.; Fan, F.; Chu, P.K. Preparation and characterization of Cu2O–ZnO immobilized on diatomite for photocatalytic treatment of red water produced from manufacturing of TNT. Chem. Eng. J. 2011, 171, 61–68. [Google Scholar] [CrossRef]
- Wu, S.; Qi, Y.; He, S.; Fan, C.; Dai, B.; Zhou, W.; Gao, L.; Huang, J. Preparation and application of novel catalytic-ceramic-filler in a coupled system for TNT manufacturing wastewater treatment. Chem. Eng. J. 2015, 280, 417–425. [Google Scholar] [CrossRef]
- Qin, L.; Zeng, G.; Lai, C.; Huang, D.; Zhang, C.; Cheng, M.; Yi, H.; Liu, X.; Zhou, C.; Xiong, W.; et al. Synthetic strategies and application of gold-based nanocatalysts for nitroaromatics reduction. Sci. Total Environ. 2019, 652, 93–116. [Google Scholar] [CrossRef]
- Zhao, J.X.; Chen, C.Q.; Xing, C.H.; Jiao, Z.F.; Yu, M.T.; Mei, B.B.; Yang, J.; Zhang, B.Y.; Jiang, Z.; Qin, Y. Selectivity regulation in Au-catalyzed nitroaromatic hydrogenation by anchoring single-site metal oxide promoters. ACS Catal. 2020, 10, 2837–2844. [Google Scholar] [CrossRef]
- Lara, P.; Philippot, K. The hydrogenation of nitroarenes mediated by platinum nanoparticles: An overview. Catal. Sci. Technol. 2014, 4, 2445–2465. [Google Scholar] [CrossRef]
- Kottappara, R.; Pillai, S.C.; Vijayan, B.K. Copper-based nanocatalysts for nitroarene reduction—A review of recent advances. Inorg. Chem. Commun. 2020, 121, 108181. [Google Scholar] [CrossRef]
- Niu, H.; Lu, J.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J.-J. Iron Oxide as a Catalyst for Nitroarene Hydrogenation: Important Role of Oxygen Vacancies. Ind. Eng. Chem. Res. 2016, 55, 8527–8533. [Google Scholar] [CrossRef]
- Miyazaki, M.; Ariyama, K.; Furukawa, S.; Takayama, T.; Komatsu, T. Chemoselective Hydrogenation of Nitroarenes Using Ni−Fe Alloy Catalysts at Ambient Pressure. ChemistrySelect 2021, 6, 5538–5544. [Google Scholar] [CrossRef]
- Nandi, S.; Patel, P.; Khan, N.H.; Biradar, A.V.; Kureshy, R.I. Nitrogen-rich graphitic-carbon stabilized cobalt nanoparticles for chemoselective hydrogenation of nitroarenes at milder conditions. Inorg. Chem. Front. 2018, 5, 806–813. [Google Scholar] [CrossRef]
- Wei, X.; Zhou, M.; Zhang, X.; Wang, X.; Wu, Z. Amphiphilic Mesoporous Sandwich-Structured Catalysts for Selective Hydrogenation of 4-Nitrostyrene in Water. ACS Appl. Mater. Interfaces 2019, 11, 39116–39124. [Google Scholar] [CrossRef]
- Sheng, Y.; Lin, X.; Yue, S.; Liu, Y.; Zou, X.; Wang, X.; Lu, X. Highly efficient non-noble metallic NiCu nanoalloy catalysts for hydrogenation of nitroarenes. Mater. Adv. 2021, 2, 6722–6730. [Google Scholar] [CrossRef]
- He, D.; Wang, T.; Li, T.; Wang, X.; Wang, H.; Dai, X.; Shi, F. Efficient hydrogenation catalyst designing via preferential adsorption sites construction towards active copper. J. Catal. 2021, 400, 397–406. [Google Scholar] [CrossRef]
- Shen, M.Q.; Liu, H.; Yu, C.; Yin, Z.Y.; Muzzio, M.; Li, J.R.; Xi, Z.; Yu, Y.S.; Sun, S.H. Room-temperature chemoselective reduction of 3-nitrostyrene to 3-vinylaniline by ammonia borane over Cu nanoparticles. J. Am. Chem. Soc. 2018, 140, 16460–16463. [Google Scholar] [CrossRef]
- Ma, Z.H.; Liu, H.; Yue, M. Magnetically recyclable Sm2Co17/Cu catalyst to chemoselectively reduce the 3-nitrostyrene into 3-vinylaniline under room temperature. Nano Res. 2019, 12, 3085–3088. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, S.; Wang, Y.; Shan, B.; Zhang, J.; Wang, S.; Ma, X. Efficient tuning of surface copper species of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol. Chem. Eng. J. 2017, 313, 759. [Google Scholar] [CrossRef]
- Xu, C.; Chen, G.; Zhao, Y.; Liu, P.; Duan, X.; Gu, L.; Fu, G.; Yuan, Y.; Zheng, N. Interfacing with silica boosts the catalysis of copper. Nat. Commun. 2018, 9, 3367. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Sun, P.; Ran, W.; Zheng, Y.; Wang, L.; Zhang, L.; Jia, X.; Chen, J.; Wang, J.; Zhang, H.; et al. Rational design and facile hydrothermal-thermal conversion synthesis of hierarchical porous urchin-like Cu2xSi2O5(OH)3⋅xH2O and CuO/SiO2 hollow microspheres for high efficiency catalytic reduction of nitroarenes and adsorption of organic dye. Chem. Eng. J. 2021, 411, 128442. [Google Scholar] [CrossRef]
- Zhang, X.-Q.; Shen, R.-F.; Guo, X.-J.; Yan, X.; Chen, Y.; Hu, J.-T.; Lang, W.-Z. Bimetallic Ag-Cu nanoparticles anchored on polypropylene (PP) nonwoven fabrics: Superb catalytic efficiency and stability in 4-nitrophenol reduction. Chem. Eng. J. 2021, 408, 128018. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, A.; Yin, H.; Yan, X.; Shen, L. Reduction of 3-nitro-4-methoxy-acetylaniline to 3-amino-4-methoxyacetylaniline catalyzed by metallic Cu nanoparticles at low reaction temperature. Chem. Eng. J. 2015, 262, 427–435. [Google Scholar] [CrossRef]
- Rajendran, K.; Pandurangan, N.; Vinod, C.P.; Khan, T.S.; Gupta, S.; Haider, M.A.; Jagadeesan, D. CuO as a reactive and reusable reagent for the hydrogenation of nitroarenes. Appl. Catal. B Environ. 2021, 297, 120417. [Google Scholar] [CrossRef]
- Li, M.; Hao, Y.; Cárdenas-Lizana, F.; Yiu, H.H.P.; Keane, M.A. Hydrogen-Free’’ Hydrogenation of Nitrobenzene Over Cu/SiO2 Via Coupling with 2-Butanol Dehydrogenation. Top. Catal. 2015, 58, 149–158. [Google Scholar] [CrossRef]
- Li, W.; Cui, X.; Junge, K.; Surkus, A.E.; Kreyenschulte, C.; Bartling, S.; Beller, M. General and chemoselective copper oxide catalysts for hydrogenation reactions. ACS Catal. 2019, 9, 4302–4307. [Google Scholar] [CrossRef]
- Shuvalova, E.V.; Kirichenko, O.A.; Kapustin, G.I.; Kustov, L.M. Silica-supported copper nanoparticles as efficient catalysts for the liquid-phase selective hydrogenation of p-dinitrobenzene by molecular hydrogen. Russ. Chem. Bull. 2016, 65, 2850–2854. [Google Scholar] [CrossRef]
- Shuvalova, E.V.; Kirichenko, O.A. Hydrogenation of nitroarenes on silica-supported copper catalyst. Mendeleev Commun. 2021, 31, 875–877. [Google Scholar] [CrossRef]
- Chatterjee, S.; Deb, U.; Datta, S.; Walther, C.; Gupta, D.K. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation. Chemosphere 2017, 184, 438–451. [Google Scholar] [CrossRef] [PubMed]
- Hawari, J.; Halasz, A.; Beaudet, S.; Paquet, L.; Ampleman, G.; Thiboutot, S. Biotransformation of 2,4,6-TNT by phanerochaete chrysosporium in agitated cultures at pH 4.5. Appl. Environ. Microbiol. 1999, 65, 2977–2986. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, J.D.; Bunce, N.J. Treatment Methods for the Remediation of Nitroaromatic Explosives. Water Res. 2001, 35, 2101–2111. [Google Scholar] [CrossRef]
- Liou, M.-J.; Lu, M.-C. Catalytic degradation of nitroaromatic explosives with Fenton’s reagent. J. Mol. Catal. A Chem. 2007, 277, 155–163. [Google Scholar] [CrossRef]
- Zhang, Q.; Meng, Z.; Zhang, Y.; Lv, G.; Lv, F.; Wu, L. Modification of a Na-montmorillonite with quaternary ammonium salts and its application for organics removal from TNT red water. Water Sci. Technol. 2014, 69, 1798–1804. [Google Scholar] [CrossRef]
- Zhang, C.-L.; Yu, Y.Y.; Fang, Z.; Naraginti, S.; Zhang, Y.; Yong, Y.-C. Recent advances in nitroaromatic pollutants bioreduction by electroactive bacteria. Process Biochem. 2018, 70, 129–135. [Google Scholar] [CrossRef]
- Madeira, C.L.; Kadoya, W.M.; Li, G.; Wong, S.; Sierra-Alvarez, R.; Field, J.A. Reductive biotransformation as a pretreatment to enhance in situ chemical oxidation of nitroaromatic and nitroheterocyclic explosives. Chemosphere 2019, 222, 1025–1032. [Google Scholar] [CrossRef]
- Tiwari, J.; Gandhi, D.; Sivanesan, S.; Naoghare, P.; Bafana, A. Remediation of different nitroaromatic pollutants by a promising agent of Cupriavidus sp. strain a3. Ecotoxicol. Environ. Saf. 2020, 205, 111138. [Google Scholar] [CrossRef]
- Bui, D.N.; Minh, T.T. Investigation of TNT red wastewater treatment technology using the combination of advanced oxidation processes. Sci. Total Environ. 2021, 756, 143852. [Google Scholar] [CrossRef]
- Tartakovsky, V.A.; Shevelev, S.A.; Dutov, M.D.; Shakhnes, A.K.; Rusanov, A.L.; Komarova, L.G.; Andrievsky, A.M. Problems of trotyl (TNT) processing into condensation monomers, polymers and dyes. In Conversion Concepts for Commercial Applications and Disposal Technologies of Energetic Systems; Krause, H., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; pp. 37–149. [Google Scholar]
- Belskaya, O.B.; Mironenko, R.M.; Talsi, V.P.; Rodionov, V.A.; Sysolyatin, S.V.; Likholobov, V.A. A study of Pd/C catalysts in the liquid-phase hydrogenation of 1,3,5-trinitrobenzene and 2,4,6-trinitrobenzoic acid. Selection of hydrogenation conditions for selective production of 1,3,5-Triaminobenzene. Procedia Eng. 2016, 152, 110–115. [Google Scholar] [CrossRef]
- Belskaya, O.B.; Mironenko, R.M.; Talsi, V.P.; Rodionov, V.A.; Gulyaeva, T.A.; Sysolyatin, S.V.; Likholobov, V.A. The effect of preparation conditions of Pd/C catalyst on its activity and selectivity in the aqueous-phase hydrogenation of 2,4,6-trinitrobenzoic acid. Catal. Today 2018, 301, 258–265. [Google Scholar] [CrossRef]
- Shchurova, I.A.; Arbagozova, A.A.; Alekseyeva, N.A.; Malykhin, V.V. Catalytic Hydrogenation of 1,3,5-Trinitrobenzene. Yuzhno Sib. Nauchn. Vestn. 2019, 28, 166–170. (In Russian) [Google Scholar] [CrossRef]
- Shchurova, I.A.; Alekseyeva, N.A.; Sysolyatin, S.V.; Malykhin, V.V. A Comparative Study of the Synthesis and Hydrolysis of sym-Triaminobenzene Homologues. Molecules 2022, 27, 8595. [Google Scholar] [CrossRef]
- Belskaya, O.B.; Talsi, V.P.; Mironenko, R.M.; Rodionov, V.A.; Sysolyatin, S.V.; Likholobov, V.A. Transformation pathways of 2,4,6-trinitrobenzoic acid in the aqueous-phase hydrogenation over Pd/C catalyst. J. Mol. Catal. A Chem. 2016, 420, 190–199. [Google Scholar] [CrossRef]
- Mironenko, R.M.; Belskaya, O.B.; Talsi, V.P.; Rodionov, V.A.; Sysolyatin, S.V.; Likholobov, V.A. An unusual reduction route of 2,4,6-trinitrobenzoic acid under conditions of aqueous-phase hydrogenation over Pd/Sibunit catalyst. Russ. Chem. Bull. 2016, 65, 1535–1540. [Google Scholar] [CrossRef]
- Neri, G.; Musolino, M.G.; Bonaccorsi, M.G.; Donato, L.; Mercadante, L. Catalytic hydrogenation of 4-(hydroxyamino)-2-nitrotoluene and 2,4-nitroamine isomers. Ind. Eng. Chem. Res. 1997, 36, 3619–3624. [Google Scholar] [CrossRef]
- Chernyshev, V.M.; Khazipov, O.V.; Eremin, D.B.; Denisova, E.A.; Ananikov, V.P. Formation and stabilization of nanosized Pd particles in catalytic systems: Ionic nitrogen compounds as catalytic promoters and stabilizers of nanoparticles. Coord. Chem. Rev. 2021, 437, 213860. [Google Scholar] [CrossRef]
- Nuzhdin, A.L.; Shchurova, I.A.; Bukhtiyarova, M.V.; Bulavchenko, O.A.; Alekseyeva, N.A.; Sysolyatin, S.V.; Bukhtiyarova, G.A. Flow Hydrogenation of 1,3,5-Trinitrobenzenes over Cu-Based Catalysts as an Efficient Approach for the Preparation of Phloroglucinol Derivatives. Synthesis 2022, 54, 3605–3612. [Google Scholar] [CrossRef]
- Nuzhdin, A.L.; Shchurova, I.A.; Bukhtiyarova, M.V.; Plyusnin, P.E.; Alekseyeva, N.A.; Sysolyatin, S.V.; Bukhtiyarova, G.A. Comparative Study of the Hydrogenation of 1,3,5-Trinitrobenzene and 2,4,6-Trinitrotoluene over a Copper–Alumina Catalyst in a Flow Reactor. Kinet. Catal. 2023, 64, 25–31. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S.; Vo, D.-V.N. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Sci. Total Environ. 2021, 797, 149134. [Google Scholar] [CrossRef] [PubMed]
- Hariu, T.; Arima, H.; Sugiyama, K. The structure of hydrated copper-silicate gels, an analog compound for natural chrysocolla. J. Miner. Petrol. Sci. 2013, 108, 111–115. [Google Scholar] [CrossRef]
- Kirichenko, O.; Kapustin, G.; Mishin, I.; Nissenbaum, V.; Shuvalova, E.; Redina, E.; Kustov, L. Facile synthesis of micro-mesoporous copper phyllosilicate supported on a commercial carrier and its application for catalytic hydrogenation of nitro-group in trinitrobenzene. Molecules 2022, 27, 5147. [Google Scholar] [CrossRef] [PubMed]
- Kirichenko, O.A.; Shuvalova, E.V.; Strekalova, A.A.; Davshan, N.A.; Kapustin, G.I.; Nissenbaum, V.D. Catalytic activity of Cu and Cu–Fe hydrosilicates in hydrogenation with molecular hydrogen. Russ. J. Phys. Chem. 2018, 92, 2417–2423. [Google Scholar] [CrossRef]
- Kirichenko, O.A.; Shuvalova, E.V.; Redina, E.A. Low-temperature copper hydrosilicates: Catalysts for reduction of aromatic nitro compounds with molecular hydrogen. Russ. Chem. Bull. 2019, 68, 2048–2052. [Google Scholar] [CrossRef]
- Di, W.; Cheng, J.; Tian, S.; Li, J.; Chen, J.; Sun, Q. Synthesis and characterization of supported copper phyllosilicate catalysts for acetic ester hydrogenation to ethanol. Appl. Catal. A Gen. 2016, 510, 244–259. [Google Scholar] [CrossRef]
- Van der Grift, C.J.G.; Wielers, A.F.H.; Mulder, A.; Geus, J.W. The reduction behavior of silica-supported copper catalysts prepared by deposition-precipitation. Thermochim. Acta 1990, 171, 95–113. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, G.; Jin, Y.; Wei, L.; Li, X.; Wang, D.; Zhu, Y.; Li, Y. Stabilizing the interfacial Cu0-Cu+ dual sites toward furfural hydrodeoxygenation to 2-methylfuran via fabricating nest-like copper phyllosilicate precursor. Fuel 2022, 337, 127212. [Google Scholar] [CrossRef]
- Toupance, T.; Kermarec, M.; Lambert, J.-F.; Louis, C. Conditions of formation of copper phyllosilicates in silica-supported copper catalysts prepared by selective adsorption. J. Phys. Chem. B 2002, 106, 2277–2286. [Google Scholar] [CrossRef]
- Talsi, V.P.; Belskaya, O.B.; Yurpalov, V.L. The composition of transformation products of 2,4,6-trinitrobenzoic acid in the aqueous-phase hydrogenation over Pd/C catalysts. Magn. Reson. Chem. 2020, 58, 84–96. [Google Scholar] [CrossRef]
- Blaser, H.-U.; Steiner, H.; Studer, M. Selective catalytic hydrogenation of functionalized nitroarenes: An update. ChemCatChem 2009, 1, 210–221. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Neimark, A.V.; Sing, K.S.W.; Thommes, M. Characterization of solid catalysts: Surface area and porosity. In Handbook of Heterogeneous Catalysis; Ertl, G., Knozinger, H., Schuth, F., Weitkamp, J., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; pp. 721–729. [Google Scholar]
- Greg, S.J.; Sing, K.S.W. Adsorption, Surface Area and Porosity, 2nd ed.; Academic Press: London, UK, 1982. [Google Scholar]
- van der Grift, C.J.G.; Elberse, P.A.; Mulder, A.; Geus, J.W. Preparation of silica-supported copper catalysts by means of deposition precipitation. Appl. Catal. 1990, 59, 275–289. [Google Scholar] [CrossRef]
- Redina, E.; Arkhipova, N.; Kapustin, G.; Kirichenko, O.; Mishin, I.; Kustov, L. Ceria-Modified Copper Phyllosilicate Catalyst for One-Pot Hydroamination of 5-HMF with Nitro-Compounds. ChemCatChem 2023, 15, e202300294. [Google Scholar] [CrossRef]
Catalyst | Cycle | Reaction Time a, h | Selectivity to TAB, % |
---|---|---|---|
10Cu-300 | 1st | 2 | 52 |
2nd | 7 | 21 | |
15Cu-300 | 1st | 1.5 | 65.4 |
2nd | 4 | 50.8 | |
3rd | 6 | 45.7 | |
10Cu-600 | 1st | 1 | 82.3 |
2nd | 2 | 88.1 | |
3rd | 6 | 45.2 |
Sample | SBET, m2g−1 | Vtotal a, cm3 g−1 | Vmeso b cm3 g−1 | Vmicro (DFT- Cylinder), cm3 g−1 | Vmicro (αs) cm3 g−1 |
---|---|---|---|---|---|
SiO2 | 100 | 0.671 | 0.661 | 0.010 | 0.004 |
6Cu-300 | 213 | 0.661 | 0.652 | 0.009 | 0.009 |
10Cu-110 | 251 | 0.615 | 0.593 | 0.017 | 0.021 |
10Cu-300 | 250 | 0.639 | 0.625 | 0.014 | 0.015 |
10Cu-600 | 224 | 0.589 | 0.589 | 0 | 0 |
15Cu-300 | 319 | 0.603 | 0.582 | 0.021 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirichenko, O.A.; Shuvalova, E.V.; Kapustin, G.I.; Davshan, N.A.; Mishin, I.V.; Kustov, L.M. Reduction of Trinitrobenzene to Amines with Molecular Hydrogen over Chrysocolla-like Catalysts. Catalysts 2024, 14, 686. https://doi.org/10.3390/catal14100686
Kirichenko OA, Shuvalova EV, Kapustin GI, Davshan NA, Mishin IV, Kustov LM. Reduction of Trinitrobenzene to Amines with Molecular Hydrogen over Chrysocolla-like Catalysts. Catalysts. 2024; 14(10):686. https://doi.org/10.3390/catal14100686
Chicago/Turabian StyleKirichenko, Olga A., Elena V. Shuvalova, Gennady I. Kapustin, Nikolay A. Davshan, Igor V. Mishin, and Leonid M. Kustov. 2024. "Reduction of Trinitrobenzene to Amines with Molecular Hydrogen over Chrysocolla-like Catalysts" Catalysts 14, no. 10: 686. https://doi.org/10.3390/catal14100686
APA StyleKirichenko, O. A., Shuvalova, E. V., Kapustin, G. I., Davshan, N. A., Mishin, I. V., & Kustov, L. M. (2024). Reduction of Trinitrobenzene to Amines with Molecular Hydrogen over Chrysocolla-like Catalysts. Catalysts, 14(10), 686. https://doi.org/10.3390/catal14100686