
Citation: Kirichenko, O.A.;

Shuvalova, E.V.; Kapustin, G.I.;

Davshan, N.A.; Mishin, I.V.; Kustov,

L.M. Reduction of Trinitrobenzene to

Amines with Molecular Hydrogen

over Chrysocolla-like Catalysts.

Catalysts 2024, 14, 686. https://

doi.org/10.3390/catal14100686

Academic Editors: Ulises Sedran and

Mohammad Mozahar Hossain

Received: 24 July 2024

Revised: 11 August 2024

Accepted: 30 September 2024

Published: 2 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Article

Reduction of Trinitrobenzene to Amines with Molecular
Hydrogen over Chrysocolla-like Catalysts
Olga A. Kirichenko , Elena V. Shuvalova , Gennady I. Kapustin, Nikolay A. Davshan , Igor V. Mishin
and Leonid M. Kustov *

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991,
Russia; evshouvalova@yandex.ru (E.V.S.)
* Correspondence: lmkustov@mail.ru

Abstract: The cheap non-noble Cu–SiO2-based nanocatalysts are under intensive study in different
reactions resulting in useful chemicals, yet their application in environment protection is poorly
studied. In the present work, the influence of the Cu loading (3–15 wt%) on the catalytic behavior
of Cu/SiO2 materials was first precisely studied in the hydrogenation of hazardous trinitrobenzene
to valuable aromatic amines with molecular hydrogen. The catalysts have been synthesized by
the method of deposition–precipitation using urea. The catalyst characterization by XRD, TPR-H2,
SEM, TEM, and N2 adsorption methods confirmed that they include nanoparticles of the micro-
mesoporous chrysocolla-like phase supported in the mesopores of a commercial SiO2 carrier, as
well as revealed formation of the highly dispersed CuO phase in the sample with the highest Cu
loading. Variation in reaction conditions showed the optimal ones (170 ◦C, 1.3 MPa H2) resulting
in complete trinitrobenzene conversion with a triaminobenzene yield of 65% for the catalyst with
a 15% Cu loading, and the best yield of 82% was obtained over the catalyst with 10% Cu calcined
at 600 ◦C. The results show the potential of Cu phyllosilicate-based catalysts for the utilization of
trinitroaromatic compounds via catalytic hydrogenation to amines and their possible applications in
a remediation treatment system.
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1. Introduction

In the past 10 years, the development of novel Cu-based catalysts has received wide
acceptance in the catalytic synthesis of platform chemicals including well-known pro-
cesses [1–6], as well as in new processes based on renewable raw sources, especially
selective hydrogenation with molecular hydrogen (synthesis of valuable alcohols, furanic
fuels, and amines) [7–19].

The selective catalytic reduction in nitroarenes (SCRN) to the corresponding anilines,
which are valuable intermediates and chemicals in a number of industrial fields, has
attracted much attention [18–23]. Growing interest has been paid to SCRN applications in
environment protection because nitroarenes possess various hazardous effects on human
health and the environment, and they are constituents of harmful waste and pollutant
stocks in industrial production [24–29]. Precious metal catalysts (PMCs) exhibit high
activity in SCRN, and their selectivity in reduction in nitro groups can be increased with
PMC modified with transition metal compounds [19–21,30–33]. The growing PM prices
and limited resources increase the costs of catalysts and chemicals produced, as well as the
expenditures for environment protection processes and technologies.

Today, non-precious metals are being considered for their application in the cat-
alytic hydrogenation of nitroarenes instead of PMCs due to their abundance and low
price [18–20,34–39]. Cu-based catalysts possess better stability and safety compared to
Co and Ni catalysts, and are more active than Fe catalysts. Supported Cu catalysts have
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been preferably used in nitroarene reduction by transfer hydrogenation using hydrogen
donors (NH3-BH3 [40,41], NaBH4 [21,33,42–46], N2H4H2O [47], and 2-butanol [48]) rather
than in direct hydrogenation with molecular H2. However, the application of NaBH4 and
NH3-BH3 as reducing agents results in the formation of large amounts of solid wastes and
contaminated organic and aqueous stocks. N2H4H2O-mediated reduction is much cleaner,
as the only byproducts are gaseous N2 and H2, yet the high selectivity may be difficult to
achieve in the presence of a carbon–carbon double bond, triple bond, and aldehyde [21,47].
The major adventure of molecular H2 is its recognition as a “green” hydrogen source for
the selective reduction in nitrobenzenes because of the formation of water as the only by-
product. Molecular H2 is the last in the selectivity sequence for diverse hydrogen sources,
yet it is cheap and commercially produced on a large scale.

Formation of oxygen vacancies on the surface of CuO (111) in the reducing environ-
ment was shown to facilitate stronger nitrobenzene binding and reduced the activation
barrier for N–O dissociation [47]. Moreover, it was claimed that the adsorption and dis-
sociation of molecular hydrogen can occur at the Cun+–O–SiOx interface or on the SiO2
surface [9,43] in Cu phyllosilicate catalysts. Both of these facts and the results regarding
the successful reduction of nitro groups to amino groups in nitroarenes with molecular
H2 on Cu catalysts [18,19,49] demonstrate a possible way for the reduction of different
nitroarenes with molecular H2. Cu/SiO2 catalysts provide the possibility of hydrogenation
of nitroarenes at a lower hydrogen pressure (1.5 MPa) [50,51] than CuO supported on other
oxides (4 MPa) [49].

Trinitroaromatic compounds are highly toxic [24,52]. Their environmental transfor-
mation products are equally or more toxic as the parent nitroaromatic molecules [53]. To
remediate areas contaminated with these compounds, the following technologies have been
applied and are still under study: bioremediation, common remediation treatment, adsorp-
tion, advanced oxidation processes, and chemical reduction [54–60]. Chemical reduction
supposes catalytic hydrogenation of nitro compounds to corresponding amines, and there-
fore, alone it is not a complete remediation process because the formed amines are toxic
and must be treated further. The oxidative polymerization, which causes amines to bind
into polymers, and biological transformation have been proposed for further treatment.
However, from our viewpoint, the further utilization of amines as chemicals for commercial
use [61] looks more promising, especially if one combines the chemical reduction process
with adsorption technology.

Hydrogenation of aromatic trinitro compounds is far less studied than hydrogenation
of mono and dinitro aromatic compounds; nevertheless, it is found to proceed in an organic
solvent medium at an elevated hydrogen pressure and is catalyzed by Raney Ni, PtO2, as
well as Ni, Pd, Pt, Ru, Rh, and polymetallic compositions deposited on activated carbon,
SiO2, Al2O3, zeolites, or other supports [62–65]. 2,4,6-Trinitrobenzoic acid was selectively
hydrogenated even in the aqueous phase over a Pd/C catalyst to produce triaminobenzene
or to non-aromatic cyclohexane-1,3,5-trione trioxime [66,67]. The prices of PMC are too
high for implementation in the industrial or waste treatment technologies; moreover, Pd
dissolves in the presence of nitroaromatics [68,69]. Recently, it was shown that Cu-based
materials possess a high catalytic activity and selectivity in hydrogenation of aromatic trini-
tro compounds to corresponding amines [70,71]. Hydrogenation of 1,3,5,-trinitrobenzene
(TNB) in a flow reactor over the supported 21%CuO/Al2O3 catalyst at 120 ◦C, total pressure
of 30 bar, and methanol as a solvent resulted in about a 68% yield as sulfuric acid double salt
of 1,3,5,-triaminobenzene (TAB) [70]. The application of Cu–Al mixed oxides derived from
layered double hydroxides as catalysts for hydrogenation in a flow reactor resulted in the
complete hydrogenation of 1,3,5-trinitrobenzene, 2,4,6-trinitrotoluene, 2,4,6-trinitroxylene,
and 2,4,6-trinitromesitylene with a higher selectivity to the corresponding triaminoben-
zenes that were subsequently hydrolyzed to the phloroglucinol derivatives in good yields
(75–82%) [66]. Varying the reaction conditions, the yields of TAB and 2,4,6-triaminotoluene
(TAT) double salts with sulfuric acid were increased to 92 and 98%, respectively, while the
subsequent hydrolysis of salts resulted in phloroglucinol and methylphloroglucinol in 78
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and 91% yields [71]. Supported Cu/SiO2 catalytic materials seem preferential, especially
based on Cu phyllosilicate Cu2Si2O5(OH)2 (chrysocolla). Even though Cu in ionic forms is
considered to be a water pollutant [72], chrysocolla is well known to be a widely spread
natural mineral which is stable in the environment [73].

A silica-supported chrysocolla-like phase is widely used as a catalyst precursor. One
can find in the article [74] the recent brief review of the methods used for the preparation of
the chrysocolla-based materials. The most often used and efficient methods are ammonia
evaporation (AE) and deposition–precipitation using urea thermal hydrolysis (DPU), yet
several other methods have been used, also. The hydrothermal treatment of the suspension
consisting of amorphous silica and Cu(NO3)2–NH3 solution resulted in the formation
of the chrysocolla phase with Cu content 32 wt% that was stable after calcination at
350 ◦C [14]. Its reduction occurred at higher temperatures than its reduction in silica-
supported CuO nanoparticles of the size 9.7 nm. After reduction in the calcined sample
in an H2 flow at 250 ◦C, XRD analysis detected metallic Cu crystallites of an average
size of 4.3 nm that is close to the value of 4.1 nm calculated on the basis of the copper
surface area, SCu = 46 m2g−1; however, the Auger spectrum of Cu LMM showed that
the ratio Cu+/(Cu+ + Cu0) was 66%, i.e., reduction was incomplete, in contradiction to
the complete reduction in CuO nanoparticles supported on silica. A slow reduction in
the precursor for the catalyst 45.5%Cu/SiO2 (prepared using Aerolyst SiO2 by the DPU
method) in an H2 flow at 380 ◦C brings about the formation of the highly dispersed Cu2O
and Cu0 phases with CSD (coherently scattering domains) of between 2.5 and 6.5 nm, while
after treatment at the reaction conditions (170 ◦C, 1.3 MPa H2, 1,4-dioxane as a solvent)
of liquid-phase hydrogenation of γ-valerolactone, CSD increased to between 4.0 and 31
nm, respectively [8], indicating recrystallization and sintering in both phases. Surprisingly,
the atomic ratio Cu0/Cu+ strongly decreased, exhibiting Cu0 oxidation under reaction
conditions. For the initial reduced samples, the measured SCu value was 15 m2g−1. The
reduced (50% H2/N2, 250 ◦C) sample of the preliminarily calcined (500 ◦C) precursor for
the catalyst 16.8%Cu/SiO2 (prepared using silica gel by the AE method) exhibited far larger
SCu assuming the Cu0 particle size of 1 nm, but the TEM average size was 2.2 nm [11]. XPS
spectra suggested the presence of Cu0, Cuδ+, and Cu2+ in the CuSiO3 phase. Only major
reflections of the highly dispersed Cu2O and Cu0 phases were observed in the spent sample
after the reaction of methyl formate hydrogenation at 140 ◦C, 1.3 MPa H2, the primary
crystallite size supposed to be smaller than 2 nm. The XPS spectra of the spent sample are
similar to that of a reduced sample. The AE method was also used for the preparation of the
catalyst 5%Cu/SiO2. The sample was calcined at 400 ◦C and then reduced in a 5%H2/N2
flow at 300 ◦C [13]. The average size of the metallic Cu nanoparticles calculated on the
basis of HAADF-STEM images was about 2.9 nm. The XPS and XAES of Cu LMM analysis
offered the following relative contents of the Cu species: 20% Cu0, 55% Cu+, and 25%
Cu2+. The catalyst was highly stable at reaction conditions of liquid-phase hydrogenation
of γ-butyrolactone (170–210 ◦C, 2–6 MPa H2; 1,4-dioxane). After five cycles of the reaction
(200 ◦C, 4 MPa H2), the size of the metallic Cu nanoparticles remained almost unchanged,
and the Cu species distribution only slightly shifted to the increase in the Cu2+ portion due
to oxidation of both Cu0 and Cu+. The materials prepared by the AE method using SiO2
with a high surface area (400 m2g−1) exhibited high thermal stability at 0.3–30 wt% Cu, and
no CuO was detected using XRD or TEM even after calcination at 600 ◦C, whereas the XPS
data for the sample 10%Cu/SiO2 showed that the chemical state of copper at the surface
was Cu2+ [5]. Nevertheless, after the reduction in this calcined sample 10%Cu/SiO2 in
a flow of 10%H2/He at 300 ◦C, metallic Cu nanoparticles of the average size 1.5–2.9 nm
were found using TEM, and only a slight increase to 2.7–3.6 nm was observed after 500 h
on-stream in non-oxidative ethanol dehydrogenation at 280 ◦C. The XPS results confirmed
Cu0 formation, and it is the only copper state according to Auger Cu LMM. All of the
abovementioned examples demonstrate that the properties of chrysocolla-like precursors
and the prepared catalysts strongly depend not only on the preparation procedure and a
silicon source, but on the Cu content as well.
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Previously [75,76] we have shown that the materials based on the silica-supported
chrysocolla-like phase are highly active in the reduction of nitrobenzene and p-dinitrobenzene
with molecular hydrogen, as well as can be used even for one-pot reduction in trinitrobenzene
with a significant yield of amines [74]. In this work, we aimed to reveal the optimal reac-
tion conditions for the catalytic hydrogenation of trinitrobenzene, the first representative of
trinitro-aromatic compounds, to triaminobenzene with molecular hydrogen over the catalysts,
consisting of a chrysocolla-like phase supported on the commercial low-cost silica carrier,
as well as the optimal compositions of these catalysts. It was first shown that even a small
decrease in the reaction temperature as compared with that used previously resulted in a
significant increase in the reaction time, while lowering an initial H2 pressure decreased the
yields of amines to unacceptably low values. The catalysts with Cu loading varying in a wide
range of 3–15 wt% were prepared for the first time on the commercial meso-macroporous
silica carrier with a low surface area and were tested in TNB reduction with hydrogen. It was
revealed for the first time that complete TNB conversion with a 50–65% selectivity to TAB
can be reached for the catalysts with a Cu loading of 8–15 wt%, and calcination at 600 ◦C
enhanced the activity, selectivity, and stability of these catalysts.

2. Results
2.1. Effect of Reaction Temperature, Initial Hydrogen Pressure, and Reaction Time

The effect of reaction conditions on the catalyst’s behavior has been studied using
the example of a catalyst with an average Cu loading of 8% calcined at 300 ◦C. At the
initial hydrogen pressure of 1.3 MPa, the TNB conversion started at 150 ◦C in 1 h and
was completed in 5 h (Figure 1a), the major amines being 3,5-dinitroaniline (DNA) and
5-nitrophenylene-1,3-diamine (NPDA). Hydrogenation of nitro groups proceeded conse-
quently. Further hydrogenation at these conditions resulted in an almost complete nitro
group reduction to an amino group with a TAB yield of 67%. The slight increase in the
reaction temperature from 150 to 170 ◦C drastically enhanced the catalytic activity, but
decreased the selectivity to amines (Figure 1b). TNB disappeared in the reaction solution in
1 h already, the overall selectivity to amines (DNA and NPDA) being only 40%. The only
amine product after 2 h of the reaction was TAB with a yield of 50%.

Figure 1. Dependence of the TNB conversion (X) and selectivity to individual amines (Si) versus the
reaction time for the sample 8Cu–300 at different reaction conditions: (a) T = 150 ◦C, P = 1.3 MPa;
(b) T = 170 ◦C, P = 1.3 MPa; (c) T = 170 ◦C, P = 0.5 MPa.

The decreased yield of aromatic amines may be due to both the enhanced TNB
chemisorption on the free silica surface and formation of intermediates that cannot be
detected with GLC. The test with the silica support at these conditions revealed a consid-
erable decrease in the TNB concentration (30% in 1 h, 40% in 3 h), whereas no amine was
detected. The decrease in the initial hydrogen pressure to 0.5 MPa at 170 ◦C resulted in
considerably lower catalytic activity, and the overall selectivity to amines was the lowest
(Figure 1c). Therefore, the reaction temperature 170 ◦C and initial hydrogen pressure
1.3 MPa were selected for further studies.
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2.2. Effect of Thermal Treatment

The catalytic activity of the dried catalysts with Cu loading 3–6% was low, and only
DNA was observed with a low selectivity. The prepared catalysts with a higher Cu loading
of 9–10% exhibited catalytic activity with the formation of expected amines even after
drying (Figure 2a), yet calcination at 300 ◦C strongly enhanced their activity (Figure 2b).
Complete TNB conversion with a high yield of amines has been achieved in 1–1.5 h,
the intermediate compounds being the major products. The complete reduction to TAB
required a longer reaction time. For example, the TNB hydrogenation to TAB with a
selectivity of 52% has been reached in 2 h over the calcined catalyst 11Cu-300, whereas the
TNB conversion was complete in 1 h (Figure 2b). Calcination at 600 ◦C, which can bring
about the chrysocolla dehydration to a large extent, results in the material with the highest
activity and selectivity to TAB (Figure 2c). The selectivity to TAB was 82% at the complete
TNB conversion in 1 h.
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Figure 2. Dependence of the TNB conversion (X) and selectivity to individual amines (Si) versus
the reaction time for the sample 10Cu-T after different thermal treatments: (a) drying at 110 ◦C;
(b) calcination at 300 ◦C; (c) calcination at 600 ◦C. Reaction conditions: T = 170 ◦C, P = 1.3 MPa.

The following explanation for the effect of calcination can be proposed based on the
results obtained in this work and on the analysis of publications that concerned chrysocolla-
like phyllosilicate synthesis, structure, and properties. There are two requirements for
hydrogenation with molecular hydrogen to proceed: (i) dissociative adsorption of molecular
hydrogen, and (ii) activating the adsorption of a substrate. In Cu phyllosilicate catalysts,
the adsorption and dissociation of molecular hydrogen was claimed to occur on the SiO2
surface [43] or at the Cun+–O–SiOx interface [9,43]. Chrysocolla is stable to reduction
by molecular hydrogen up to 180–215 ◦C [9,77,78]. For this reason, the Cu catalysts are
commonly activated by pre-reduction in hydrogen in order to bring about the complete
or partial destruction of the octahedral first coordination oxygen environment of Cu2+

ions, resulting in Cu+ and Cu0 [8–14]. In the present work, both dried and calcined
samples were not subjected to the reduction prior to the catalyst testing. Moreover, the
reaction temperature of 170 ◦C was considerably lower than the temperature of reduction
for the dried sample that occurred predominantly at 250–350 ◦C [74–76]. Therefore, the
considerable amount of Cun+ is available in the dried material at the beginning of the
reaction and may form the sites for hydrogen dissociation. On the other hand, for the dried
samples, TNB adsorption on the coordinatively saturated Cu2+ species of the phyllosilicate
phase may occur only via substitution of H2O molecules with the nitro group of TNB, and
such process proceeds slowly. In addition, in the presence of the SiO2 carrier, we revealed
a significant decrease in the TNB concentration in the reaction solution at the reaction
conditions (30% in 1 h, 40% in 3 h), which indicates TNB adsorption on the SiO2 carrier
surface, which may be irreversible or even followed by formation of other products. Both
processes can contribute to the low selectivity of the formation of the considered amines,
while the formation of other intermediates cannot be excluded. After calcination at 300 ◦C,
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the structural water has been deleted, opening sites for TNB adsorption, and the new
catalytically active Cu2+ sites appear in the phyllosilicate structure due to the removal of
OH groups that partially damage the phyllosilicate structure, especially at 600 ◦C [9]. It
was shown [5,79] that a band at 670 cm−1, which is distinctive of Cu phyllosilicate [80],
can still be observed in FTIR spectra for the samples calcined at 400 ◦C, whereas it was no
longer observable after heating to 600 ◦C, and the resulting phase was X-ray amorphous in
a sample with a Cu loading of 10%.

2.3. Effect of Cu Loading in the Catalysts

The catalytic activity enhanced strongly with increasing Cu loading in a catalyst
(Figure 3). The sample 3Cu-300 exhibited a higher TNB consumption than the support,
and in 4–5 h, no TNB was observed. However, only the first reduction product, DNA, was
detected in the reaction mixture with a selectivity as low as 20%, which did not change after
increasing the reaction time (Figure 3a). Almost complete TNB conversion for the reaction
time 5 h was found over the sample 6Cu-300, with the selectivity to DNA increasing with
time. Its maximum was triple that of 3Cu-300, and even NPDA and TAB were detected in a
reaction mixture in a significant amount (Figure 3b).
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Figure 3. Dependence of the TNB conversion (X) and selectivity to individual amines (Si) versus the
reaction time for the samples calcined at 300 ◦C with a different Cu loading: (a) 3%; (b) 6%; (c) 9%;
(d) 15%. Reaction conditions: T = 170 ◦C, P = 1.3 MPa.

The overall selectivity to DNA+NPDA reached a highest value of 84%, and then
it dropped with the TAB appearance at the complete TNB conversion, thus indicating
the formation of a large amount of undetectable intermediates or condensed products
(di- and trimers of TAB molecules [81]), during or after hydrogenation of the third nitro
group. Similar behavior was observed for the samples with the higher Cu loading of 9–15%
(Figure 3c,d).

Further hydrogenation of the last nitro group proceeds over these samples, and the
selectivity to TAB rises up to 50–70% with the time shortened to 1–2 h. The larger the Cu loading,
the less time required for complete TNB conversion and hydrogenation of all nitro groups to
amino groups. The highest activity was obtained for the sample with Cu loading 15%.
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The observed moderately low selectivity to aromatic amines may be due to both
the fast enhanced TNB chemisorption on the free silica surface and the formation of
intermediates that cannot be detected with GLC. The test with the silica support at these
conditions revealed a considerable decrease in the TNB concentration (30% in 1 h, 40%
in 3 h), whereas no amine was detected. The decrease in the TAB yield with time at the
chosen reaction conditions may be caused by its condensation, which was confirmed on
the catalysts of a different nature, including Cu catalysts [64,71,81].

2.4. Stability

The most active catalysts were tested for the possibility of further use in hydrogenation
of a new portion of the reaction mixture (recycling), and the results are presented in Table 1.
Between test cycles, the sample of the material was only separated from a mixture of
reaction products by centrifuging, without any intermediate treatment. The activity of
the 10Cu-300 material decreased considerably after the first test as compared with the
initial sample, which is cleared from a more prolong time of complete TNB conversion
in the second cycle and too low selectivity to TAB even in 7 h. Therefore, this material
can be used only for one batch reduction. The material with the lager Cu loading 15Cu-
300 is more stable, despite the fact that the catalytic activity of fresh materials is similar.
Although the time of complete TNB conversion and reduction to TAB over the used 15Cu-
300 samples increased, the selectivity to TAB remained relatively high in two batches. The
more profitable usage in two cycles with a gradually higher selectivity to TAB is possible
for the 10Cu-600 catalyst calcined at 600 ◦C; therefore, this catalyst can be recommended
for practical application.

Table 1. Results of recycling tests.

Catalyst Cycle Reaction Time a, h Selectivity to TAB, %

10Cu-300
1st 2 52
2nd 7 21

15Cu-300
1st 1.5 65.4
2nd 4 50.8
3rd 6 45.7

10Cu-600
1st 1 82.3
2nd 2 88.1
3rd 6 45.2

a Reaction time required for complete TNB conversion.

Withdrawal of TAB from a reaction mixture, for example, via the formation of insoluble
salts, seems promising to enhance the selectivity to TAB and stability [65,70]. However, in
the recent works of different research groups, deactivation of catalysts under conditions of
TNB hydrogenation was observed for both the 1%Pd/C catalyst [64] and the mixed layered
CuAlOx catalyst [71], even though TAB was quantitatively isolated from the reaction
mixture in the form of the double salts with sulfuric acid. Two possible mechanisms of
the catalyst deactivation were proposed [71]: (i) the formation of high-molecular-weight
resinous by-products on the catalyst’s surface via polycondensation of TAB molecules,
which was shown also by other authors [81], or (ii) the formation of azoxy, azo, and
hydrazo compounds via condensation of nitrosoarenes and arylhydroxylamines (common
intermediate products of the nitroarene reduction [18,63,66,82]. In view of the fact that
the concentrations of resinous substances on the catalyst surfaces at the reactor inlet were
higher than those in the middle part and at the outlet, the second mechanism seems to
prevail. These deposits can be removed by sample calcination in air at 330 ◦C.

2.5. Characterization of the Catalysts

In order to clarify the possible reasons of the revealed catalytic behavior of the catalysts
prepared, their phase composition, morphology, texture, and reducibility were characterized.
All of the prepared catalysts were subjected to an XRD phase analysis, and the obtained results



Catalysts 2024, 14, 686 8 of 19

confirmed the presence of two predominant phases, i.e., silica in all samples and the chrysocolla-
like phase if Cu loading was within 10–15% (Figure 4 and Figure S1). The SEM-EDX analysis
showed a uniform distribution of Cu in the catalysts prepared (Figure 5).
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Figure 5. SEM image at low magnification and SEM-EDX maps of element distribution for the catalyst
10Cu-110.

The morphology of the materials prepared was studied, and the typical selected SEM
and TEM images are depicted in Figures 6 and 7. The SEM images at high magnification for
both the materials dried and calcined at 300 ◦C only (Figures 6a and 7a) exhibited a uniform
porous solid consisting of aggregated particles of less than 100 nm in size. In addition to
these nanoparticles, lamellar structure sheets and their loose aggregates were present in
the samples. Moreover, in the SEM images for the samples calcined at 300 ◦C, the foam-like
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micron-sized arrays are observed (Figure 7a). The TEM images exhibit that the arrays
consist of extended needle-like shapes, and the isolated dark round spots of a size less
than 4 nm are visible on their surface (Figure 7b). TEM images exhibit numerous isolated
dark spots and clearly recognized crystallites of 4–25 nm in size on the surface of the
SiO2 particles (Figure 6b,c and Figure 7c,d) that are presupposed to be the chrysocolla-like
nanoparticles.
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According to the IUPAC classification, N2 adsorption–desorption isotherms exhibited
by the synthesized catalysts (Figure S2) can be characterized as the type IV isotherms with
a superposition of H1, H3, and H4 hysteresis loops that suggested the presence of a narrow
distribution of the ink-bottle-shaped pores and the slit-like pores in non-rigid aggregates
of plate-like particles [83,84]. The observed pronounced N2 uptake at low p/p◦ (Figure S3)
can be associated with the filling of micropores [83,84]. The values of the specific surface
area SBET and meso- and micropore volume are listed in Table 2, as well as the pore size
distributions, which are illustrated in Figure 8a–d. The specific surface area increased
drastically with increasing Cu loading in the range of 6–15%, whereas calcination at 300 ◦C
did not affect its value. The increase in SBET can be due to the formation of a chrysocolla-like
phase that is featured with the extremely high specific surface area values of about 700
m2g−1 [78,80]. After calcination at 600 ◦C, SBET decreased slightly due to the disappearance
of micropores (sample 10Cu-600). Both the volume of pores of the size bellow 300 nm
and the mesopore volume decreased significantly with increasing Cu loading in the range
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of 10–15%, while the micropore volume increase was confirmed by calculations vs. the
DFT-cylinder model method and by Sing’s αs-method [85].
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Table 2. Textural features of the initial silica support and the catalysts prepared.

Sample SBET, m2g−1 V total
a, cm3 g−1 Vmeso

b cm3 g−1 Vmicro
(DFT- Cylinder), cm3 g−1 Vmicro (αs) cm3 g−1

SiO2 100 0.671 0.661 0.010 0.004
6Cu-300 213 0.661 0.652 0.009 0.009
10Cu-110 251 0.615 0.593 0.017 0.021
10Cu-300 250 0.639 0.625 0.014 0.015
10Cu-600 224 0.589 0.589 0 0
15Cu-300 319 0.603 0.582 0.021 0.018

a Adsorption at p/po = 0.99. b Vmeso = Vtotal − Vmicro DFT.

The mesopore size distributions in the prepared catalysts strongly differ from that of
the initial support, i.e., the monomodal narrow distribution with a maximum at 23 nm in the
SiO2 carrier is transformed into the wide bimodal distribution with two definite maxima at
3 nm and 12–19 nm (Figure 8a,b). Neither Cu loading nor calcination temperature affected
the position of the former one, whereas the position of the latter one shifted to smaller
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sizes with the increase in Cu loading, as well as after calcination at 600 ◦C. In addition,
the volume of mesopores of the size 2–5 nm increased with increasing Cu loading. Similar
changes in the silica mesopore distributions were observed previously and were attributed
to the silica dissolving under urea hydrolysis at 90 ◦C followed by deposition–precipitation
of the chrysocolla-like phase [86].
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Figure 8. The mesopore size distribution curves (a,b) and the micropore size distribution curves
(c,d) for the Cu2Si2O5(OH)2/SiO2 catalysts differed in Cu loading (a,c) and in the temperature of
thermal treatment (b,d).

The DFT-cylinder model gives the trimodal micropore size distributions for the pre-
pared Cu2Si2O5(OH)2/SiO2 catalysts (Figure 8c,d) with maxima at 1.2, 1.6 m, and 2.0 nm.
The volume of thin micropores increased with increasing Cu loading, yet decreased with
increasing temperature of final treatment, which made possible to attribute them to the
chrysocolla-like phase. Hence, the synthesized chrysocolla-like Cu2Si2O5(OH)2/SiO2 cata-
lysts possess a high specific surface area and a micro-mesoporous texture with a bimodal
mesopore size distribution, which is due to the formation of the highly dispersed microp-
orous chrysocolla phase.

The TPR-H2 profiles of the Cu2Si2O5(OH)2/SiO2 catalysts, as well as the total hydro-
gen consumption (as H2:Cu molar ratio), are presented in Figure 9. Figure 9a also displays
the TPR-H2 profiles of the reference CuO/SiO2 sample prepared using the deposition–
precipitation procedure using urea thermal hydrolysis (DP). The TPR profile of this ref-
erence sample shows a single broad peak in the range 130–350 ◦C (the major part in the
range 170–300 ◦C) centered at 260 ◦C, and the calculated value of hydrogen consumption is
close to the stoichiometric one calculated for the complete reduction of CuO to metallic Cu.
Reduction of the dried chrysocolla-like catalysts, 10Cu-110 and 3Cu-110, proceeded at con-
siderably higher temperatures from 200 ◦C up to 350 ◦C (temperatures of the major range
increased with a Cu loading decrease), with the reduction peak maximum centered between
295 and 315 ◦C, respectively (Figure 9a). It should be pointed out that the calculated value
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of hydrogen consumption is half as much against the stoichiometric one for both samples.
The almost symmetric broad reduction peaks for the calcined chrysocolla-like catalysts
are shifted to lower temperatures of 150–280 ◦C, the maximum centered at about 250–255
◦C, being independent of Cu loading (Figure 9b). A similar decrease in the reduction
temperature for calcined at 430 ◦C samples as compared with a dried one was observed
earlier [78], and it was attributed to formation of the highly dispersed silica-supported CuO
particles due to the thermal dehydration of Cu hydrosilicate under calcination. Our TEM
observation of the appearance of nanoparticles smaller than 4 nm (Figure 7b) and very
weak XRD reflection of the CuO phase in the XRD pattern of the sample 15Cu-300 (Figure 4)
is the evidence in favor of this assumption. Moreover, the values of hydrogen consumption
for the calcined samples decreased (Figure 9b). The values of hydrogen consumption by
chrysocolla-containing catalysts, both dried and calcined, exceed the values required for
reduction of Cu2+ to Cu0. We proposed [74] that increased hydrogen consumption could
be due to formation of the surface Si–O–H groups instead of the bridge bonds Si–O–Cu
destructed during a complete reduction in chrysocolla with hydrogen. Previously [78],
formation of additional silanol groups was revealed as the increase in the intensity of the
band at 3740 cm−1 in the DRIFT spectra during reduction in chrysocolla-like phases in
pure hydrogen. Therefore, the ratio H2:Cu > 1 may be attributed to the reduction of the
chrysocolla-like structure. It should be mentioned that for the similar sample calcined at 600
◦C, the value of the ratio H2:Cu was in agreement with the one calculated for the complete
reduction of CuO to metallic Cu, and it has been ascribed to a reduction in X-ray amorphous
CuO nanoparticles [5]. The TPR analysis revealed considerable distinctions in the reducibil-
ity of the Cu2Si2O5(OH)2/SiO2 and CuO/SiO2 samples, as well as its variations depending
on the Cu loading and calcination temperature of the Cu2Si2O5(OH)2/SiO2 catalysts, which
could be one of the reasons for the different catalytic behavior in the hydrogenation process.
A partial reduction to metallic Cu seems to be possible at the reaction conditions used in the
present work. The metallic Cu0 nanoparticles and Cu+ species were observed previously in
the similar catalysts used at the similar hydrogen pressures and temperatures for one-pot
hydroamination of 5-HMF with nitro-compounds [76]. On the other hand, we also revealed
that the fast selective reduction of both nitrobenzene and p-dinitrobenzene to amines with
molecular hydrogen occurred on the silica-supported Cu catalysts that were not subjected
to preliminary reduction [76].
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Figure 9. TPR profiles of the Cu2Si2O5(OH)2/SiO2 catalysts dried and calcined at different tem-
peratures (a) and differed in Cu loading (b), as well as CuO supported on silica by the deposition-
precipitation procedure using urea thermal hydrolysis (8Cu/SiO2-DP).

When the results of the physico-chemical characterization of materials are compared
with the data on their catalytic behavior in the selective hydrogenation of TNB to amines, it
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is apparent that the following scheme of the catalytic process may be proposed depending
on the catalyst’s composition (Figure 10).
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Figure 10. Scheme of possible catalyst transformations under reaction conditions and the associated
catalytic formation of amines.

The small isolated lamellar chrysocolla-like surface species (Cu2Si2O5(OH)2·xH2O)
arising in the course of the synthesis of the sample with a low Cu loading are highly stable
to reduction with hydrogen (Figure 9a) and show low activity in TNB hydrogenation to
amines (Figure S4a). They exhibited the significant catalytic activity in TNB hydrogenation
only after calcination at 300 ◦C (Figure 3a,b and Figure S4b) when the appearance of
coordinatively unsaturated Cu2+ ions became possible due to partial dehydration and
dehydroxylation of the chrysocolla surface [74,77–80]. The sample 3Cu-300 catalyzed the
slow reduction in only one nitro group with a low selectivity (Figure 3a), which may be
due to the parallel occurrence of other TNB transformations [62–67,70,71,81] both on the
chrysocolla and silica surface. Prolonged treatment with H2 at reaction conditions (170 ◦C,
1,3 MPa) may result in the slight reduction in the catalyst’s surface with formation of the Cu+

sites for further DNA reduction to NPDA (Table S1, catalyst 3Cu-300). When Cu loading is
doubled (sample 6Cu-300), the number and the surface of chrysocolla nanoparticles can be
increased, enhancing DNA formation due to inhibiting TNB adsorption and side reactions
on the active silica surface via interaction with Cu2+ or (and) covering with the chrysocolla
species. In consequence of this, the TNB conversion decreases, whereas the selectivity
of slow hydrogenation of nitro groups considerably increases (Figure 3b). Moreover,
due to easier material reducibility (Figure 9b), the surface Cu+ and Cu0 active sites for
hydrogenation of the second and third nitro groups can appear at the reaction conditions.
The reflections of metallic copper were observed in the XRD pattern of the catalyst, similar
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to 12Cu-300 used in hydroamination of 5-HMF with aromatic nitro compounds at reaction
conditions that are fairly analogous to those applied in the present work (150–170 ◦C, initial
hydrogen pressure of 1.0 MPa, THF as a solvent) [87]. Both Cu0 and Cu+ surface species
were revealed in this catalyst by the deconvolution of the Cu2p3/2 Auger peak in the Cu
LMM XAES spectrum [87]. The further increase in Cu loading can give rise to a larger
number of the chrysocolla nanoparticles and enhance their reducibility in the range of
170–200 ◦C (Figure 9b), which results in the higher TNB conversion and selectivity to TAB
in considerably shortened reaction times (Figure 3c,d). It should be figured out that the
initial calcined catalytic materials with a high Cu loading can already contain copper in the
electronic state Cu+. Deconvolution of the Cu2p3/2 XPS spectrum of the catalyst similar
to 12Cu-300 revealed a low intensity peak at 932.2 eV attributed to Cu+ [87]. The relative
concentration of Cu+ was estimated to be 8%.

Calcination of the materials at 600 ◦C may result in the almost complete decom-
position of the chrysocolla phase to X-ray amorphous CuO and SiO2, as was observed
previously [75]. No diffraction peaks of Cu-related phases were observed after calcination
at 600 ◦C, while the bands due to Cu phyllosilicate in FTIR spectra were still observable,
with the exception of the δOH band. By this means, the numerous coordinatively unsatu-
rated Cu2+ sites arise on the phyllosilicate surface, forming grain boundaries with highly
dispersed CuO species. Such structures seem to possess extremely high catalytic activity in
hydrogenation of nitro groups in TNB.

The following possible scheme of TNB hydrogenation to aromatic amines can be
proposed (Figure 11):
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3. Materials and Methods
3.1. Materials and Synthesis

Silica-supported chrysocolla-like Cu2Si2O5(OH)2/SiO2 materials were prepared by the
method of deposition–precipitation using urea (DPU) in accordance with the previously de-
scribed procedure [74]. The commercial meso-macroporous silica carrier
(SBET = 98 m2g−1; Vpore = 1.05 cm3g−1) (KhimMed, Moscow, Russia), urea (Acros Organics,
Geel, Belgium), and Cu(NO3)2·3H2O (Aldrich) were used for synthesis. A suspension of
silica in an aqueous solution of the required mass of urea and Cu(NO3)2 was heated to
92 ◦C and kept at this temperature for 8 h. The resulting solid was separated by centrifug-
ing at room temperature, washed with distilled water, and was consequently dried in a
rotor evaporator and in an oven. Thermal treatment of dried samples were consequently
performed at 110 ◦C, 300 ◦C, and 600 ◦C for 4 h. Cu loading in the samples was varied
from 3 wt% to 15 wt%, and the upper loading limit is due to the formation of a CuO phase
during the material calcination at 300 ◦C. The synthesized materials were designated as
ACu–T, where A is a Cu loading and T is the temperature of the final thermal treatment, ◦C.

3.2. Characterization of Materials

The XRD analysis was performed using an ARL X’TRA (Thermo Fisher Scientific,
Waltham, MA, USA) diffractometer equipped with a theta–theta goniometer (CuKα radiation,
2θ = 5◦–70◦, a scanning rate 1◦ min−1, CCDC data files). FE-SEM Hitachi SU8000 (Tokyo,
Japan) field-emission scanning electron microscope and TEM Hitachi transmission electron
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microscope was used to observe the sample morphology, and images were acquired at the
100 kV accelerating voltage in the bright-field TEM mode. EDX studies were carried out using
an Oxford Instruments X-max EDX system (Abingdon, UK). The N2 adsorption–desorption
isotherms were obtained using an ASAP 2020 Plus unit (Micromeritics, Norcross, GA, USA)).
To determine the textural characteristics, we performed an isotherm analysis followed the BJH
and DFT methods [74]. Reducibility of the samples was studied by temperature-programmed
reduction with hydrogen (TPR-H2); the conditions were as follows: 5%H2/Ar (30 mL min−1),
heating ramp 10 ◦C min−1 up to 500 ◦C.

3.3. Catalytic Activity Test

The samples were tested in the selective TNB hydrogenation in batch mode. A 100 mL
laboratory autoclave with Teflon insertion was poured with reaction mixture (tetrahydrofu-
ran (THF)—15 mL, TNB—0.200 g, 0.100 g of eicosane (internal standard for GLC)—0.100 g,
a catalyst—0.100 g, pure H2 (the initial pressure 0.5–1.3 MPa), and then heated to the reac-
tion temperature of 150–170 ◦C. Mass ratio TNB:catalyst was 2:1, while molar ratio TNB:Cu
varied from 4.1 to 20.7 depending on Cu loading. In the experiments on the stability of
the catalytic properties, the reaction conditions differed slightly: 30 mL of THF, 0.400 g of
TNB, 0.200 g of catalysts. Intermediate washing of a sample and an autoclave system with
THF for 1 h was used between cycles. The GCL analysis of the liquid probes, which were
withheld from the reactor several times during the reaction process, was performed using
a CrystaLux 4000M GLC instrument (a 30 m × 0.25 mm capillary S2 column Optima-1,
Macherey-Nagel, Düren, Germany) in the temperature-programmed mode (initial heating
to 150 ◦C, keeping at this temperature for 6 min, heating from 150 to 240 ◦C at the rate
of 20 ◦C min−1, and keeping at 240 ◦C for 10 min). In addition to 1,3,5-triaminobenzene
(TAB), two other amine intermediates were revealed: 3,5-dinitroaniline (DNA), and 5-
nitrophenylene-1,3-diamine (NPDA) (Figure 11). The changes in the relative concentrations
in the reaction system TNB–DNA–NPDA-TAB with time, which were corrected to the area
of a standard peak in an initial reaction mixture, were used to calculate the TNB conversion
and the selectivity to the individual amines.

It should be mentioned that the reduction of trinitroarenes with molecular H2 is a
complicated process resulting in the formation of intermediates and products that cannot
be detected using GLC [62–67], yet we considered only amines that can be considered to be
useful chemicals.

4. Conclusions

The catalysts with a Cu loading of 3–15 wt% consisting of chrysocolla-like structured
nanoparticles placed inside silica mesopores have first been prepared on the commercial
meso-macroporous silica carrier with a low surface area and were tested in TNB reduction
with hydrogen at mild conditions. Catalysts with a Cu loading of 9–15 wt% are first shown
to possess high catalytic activity at 170 ◦C and the initial H2 pressure of 1.3 MPa that makes
it possible to transform trinitrobenzene to amines as major products in organic solutions
(concentration 13 g/L) in a matter of 1–2 h at a large mass ratio TNB:catalyst = 2:1. We have
successfully performed the hydrogenation of trinitrobenzene on the catalysts based on the
Cu2Si2O5(OH)2/SiO2 materials that were only calcined preliminarily at 300 or 600 ◦C. in
situ reduction in a reaction mixture seems more preferable than any separate reduction
step, especially for an industrial process, as well as for the handling and storage of catalysts
bearing so easily oxidized Cu nanoparticles.

The presented results bring to engineering and scientific society the potential of Cu
phyllosilicate catalysts for the utilization of trinitroaromatic compounds via chemical reduc-
tion with catalytic hydrogenation to valuable amines in a batch mode system. Moreover,
the catalyst can be used 2–3 times after separation from a reaction mixture. Taking into
account the obtained results and the low cost of the prepared Cu2Si2O5(OH)2/SiO2 catalytic
material, its application for a remediation treatment system, which is based on combining
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adsorption and chemical reduction technologies, makes sense to be considered and studied
more precisely at a later time.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/catal14100686/s1, Figure S1. XRD patterns of the ini-
tial dried material (a) and the materials calcined at 300 ◦C (b); Figure S2. N2 adsorption–desorption
isotherms; Figure S3. N2 adsorption isotherms of high resolution; Figure S4. Dependence of the TNB
conversion (X) and selectivity to individual amines (Si) versus reaction time for the samples with
a Cu loading 6.0 wt.% dried (a) and calcined at 300 ◦C (b). Samples prepared on the commercial
silica with SBET = 300 m2g−1; Table S1. Results of recycling tests of synthesized material (calcined
3Cu-300).
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