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Abstract: Hydrochar, an attractive member of the carbonaceous materials, is derived from biomass
and projects great potential in peroxymonosulfate (PMS) activation, but has not been studied much.
Herein, by using the large-scale cultured Chlorella vulgaris and field-collected bloom algae, a series of
porous hydrochar was synthesized via a facile hydrothermal carbonization reaction, while Co doping
significantly increased their specific surface areas, carbonization degree, and surface functional
groups. These Co-doped hydrochar (xCo-HC, x: amount of the Co precursor) could efficiently
activate the PMS, resulting in nearly 100% removal of five common paraben pollutants within 40 min.
A dosage of 0.2Co-HC of 0.15 g/L, a PMS concentration of 0.6 g/L, and an unadjusted pH of 6.4 were
verified more appropriately for paraben degradation. The coexistence of Cl−, SO4

2−, and humic acid
inhibited the degradation, while HCO3

− showed an enhancing effect. No observable change was
found at the presence of NO3

−. Quenching results illustrated that the produced •SO4
− during the

conversion of doped Co3+/Co2+ acted as the dominant active species for paraben degradation, while
•O2

−, 1O2, and •OH contributed relatively less. The algae-based hydrochar potentially facilitated
the electron transfer in the xCo-HC/PMS system. Overall, this study develops a new strategy for
resource utilization of the abundant algae.

Keywords: algae-derived hydrochar; PMS activation; paraben degradation; Co doping

1. Introduction

Parabens are a series of p-hydroxybenzoic acid esters with different alkyl or aryl
groups. Due to the broad antimicrobial spectrum and chemical stability, parabens have
been extensively used as preservatives in packaged foods, cosmetics, pharmaceuticals,
and personal care products. For example, in food and pharmaceuticals, the concentration
of parabens usually ranges from several ng/g to hundreds of µg/g [1], while up to 0.4%
of a single paraben or 0.8% of the paraben mixture is allowed to be added in European
cosmetics [2]. The large consumption and inappropriate disposal of paraben-containing
products have unavoidably released parabens into the environment, resulting in their
high detection frequency and concentrations in various water bodies, such as wastewater,
surface water, seawater, groundwater, and drinking water [3–5]. Even in human urine,
breast milk, serum, and placenta of pregnant women, parabens were detected at rela-
tively high concentrations [6,7]. However, accumulative toxicological studies evidenced
paraben exposure-associated health risks, including hepatotoxicity [8], neurotoxicity [9,10],
carcinogenicity [11], and teratogenicity [12]. More seriously, parabens are deemed as
endocrine-disrupting chemicals, which can potentially interfere with the hormonal system
of the organisms, and thereby cause hormone dysfunction, impaired fertility, increased risk
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of breast cancer, and so on [12–14]. Considering the widespread occurrence and adverse
effects of parabens, developing effective technologies to remove them from the aquatic
environment has become imperative.

In recent years, peroxymonosulfate (PMS)-based advanced oxidation process (PMS-
AOP) has sparked extensive research interests in eliminating the organic pollutants from
waters. Depending on the produced reactive species by activating PMS, such as sulfate
radical (•SO4

−), hydroxyl radical (•OH), superoxide radical (•O2
–), and singlet oxygen

(1O2), superior removal efficiency can be achieved at relatively wide pH range and com-
plicated conditions [15]. More notably, •SO4

− possesses higher redox potential (2.6–3.1 V)
and a much longer life span (30–40 µs) compared to •OH (1.9–2.7 V, <1 µs), which renders
the PMS-AOP strategy more advantageous than other AOP processes [16]. Cobalt-based
catalysts show extraordinary effects in PMS activation due to the high redox potential
of Co3+/Co2+ (E = 1.82 V) [17]. However, most of them are easily aggregated or tend to
leach the toxic cobalt ions into the waters, which limits their applications. In this regard,
many carbonaceous materials, such as graphene, carbon nanotubes, activated carbon, and
biochar, have been explored as matrices for uniformly loading the cobalt and inhibiting
the leaching, assisting the PMS activation [18–20]. Among these studied carbonaceous
materials, low-cost biochar, which includes hydrochar and pyrochar, is considered one
of the most promising and sustainable candidates [21,22]. Pyrochar is typically obtained
by thermal conversion of the biomass at 300 to 800 ◦C under inert gas, while hydrochar
is prepared by comparatively mild hydrothermal carbonization (HTC) at 150–250 ◦C and
self-generated pressure without drying the wet biomass beforehand [23]. Compared with
its more popular sibling, pyrochar, hydrochar retains abundant oxygen-containing groups
and has more merits in environmental friendliness and energy consumption. However,
less attention has been paid to its utilization in PMS activation.

Due to the fast growth rates, the photoautotrophic microalgae can be easily cultured
with superior CO2 fixation capacity and no direct competition for agricultural land [24]. In
terms of the algae-bloomed water bodies, harvesting and further treating the massive algae
biomass is urgently needed. Meanwhile, microalgae are enriched with N, S, and P elements,
which facilitates the formation of N, S, and P self-doped carbon materials without extra
precursors. To date, only a few studies have focused on synthesizing microalgae-derived
hydrochar, and these have only explored its application in environmental remediation
by adsorption [25,26]. The potential of abundant microalgae-based hydrochar in loading
transition metals as the PMS activator has barely been explored.

Herein, using large-scale cultured algae (Chlorella vulgaris) and field-collected bloom
algae as biomass, cobalt-doped hydrochar (Co-HC) was synthesized via a facile one-step
hydrothermal reaction and further employed as a PMS activator to degrade five commonly
used parabens: methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), butyl
paraben (BuP), and benzyl paraben (BzP). Based on the activation performance of the
synthesized Co-HC, the effect of hydrothermal condition, Co doping level, catalyst and
PMS dosage, and the initial concentration of paraben were studied. The influence of
solution pH, co-existing anions, and natural organic matter on paraben degradation was
also investigated. Moreover, quenching experiments for identifying the dominant active
species were carried out to unveil the mechanism. In general, this study would be helpful
to explore the potential of the algae-based hydrochar in PMS activation and advance the
understanding of paraben removal in the AOP process.

2. Results and Discussion
2.1. Characterization of the Catalysts

The morphologies of the synthesized pristine HC and Co-doped HC were analyzed
by field emission scanning electron microscopy (FESEM). As shown in Figure 1a,b, both
algae-derived carbon materials showed hierarchical porous structures. By careful observa-
tion at higher magnification (Figure 1c,d), more nanopores were found to be embodied in
Co-doped HC, which could be expected to provide more active sites for catalyzing the PMS,
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and also facilitate the penetration of the pollutant. Microalgae are known to accumulate el-
emental carbon (C) in lipids and carbohydrates, nitrogen (N) in proteins, phosphorus (P) in
nucleic acids and polyphosphate pools, and sulfur (S) in sulfur-containing amino acids [24].
Here, the energy dispersive spectrometer (EDS) result illustrated that the elements of C, N,
O, S, and Co were uniformly dispersed in 0.2Co-HC (Figure 1e), suggesting the successful
self-doping of N, S, and exogenous doping of Co in the algae-based hydrochar. The non-
observed P might be due to its low content in the algae Chlorella vulgaris. By using a flame
atomic absorption spectrometer, the content of Co doping was measured to be 18.85 mg/g
(i.e., 1.885 wt.%) in 0.2Co-HC.
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Figure 1. FESEM images of algae-derived (a,c) HC and (b,d) 0.2Co-HC under different magnifications.
Both materials were synthesized at 180 ◦C for 12 h. (e) The EDS elemental mapping of 0.2Co-HC.

N2 adsorption-desorption isotherms give more information about the porous struc-
tures of the as-prepared materials. In Figure 2a, both HC and 0.2Co-HC exhibited type IV
isotherms with H3 hysteresis loops, demonstrating the existence of mesopores. During the
HTC process, a series of carbonization reactions (e.g., hydrolysis, dehydration, decarboxy-
lation, condensation, polymerization, and aromatization) occurred to the algae components
in a parallel network, contributing to the generated micropores and mesopores in HC and
0.2Co-HC [27]. Based on their BJH pore size distribution (Figure S1), approximately 22 nm
pores were observed in 0.2Co-HC, while HC had approximately 60 nm pores. In conjunc-
tion with the SEM analysis, it is clear that Co doping promoted the formation of more
mesopores in 0.2Co-HC, consequently increasing its specific surface area to 19.14 m2/g
compared to the pristine HC (5.59 m2/g) (inset of Figure 2a).

XRD diffraction patterns of HC and 0.2Co-HC are delineated in Figure 2b, where
a broad peak centered at about 22.8◦ is noted for each, indicating their amorphous car-
bon structures [28]. The absence of a cobalt-related peak in 0.2Co-HC suggested that
Co had been potentially doped into the carbon network, instead of forming any oxides
on the surface. Both Raman spectra of HC and 0.2Co-HC displayed two characteristic
peaks at 1360 cm−1 (D band) and 1580 cm−1 (G band) (Figure 2c), corresponding to the
defect/disordered carbon and crystalline graphitic carbon, respectively. Compared to HC
(ID/IG = 0.81), the lowered intensity ratio of 0.2Co-HC (ID/IG = 0.77) revealed its increased
graphitization degree [29]. As a Lewis acid, the added Co(NO3)2 precursor might be capa-
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ble of catalyzing the HTC process, resulting in the enhanced carbonization of the obtained
material. According to an earlier study, the enhanced graphitization degree of the Co-doped
hydrochar means more sp2 carbons with plentiful free-flowing π electrons existed, which
could possibly improve its electronic conductivity [19,29]. In order to confirm that, the
electrochemical impedance tests were performed, and a smaller arc radius was portrayed
by 0.2Co-HC (Figure S2), reflecting its minimized electron transfer resistance.

The surface functional groups of the synthesized materials were scrutinized by FTIR.
As displayed in Figure 2d, both the pristine HC and 0.2Co-HC had a peak at 698 cm−1, repre-
senting the triazine units [23]. Meanwhile, hydroxyl groups (-OH) (3418 cm−1, 1633 cm−1),
N-H (3284 cm−1), nonpolar alkyl-CH2 (2929 cm−1, 2860 cm−1), unsaturated aromatic
C=C/C=O (1531 cm−1, 1456 cm−1), phenolic C-OH (1396 cm−1), and aliphatic C-O-C
(1239 cm−1) were also exhibited [15,30,31], implying that hydrochar contains abundant
surface function groups. It is notable to see that Co doping intensified these functional
groups in 0.2Co-HC relative to the pristine HC, especially the C-OH and C-O groups, which
was verified to facilitate the PMS activation [30].
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Figure 2. (a) N2 adsorption–desorption isotherms of HC and 0.2Co-HC. Inset is their measured
specific surface area. (b–d) is XRD diffraction patterns, Raman spectra, and FTIR spectra of HC and
0.2Co-HC, respectively.

XPS analysis was used to examine the chemical states of the hydrochar. The survey
spectra disclosed the main elements in HC and 0.2Co-HC (Figure 3a), which were C, N, O,
and S. Different from HC, Co only existed in 0.2Co-HC, further confirming its successful
doping. The C 1s spectra of HC and 0.2Co-HC portrayed three deconvoluted peaks at
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284.8 eV (C-C/CHX/C=C), 286.0 eV (C-OH/C-N), and 288.1 eV (C=O) (Figure 3b). Their
relative atomic percentages are listed in Table S1. For the N 1s spectra, the split three peaks
(399.2 eV, 400.0 eV, and 400.7 eV) of both hydrochar could be ascribed into pyridinic N,
pyrrolic N, and graphitic N, respectively (Figure 3c). As a result of the Co doping, a notable
discrepancy occurred to their contents in pristine HC and 0.2Co-HC, showing significantly
increased pyrrolic N, with decreased pyridinic N and graphitic N in 0.2Co-HC (Table S1).
The O 1s profiles of the hydrochar could also be fitted into three peaks at binding energies
of 531.3 eV, 532.1 eV, and 533.3 eV (Figure 3d), attributable to C=O, C-O-C/C-OH, and
N−O, respectively [32,33]. Co doping was potentially conducive to the formation of C=O,
leading to its increased content in 0.2Co-HC (Table S1). Both S 2p spectra of the pristine HC
and 0.2Co-HC were decomposed into C–S at 163.6 eV and C-SOx at 167.5 eV (Figure 3e) [34].
Figure 3f shows the Co 2p spectrum of 0.2Co-HC. The deconvoluted peaks at 780.4 eV and
795.9 eV were assigned to Co3+ 2p3/2 and 2p1/2, while the peaks at 781.6 eV and 797.2 eV
were associated with Co2+ 2p3/2 and 2p1/2, respectively. As can be seen, the doped Co
existed in the form of Co3+ and Co2+ in the hydrochar. The other two peaks at 785.3 eV
and 801.8 eV belonged to the associated shake-up satellite peaks of Co2+ 2p3/2 and Co2+

2p1/2 [35].
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Figure 3. XPS (a) survey, (b) C 1s, (c) N 1s, (d) O 1s, and (e) S 2p spectra of HC and 0.2Co-HC. (f) Co
2p spectrum of 0.2Co-HC.

2.2. Paraben Degradation in Activated PMS System by Co-Doped Hydrochar

The PMS activation performances of the algae-derived hydrochar were initially as-
sessed by removing MeP, the most detected paraben preservative in the environment.
Differently sourced algae (massively cultured Chlorella vulgaris and field-collected bloom
algae) were used as the feedstock for the hydrochar preparation. As shown in Figure 4a,
about 8% of MeP was adsorbed on Chlorella vulgaris-derived HC, and no further degrada-
tion by activated PMS could be observed. In contrast, Co-doped HC remarkably promoted
the MeP removal, achieving the efficiency of 98.7%, 68%, and 31%, respectively, by 0.4Co-
HC, 0.2Co-HC, and 0.1Co-HC within 20 min. When extending the reaction to 40 min,
0.2Co-HC/PMS could also degrade 98.2% of MeP. Towards MeP, all these Co-doped HC
exhibited similar adsorption capacities (~7%) to that of the pristine one, inferring that the
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Co doping primarily boosted the catalytic performance for PMS activation, rather than
enhancing the MeP adsorption. With increasing the Co doping amount, the first order
kinetic constant (K) of 0.1Co-HC, 0.2Co-HC, and 0.4Co-HC rose from 0.0186 min−1 and
0.0648 min−1 to 0.1304 min−1, indicating the great contribution of Co doping to PMS
catalysis (Figure 4b). The influences of the hydrothermal temperature and duration were
studied in Figure S3, witnessing the proper HTC condition at 180 ◦C for 12 h.
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Figure 4. Degradation of MeP in activated PMS systems by (a) massively cultured algae Chlorella
vulgaris and (c) field-collected bloom algae-derived HC and Co-doped HC with different Co contents.
(b,d) are the corresponding first-order kinetics of (a,c). (e) Degradation of different parabens by 0.2Co-
HC/PMS and (f) its first-order kinetics. ([0.2Co-HC] = 0.15 g/L, [MeP] = 10 mg/L, [PMS] = 0.6 g/L,
HC and Co-HC were synthesized at 180 ◦C for 12 h).

When using the field-collected bloom algae to synthesize the hydrochar, the Co-
doped HC(M)/PMS system was also capable of removing MeP with desired performance
(Figure 4c,d), showing the good applicability of this resource utilization of algae biomass.
Similarly, enhanced degradation efficiency and rate were attained by increasing the Co
doping amount. Although 0.057 mg/L Co (~2%) was detected to gradually leach out
(Figure S4a) in the 0.2Co-HC/PMS system, the equal amount of Co2+ as the homogeneous
catalyst could only degrade 16.5% of MeP (Figure S4b), ruling out the potential effect from
the dissolved Co. Therefore, the efficient activation of PMS should be mainly attributed
to the doped Co2+ and Co3+, whose redox cycles might initiate the PMS decomposition,
and thereby generate the active species for paraben degradation. During these processes,
the Co-doped hydrochar supporter with increased pore numbers, enhanced surface area,
and improved electronic conductivity would be significantly involved by facilitating the
penetration of paraben pollutants, providing more reaction sites, and accelerating the
electron transfer [17]. In the case of the potential Co leaching in higher doped material,
0.2Co-HC was used for the following investigation.

With regard to other paraben preservatives (EtP, PrP, BuP, and BzP), 0.2Co-HC acti-
vated PMS system also showed extraordinary removal performance (Figure 4e). Specifically,
nearly 100% of EtP was eliminated in 40 min, while the removal of PrP and BuP only needed
20 min. It is worth noting that the adsorption of these parabens on 0.2Co-HC was essentially
influenced by their structures, revealing the increased adsorption with more complicated
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side chains for the following: BzP (65.6%) > BuP (42.0%) > PrP (22.5%) > EtP (13.4%) >
MeP (7.2%). This trend was consistent with their adsorption on other graphene-family
nanomaterials (i.e., graphene oxide, multilayered graphene, graphene oxide), and believed
to be dominated by hydrophobic interaction [36]. The strong adsorption of the paraben
on 0.2Co-HC favored its degradation in the activated PMS system, eliciting the increased
degradation rate (K) from MeP (0.0645 min−1) to BuP (0.134 min−1) (Figure 4f). The excess
adsorption of BzP might cover the reaction sites, which thereby induced the decreased
degradation rate (0.0929 min−1) relative to BuP.

2.3. Effects of Different Parameters on MeP Degradation in Co-HC/PMS System

Impacts of the catalyst and PMS dosage, MeP concentration, and the initial solution
pH on MeP degradation in 0.2Co-HC/PMS system were explored since they had the
potential to dramatically influence the catalytic performance. When the dosage of 0.2Co-
HC increased from 0.05 g/L to 0.15 g/L, the removal efficiency of MeP in 40 min was
enhanced from 59.8% to 98.2% (Figure 5a), while the corresponding K was augmented
from 0.0196 min−1 to 0.0648 min−1 (Figure S5a). Higher catalyst dosage provided more
active sites for PMS activation, leading to more efficient MeP degradation [37]. Beyond
0.15 g/L, the active sites were not the limiting step anymore, manifesting the unchanged
activity of 0.3 g/L to 0.15 g/L. The effect of PMS dosage is depicted in Figure 5b and
Figure S5b. An improved degradation performance was observed when PMS concentration
increased from 0.4 g/L to 0.5 g/L. Although further increasing the PMS dosage to 0.6 g/L
and 0.7 g/L would yield more active species, the self-quenching and active site competition
between excess PMS and MeP resulted in their similar effects to the 0.5 g/L [37]. As the
concentration of MeP increased from 5 mg/L to 30 mg/L, the removal performance of MeP
declined prominently (Figure 5c), and the degradation rate (K) reduced nearly 10 times
(Figure S5c). This should be explained by the relatively insufficient active species and
probably blocked reaction sites at high concentrations of MeP [15].
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Figure 5. Impact of (a) catalyst dosage, (b) PMS dosage, (c) MeP concentration, (d) initial solution
pH, and (e) coexisting anions and HA to MeP degradation by 0.2Co-HC/PMS. (f) Four consecu-
tive experiments by reusing 0.2Co-HC. The general experimental conditions: [PMS] = 0.60 g/L,
[0.2Co-HC] = 0.15 g/L, [MeP] = 10 mg/L.
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The initial solution pH is another crucial parameter for the catalytic efficiency of the
PMS system. As shown in Figure 5d, when pH changed from 3 to the unadjusted 6.4, MeP
degradation efficiency (within 40 min) in the 0.2Co-HC/PMS system was elevated from
31.1% to 98.2%. With further increasing of the pH to 9, the efficiency gradually decreased
to 70.2%. The comparison of their degradation rates (K) pictured the trend more clearly
(Figure S5d). Here, the best degradation of MeP was observed at an unadjusted pH of 6.4,
in agreement with previous work about the highest EtP degradation at a neutral pH of 6.5
using the UV/PMS process [38]. Under acidic conditions (pH 3 and 5), the unfavorable
degradation may be attributed to the scavenging of •SO4

− and •OH by H+ (Equations (1)
and (2)) [39]. On the other hand, raising the pH above ~8.5–9 could cause a transition from
•SO4

−-dominated to •OH-dominated oxidation process, which possibly gave rise to the
lowered degradation performance at pH 9 [40]. Meanwhile, the point of zero charge (Pzc)
of 0.2Co-HC was evaluated to bed 4.43 (Figure S6). The pKa value of MeP was reported
to be 8.31 [41]. In this way, both 0.2Co-HC and MeP would be negatively charged at pH
9. The as-formed electrostatic repulsion between 0.2Co-HC, MeP, and PMS (HSO5

− and
SO5

2−) was also adverse to MeP degradation.

•SO4
− + H+ + e− → HSO4

− (1)

•OH + H+ + e− → H2O (2)

In natural water bodies, various anions and organic matter exist. To probe their effects
on paraben degradation by 0.2Co-HC/PMS, the common anions (Cl−, NO3

−, HCO3
−,

and SO4
2−) and humic acid (HA) were selected as the representatives (Figures 5e and S5e).

When 10 mM of Cl− was added in the reaction process, only 41.3% of MeP could be
removed even in 60 min, along with a much slower degradation rate (0.0071 min−1). The
markedly hindered MeP degradation might be due to the reaction of Cl− with •SO4

− and
•OH to generate the less reactive chlorine-containing species (•Cl, •Cl2−, and •ClHO−)
(Equations (3)–(5)).

Cl− + •SO4
− → •Cl + SO4

2− (3)

•Cl + Cl− → •Cl2− (4)

Cl− + •OH → •ClHO− (5)

The coexistence of SO4
2− had an insignificant effect on the final degradation efficiency

of MeP, but mildly reduced its degradation rate (Figure S5e). Compared to marginally
affected MeP degradation by NO3

−, HCO3
− speeded up its degradation noticeably. Al-

though HCO3
− may trap certain radicals (e.g., •SO4

− and •OH) (Equations (6)–(8)), the
formed •CO3

− was very selective and preferentially abate the electron-rich organics (e.g.,
MeP) [16]. HCO3

− was also reported to directly activate the PMS and produce 1O2. These
two factors may contribute to the accelerated MeP degradation.

HCO3
− + •OH → H2O + •CO3

− (6)

HCO3
− + •SO4

− → SO4
2− + •CO3

− + H+ (7)

HCO3
− + HSO5

− → SO4
2− + HCO4

− + H+ (8)

As one of the most typical natural organic matters, HA retarded the degradation of
MeP from 0.0648 min−1 to 0.0323 min−1. When coexisting with HA, the hardly adsorbed
MeP (<1%) implied that HA might occupy the 0.2Co-HC surface via strong π-π stacking,
which obstructed the interaction of 0.2Co-HC, PMS, and MeP. Additionally, HA would
compete with MeP for the reactive species (e.g., •SO4

− and •OH), thereby reducing its
removal rate [42].

The reusability and stability properties of 0.2Co-HC were demonstrated in Figure 5f.
During the four consecutive tests, the reused activator 0.2Co-HC kept an acceptable degra-
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dation efficiency of MeP (>92%), but the degradation rate gradually decreased (Figure S5f),
which might be due to the saturated adsorption of 0.2Co-HC and leaching of cobalt.

2.4. Possible Mechanism for Co-HC Activated PMS System

Quenching experiments were conducted to distinguish the contribution of differ-
ent active species to MeP degradation in a 0.2Co-HC-activated PMS system. Methanol
(MeOH) was applied to quench both •OH and •SO4

− (K•SO4
−

/MeOH = 1.1 × 107 M−1 s−1,
K•OH/MeOH = 9.7 × 108 M−1 s−1), while tert-butanol (TBA) was targeted on •OH
(K•SO4

−
/TBA = (4–9.1) × 105 M−1 s−1, K•OH/TBA = (3.8–7.6) × 108 M− 1 s−1) [43]. Ben-

zoquinone (BQ) and L-histidine (L-his) were employed as the quenching agents for the
corresponding •O2

– (K = 1.0 × 109 M−1 s−1) and 1O2 (K =3.2 × 107 M−1 s−1) [17]. As
illustrated in Figure 6a, the addition of MeOH (0.1 and 0.2 M) dramatically suppressed
the MeP elimination, but TBA had limited impacts. These results suggested that the pro-
duced •SO4

− by 0.2Co-HC-activated PMS may work as the main reactive species for MeP
degradation, while •OH played a minor role. The specific signals of •OH and •SO4

−

detected in the electron paramagnetic resonance (EPR) spectrum of the 0.2Co-HC/PMS
system further identified their generation (Figure 6b). When 1 and 5 mM of BQ was added,
the degradation of MeP was inhibited to only ~67% in 60 min, and L-his brought about
the gradually decreased MeP degradation. Figure 6c,d verified the production of •O2

– and
1O2, so it is reasonable to conclude that they could participate in the degradation process,
but contribute relatively less than •SO4

−. The signals of TMPO- 1O2 adduct were notably
intensified with the increased duration, reflecting the accumulation of 1O2. In contrast to
that, the EPR signals of •O2

− did not show an obvious change with time, possibly due to
its fast conversion to 1O2 (Equations (9)).

2•O2
− + 2H2O → 1O2 + H2O2 + 2HO− (9)
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Figure 6. (a) The effects of MeOH, TBA, BQ, and L-his on MeP degradation in 0.2Co-HC/PMS system.
([0.2Co-HC] = 0.15 g/L, [PMS] = 0.6 g/L, [PMS] = 10 mg/L). (b) DMPO—•OH and DMPO—•SO4

−,
(c) DMPO—•O2

−, and (d) TMPO-1O2 EPR spin trapping spectra of 0.2Co-HC/PMS system.
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In order to investigate the origin of these active species, XPS analysis was carried out
on the used 0.2Co-HC material. Compared to the fresh sample (Figure 3), the Co 2p and N
1s spectra of the reacted 0.2Co-HC showed an observable difference (Figure 7, Table S1),
emphasizing their active involvement in the reaction. Notably, the proportion of Co3+

increased and Co2+ conversely decreased, indicating a potential redox cycle between Co3+

and Co2+. Meanwhile, the content of the pyrrolic N significantly decreased from 67.4% to
43.7% after the reaction, pointing out its possible function as the Co binding sites [29].
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Based on the above results, the underlying mechanism for PMS activation by Co-doped
hydrochar was proposed in Figure 8. During the HTC process, Co ions may be mobilized
in the formed hydrochar by coordinating with pyrrolic N sites. Since the redox potential of
Co3+/Co2+ (E = 1.82 V) is higher than that of HSO5

−/•SO5
− (E = 1.10 V), the doped Co2+

will react with HSO5
− to produce •SO4

− and •OH (Equations (10) and (11)). Meanwhile,
Co3+ will be reduced to Co2+ by PMS with the resultant formation of •SO5

− (Equation (12)).
Considering the enhanced carbonization degree and surface function groups, the Co-doped
hydrochar could not only facilitate the electron transfer but also promote the formation of
•O2

− and 1O2 via Equations (9) and (13)–(15). Depending on these generated active species
(•SO4

−, •SO5
−, •OH, •O2

−, 1O2, etc.), the Co2+- and Co3+-doped hydrochar maintained
the high utilization of PMS and effectively degraded the paraben preservatives.

Co2+ + HSO5
− → Co3+ + •SO4

− + OH− (10)

•SO4
− + H2O → H+ + SO4

2− + •OH (11)

Co3+ + HSO5
− → Co2+ + •SO5

− + H+ (12)

Co-HC + O2 → •O2
− + Co-HC+ (13)

•OH + H2O2 → •HO2 + H2O (14)

•HO2 → •O2
− + H+ (15)
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3. Materials and Methods
3.1. Reagents and Chemicals

Potassium peroxymonosulfate (PMS, KHSO5 ≥ 42.8%), p-benzoquinone (BQ), L-
Histidine (L-His), and Nafion (5 wt.%) were purchased from Aldrich (Shanghai, China).
Cobalt nitrate hexahydrate (Co(NO3)2·6H2O, 99.99%), propyl paraben, and butyl paraben
were purchased from Macklin Chemical Technology Co., Ltd., (Shanghai, China). Methyl
paraben, ethyl paraben, benzyl paraben, sodium chloride, sodium sulfate, sodium bicar-
bonate, sodium nitrate, methanol (MeOH), tert-butanol (TBA), and nitric acid were bought
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Humic acid was obtained
from Tianjin Guangfu Fine Chemical Research Institute. In order to check the applicability
of the method, the massively cultured Chlorella vulgaris and field-collected bloom algae
were chosen as the precursors for hydrochar synthesis. Chlorella vulgaris powder was
attained from Shenzhen Yide Biotechnology Co., Ltd. (Shenzhen, China). The bloom algae
were collected from a wild pond in Wuhan, China, and the dominant species was identified
to be Microcystis sp (93.32%). The properties and pre-treatment method of the collected
algae could be referred to in our earlier report [34]. Ultrapure water (18.25 MΩ cm−1) was
used in this work.

3.2. Synthesis of the Catalysts

The hydrothermal reaction was carried out in a Teflon-lined autoclave. Before the
reaction, the algae powder was pre-treated with a nitric acid solution to break the cell
well. Typically, 2 g of the algae powder (Chlorella vulgaris) was immersed in 100 mL of
nitric acid solution (4 M) under continuous ultrasonication for 1 h, and then washed
with water by centrifugation until the pH became neutral. The obtained precipitate was
added with 40 mL water, along with a certain amount of Co(NO3)2·6H2O (0.1 g, 0.2 g, and
0.4 g). After being stirred for 30 min, the mixture was transferred to the autoclave for a
hydrothermal carbonization reaction. The hydrothermal temperature varied at 160, 180 ◦C,
and 200 ◦C, respectively. The duration lasted for 6, 12, and 18 h, individually. Without
specific indication, the materials were synthesized at 180 ◦C for 12 h. When cooling down
to room temperature, the obtained powder was collected by centrifugation at 10,000 rpm
for 15 min, washed with water and ethanol, and then dried at 60 ◦C overnight. According
to the added amount of Co(NO3)2·6H2O, the synthesized products were named 0.1Co-HC,
0.2Co-HC, and 0.4Co-HC. Meanwhile, the hydrochar prepared via the same method but
without Co(NO3)2·6H2O was labeled as HC. For comparison, the same procedure was also
applied to the field-collected algae, and the obtained samples were referred to as HC(M),
0.1Co-HC(M), 0.2Co-HC(M), and 0.4Co-HC(M), respectively.
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3.3. Characterization

The morphologies of the synthesized materials were examined by field emission-
scanning electron microscopy (FESEM) (ZEISS GeminiSEM 300, Jena, Germany). The
crystal structures of the materials were investigated by X-ray diffraction (XRD) (Bruker,
Karlsruhe, Germany) at a scan rate of 5◦/min. X-ray photoelectron spectroscopy (XPS)
analysis was performed by ThermoFischer ESCALAB 250Xi (Thermo Fisher, Waltham, MA,
USA). Fourier transform infrared (FTIR) spectra were recorded by a KBr pallet technique
using a Nicolet-6700 spectrometer (Thermo Electron, Waltham, MA, USA). Raman spectra
were monitored on a DXR Raman spectrometer equipped with an Ar laser at 532 nm
(Thermo Fisher, Waltham, MA, USA). A Brunauer–Emmett–Teller (BET) measurement was
performed on ASAP2020 HD88 (Micromeritics, Norcross, GA, USA), Micromeritics. The
leaching amount of Co ions in the filtered reaction solution was directly quantified by a
flame atomic absorption spectrometer (SP-3520AA, Shanghai, China). When identifying
the doped Co content, the synthesized hydrochar samples were digested by the fresh aqua
regia at 120 ◦C for 8 h, and then measured by the flame atomic absorption spectrometer.

3.4. Catalytic Performance

PMS activation abilities of the prepared hydrochar materials were evaluated by
paraben degradation. Initially, a certain amount of the catalyst (0.005–0.03 g) was added
into 100 mL of paraben solution (10 mg/L), which was stirred for 30 min to reach the
adsorption-desorption equilibrium. H2SO4 or NaOH solution (0.1 M) was used for pH ad-
justment when necessary. Then, PMS (0.4–0.7 g/L) was added to the mixture to launch the
degradation. At a certain time interval, 4 mL of the reaction solution was taken, quenched
by 0.5 mL of methanol immediately, and then filtered through a 0.22 µm PTFE membrane.
The concentrations of the paraben residual were quantified using an Agilent 1260 high-
performance liquid chromatograph (HPLC) equipped with a C18 reversed-phase column
(Zorbax SB-Aq, Agilent, Santa Clara, CA, USA) and a diode array detector (DAD). The
injection volume was 20 µL, and the mobile phase was a mixture of methanol and water
(60:40, v/v) at a flow rate of 0.8 mL/min. The detection wavelength was 256 nm. The degra-
dation efficiency was calculated by (1 − C/C0) × 100%, where C0 and C are the initial and
residual concentrations of the treated paraben, respectively. The pseudo-first-order kinetic
model was described as Ln(C/C0) = −Kt, where K is the pseudo-first-order kinetic constant
(K). All experiments were executed at least three times to eliminate the experimental errors.

Different reaction conditions, such as catalyst and PMS dosages, pH value, the initial
concentration of paraben, as well as the different paraben species, were investigated.
The effects of co-existing anions on paraben degradation were studied in the presence of
10 mM NaCl, NaNO3, NaHCO3, and Na2SO4, respectively. Humic acid (10 mg/L) was
used as the representative of natural organic matter to check its influence on paraben
removal. Quenching experiments were conducted by using MeOH, TBA, BQ, and L-His as
quenching agents for different reactive oxidation species. Electron paramagnetic resonance
(EPR) spectra were recorded on an EMXnano spectrometer (Bruker, Karlsruhe, Germany)
by using DMPO and TEMP as the spin trappers. For the recycling experiment, the used
catalysts were collected, washed with water and ethanol, dried at 60 ◦C, and then reused
for the next run.

4. Conclusions

In summary, the Co-doped hydrochar was prepared by using the massively cultured
pure algae as well as naturally collected bloom algae as the precursors, which demonstrated
the good applicability of this facile strategy. During the HTC process, the Co doping also
facilitated the synthesized hydrochar supporter with increased pore numbers, enhanced
surface area, and functional groups, and improved electronic conductivity. When employed
as the PMS activator, these Co-doped hydrochars exhibited favorable activity in eliminating
the paraben pollutants, which was mainly ascribed to the doped Co2+ and Co3+. During the
conversion process of Co2+/Co3+, PMS was decomposed to generate the active •SO4

− for
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paraben degradation. •O2
−, 1O2, and •OH were also produced, but contributed relatively

less. This study provides a new measure and utilization of the abundant and renewable
algae biomass, which also helps the treatment of organic pollutants in waters.

Supplementary Materials: The following supporting information can be downloaded at the fol-
lowing link: https://www.mdpi.com/article/10.3390/catal14100695/s1, Figure S1. BJH pore size
distribution of the synthesized HC and 0.2Co-HC. Figure S2. EIS Nyquist plots of HC and 0.2Co-HC.
Figure S3. The influence of hydrothermal (b) temperature and (c) duration on the catalytic perfor-
mance of 0.2Co-HC/PMS. Figure S4. (a) The leached Co ions during the MeP degradation process
by 0.2Co-HC/PMS. (b) The degradation of MeP by 0.057 mg/L Co2+ and 0.2Co-HC activated PMS.
([0.2Co-HC] = 0.15 g/L, [MeP] = 10 mg/L, [PMS] = 0.6 g/L). Figure S5. The first order kinetics or
the constant K of (a) PMS dosage, (b) catalyst dosage, (c) MeP concentration, (d) initial solution pH,
and (e) coexisting anions and HA influenced MeP degradation by 0.2Co-HC/PMS. (f) The first-order
kinetic constant K of four consecutive experiments by reusing 0.2Co-HC. The general experimental
conditions: [PMS] = 0.6 g/L, [0.2Co-HC] = 0.15 g/L, [MeP] = 10 mg/L. Figure S6. PZC of 0.2Co-HC.
Figure S7. High-resolution (a) C 1s and (b) O 1s XPS spectra of used 0.2Co-HC after PMS activation;
Table S1. Atomic percentages of elements in different hydrochar.
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