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Abstract

:

Ambient condition-determined chemical CO2 fixation affords great promise for remitting the pressure of CO2 release. The construction of a microporous environment easily captures CO2 molecules around the reactive sites of the catalyst to reinforce the reaction process. Herein, multi-hydroxyl-containing hyper-crosslinked organic polymers (HCPs-OH-n) are synthesized by the polymerization of 1,4-dichlorobenzyl (DCX) and m-trihydroxybenzene in the monosaccharide form in a Friedel–Crafts alkylation hypercrosslinking process (FCAHP). By tuning the DCX ratio in the FCAHP, the structural properties can be regulated to create a more microporous surface in the HCPs-OH-n; meanwhile, the formed multi-hydroxyl species in the microporous environment could induce the easy interaction between hydroxyls and epoxides by forming a hydrogen bond, which improves the activation of epoxides during the cycloaddition reaction to synthesize the cyclic carbonates at ambient conditions. The structural properties suggest that HCPs-OH-n possess a large surface area with appreciable microporous and mesoporous distribution. As expected, the HCPs-OH-3 bearing the most abundant mesoporosity affords the highest reactivity in the chemical CO2 fixation to cyclic carbonates and is endowed with rational recoverability.
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1. Introduction


The appeal of chemically fixing CO2 to produce economically competitive cyclic carbonates stems from the wide applications for these compounds [1,2,3,4,5,6,7]. The cycloaddition reaction of CO2 and epoxides can typically be triggered using a diverse array of heterogeneous catalysts concluding zeolite, metal oxides, ion-exchanged resins, mesoporous materials, nanoporous polymers, and metalorganic frameworks (MOFs) [5,6,7,8,9,10,11,12,13,14]. However, harsh condition including high pressure (>10 atm) and temperature (>70 °C) are often required to ensure the smooth occurrence of the reaction [5,6,7,8,9]. Such a reaction condition should require additive energy consumption to supply heat, which possibly leads to increased CO2 discharge. Therefore, the development of high-performance catalysts that can be desirable for his reaction at ambient conditions, thereby avoiding the generation of additional CO2, is exceedingly desirable.



In a recent development, our research has provided a molecular-level comprehensive understanding of the CO2 cycloaddition with epoxides catalyzed by ionic liquids (ILs). This work also emphasizes the rationalization of IL-based organocatalysts for the chemical fixation of CO2 [15]. The catalytic activity of [p-ArOH-IM] I arises from the incorporation of phenolic -OH groups and nucleophilic-leaving capable I− anion. The former effectively serves as an efficient HBD to accelerate the activation of epoxide via a H-bond, while the latter acts as a hydrogen bond donor (HBD), while the latter serves as both a proficient nucleophile and an excellent leaving group, facilitating the ring-opening process to produce cyclic carbonates [15]. A similar activating influence can be observed within a dual-catalyst system involving pentaerythritol and a tetraalkylammonium halide, utilized for the CO2 coupling with epoxides [16]. Porous organic polymers (POPs) present themselves as promising materials to meet the demands of CO2 capture and conversion, owing to their appealing characteristics, including a substantial surface area, abundant porosity, a stable framework, and adaptability through easy customization [13,17]. A variety of versatile POPs have been synthesized by employing diverse functional building blocks [18,19,20,21,22]. Our recent work has demonstrated an efficient effect of dual hydroxyls for the activation of epoxides, which provides the inspiration for multi-hydroxyl-containing hyper-crosslinked organic polymers to explore the function of multiple hydroxyls species [17]. Apart from the affinity and activation of epoxides on the surface of the catalyst, the local CO2 concentration around the catalytic active sites possibly also determines the reaction progress at the dynamic level. Therefore, it should be emphasized on the local CO2 enrichment around the catalytic active sites for reinforcing the reaction kinetic process. However, a key role of micropores in CO2 conversion catalysts tends to be ignored because a micropore environment could ensure the enrichment of low-concentration CO2 in the reactive sites.



Recently, the utilization of Friedel–Crafts alkylation has been showcased for aromatic CO2-philic moiety monomers, demonstrating its application in synthesizing porous organic polymers (POPs) through a process akin to “knitting” [8]. These networks result from the extensive cross-linking of polymer monomers, where the inefficient packing of rigid and intricately shaped constituents gives rise to a porous microstructure. Therefore, the tactical synthesis of functional organic polymers with multiple hydroxyls confined into abundant micropores for reinforced CO2 capture and successive chemical conversion becomes essential and attractive.



Herein, we report the polymerization of 1,4-dichlorobenzyl (DCX) and a controlled amount of m-trihydroxybenzene as monomers in the monosaccharide form in a Friedel–Crafts alkylation hypercrosslinking process. These polymers feature intricately crosslinked organic frameworks, multiple hydroxyl groups, and finely distributed micropores, collectively contributing to their substantial surface area and pore volume. The adjusted microporous properties and abundant multi-hydroxyl groups were integrated into the functional polymers to afford the reaction microenvironment. The HCPs-OH-n were applied as multi-hydroxyl-containing hyper-crosslinked organic polymers for the chemical CO2 fixation to construct the cyclic carbonates. Under ambient conditions, the catalyst HCPs-OH-3, which contains hydrogen bond donor (HBD) functionality, has demonstrated remarkable activity, selectivity, and recyclability in the chemical CO2 fixation to form cyclic carbonates.




2. Results and Discussion


2.1. Synthesis and Characterization


The synthesis procedure for hydroxyl-functionalized supercrosslinked porous organic polymers is illustrated in Figure 1. Adjusting the ratio of the raw monomers enables the customization of the physicochemical characteristics of the resulting hydroxyl-functionalized supercrosslinked porous organic polymers. Through modulation of the proportion of m-trihydroxybenzene concerning DCX in the initial synthesis composition, a series of HCPs-OH-n samples (as detailed in Table 1) were synthesized. All HCPs-OH-n samples exhibit N2 adsorption and desorption isotherms of type II (as depicted in Figure 2a), indicative of the characteristic presence of both microporous and mesoporous structures. Nitrogen adsorption (P/P0 < 0.001) displays a significant increase, signifying the abundant presence of micropores within the material. Conversely, in the P/P0 = 0.5–0.9, nitrogen adsorption exhibits a steady rise, highlighting the formation of a mesoporous structure. In addition, the polymer HCPs-OH-n has a clear hysteresis loop in the high-pressure region (P/P0 > 0.9), indicating the presence of large cavities or cage-like pores also caused by inter-particle accumulation. It should be noted that HCPs-OH-3 afford the most obvious microporous adsorption behavior in the low-pressure region compared to other counterparts (Figure S1c), which is indicative of the more micropores in the resulting materials. Furthermore, the largest microporous specific surface area of 886 m2 g−1 can be observed for HCPs-OH-3 (Table 1), which outperform the other counterparts. Figure 2b shows the dominant mesopore size distribution curves of the supercrosslinked polymers, where the pore size of the polymer HD is between 3.4 and 4.2 nm. The elemental analysis (Table 1) reveals that the C, H content of HCPs-OH-n varies with changing monomers inside the polymer. The number of hydroxyl groups (Table 1, k) contained on the surface of the material HCPs-OH-n was determined by acid–base titration, and it was found that HCPs-OH-1 have the highest hydroxyl content.



As evident from the XRD findings (depicted in Figure 3a), the polymer networks exhibit an amorphous character, consistent with the characteristic disorderliness of polymers. To further assess the surface characteristics, we conducted XPS analyses on representative samples of HCPs-OH-3 and HCPs. The comprehensive survey spectra reveal the presence of similar elemental species, primarily composed of C and O (Figure 3b,c). In particular, the O element content HCPs-OH-3 affords a high fraction compared to the HCPs, revealing the successful incorporation of multiple hydroxyl groups. The O 1s XPS profile in HCPs-OH-3 determines a much higher intensity compared to that of HCPs [23], which further confirms the presence of the phenolic hydroxyl group of m-trihydroxybenzene in the skeleton according to the reported work. The C 1s XPS spectra (Figure 3d) are deconvoluted into three distinct peaks around 288.5, 286.5, and 285.1 eV of HCPs-OH-3 [24], indexed into Cl-C, C-C, and C-OH. It can be found that typical C-OH species can be demonstrated relative to HCPs. Taken together, the HCPs-OH-3 afford the typical multiple hydroxyl characteristics in the polymer networks, which can act as the active functional groups for triggering the activation of epoxides.



SEM images (Figure 4a–c) reveal that HCPs-OH-3 consist of irregular micrometer-sized particles. These primary particles within the HCPs-OH-3 samples exhibit interactions that lead to the formation of mixed spherical shapes and nanowire-like structures. This morphological characterization is further confirmed by TEM images (Figure 4d–f and Figure S2). Furthermore, a distinct randomly oriented microporous structure is evident, underscoring the presence of microporous features in the synthesized HCPs-OH-3. Elemental mapping images (Figure 4g–i) demonstrate a uniform distribution of elements C and O throughout the whole skeleton, indicating the successful incorporation of m-trihydroxybenzene within the polymer matrix. The thermal stability of HCPs-OH-3 polymer is evidenced by the TG profile, where the initial decomposition begins at temperatures exceeding 474 °C (Figure 5a).



The CO2 adsorption performance of HCPs-OH-n was evaluated via gas static adsorption, and the corresponding adsorption isotherms were obtained at 273 K, extending up to 1 bar (Figure 5b). The CO2 adsorption results reveal that HCPs-OH-n afford a CO2 uptake of 2.1–3.1 mmol g−1 at 273 K. Typically, the CO2 uptake behavior is closely linked to the adsorbent’s porosity, where a higher microporous surface area is conducive to greater CO2 adsorption. Specifically, among the samples, HCPs-OH-3 feature the highest microporous surface area and pore volume, facilitating enhanced CO2 adsorption. However, HCPs-OH-5 possess a higher BET and microporous surface area than HCPs-OH-2. Surprisingly, despite these attributes, HCPs-OH-5 exhibit a lower CO2 adsorption capacity than HCPs-OH-2. This discrepancy can be attributed to the stronger hydrogen bonding interactions between the -OH groups and CO2 in HCPs-OH-2, which enhances its carbon capture performance.




2.2. Catalytic Activity Analysis


The economically efficient reaction between CO2 and epoxides represents an appealing pathway to obtain cyclic carbonates, which hold significant importance in various applications, including organic synthesis, utilization as electrolyte solvents in batteries, degreasers, and fuel additives, among others [25,26]. Given the abundant presence of H-bond donor sites in HCPs-OH-n, which can facilitate the activation of epoxides, we performed the catalytic activity of the cycloaddition of epoxides with CO2 [27]. We initially selected the CO2 cycloaddition with epichlorohydrin as our test reaction to assess the optimized conditions and the corresponding catalytic characteristics of HCPs-OH-n (Table 1). To our delight, HCPs-OH-n demonstrated efficient catalytic activity in facilitating the cyclization of epichlorohydrin with CO2 when combined with tetrabutylammonium iodide (TBAI) under ambient conditions, resulting in epichlorohydrin conversions ranging from 70% to 82% (Table 1, entries 1–5). The most favorable catalytic performance, achieving an 82% conversion rate, was observed with HCPs-OH-3 when employing TBAI as the co-catalyst and maintaining a CO2 pressure of 1 bar at room temperature for a duration of 10 h (entry 3). Notably, when tetrabutyl ammonium bromide (TBAB) was used as the co-catalyst, the conversion rate remained at a respectable 74% (entry 4). To provide context, control experiments were conducted (Table 1, entries 6–10). These experiments revealed that HCPs-OH-3 exhibited minimal activity at such an ambient condition (Table 1, entry 10). Furthermore, in the absence of HCPs-OH-3, a significant reduction in substrate conversion was observed (entries 7). The above results can be deduced that the resulting excellent activity of HCPs-OH-3/TBAI might be attributed to the synergistic effect between HCPs-OH-3 and TBAI. Normally, there was trace amount of residual catalyst (FeCl3) in the HCPs-OH. For example, the Fe content was below 0.1 wt% for the sample HCPs-OH-3. The activity of FeCl3 and HCPs-OH-3 in the presence of FeCl3 was investigated to clarify the effects of the residual FeCl3 (Table S1). The yield was 81% by using HCPs-OH-3 in the presence of FeCl3 (entry 2), nearly the same as the one in the absence of FeCl3. These results indicated the rare influence of the residual FeCl3 on the reaction. Especially, the presence of functional groups -OH in HCPs-OH-3 mainly determines the enhanced catalytic activity of the reaction. The combination of homogeneous 1,3,5 phloroglucinol with TBAI showed similar activities to that of HCPs-OH-3/TBAI (Table 1, entries 3, 8). These outcomes suggest that the majority of -OH groups within HCPs-OH-3 are readily accessible and efficiently engaged. This accessibility can be attributed to the porous structure of HCPs-OH-3, which does not hinder the interaction between -OH groups and epichlorohydrin (PO). These -OH groups are capable of forming hydrogen bonds with epichlorohydrin, thereby facilitating its activation to a certain degree and promoting its subsequent conversion [28,29]. The phenolic resin rich in OH functional groups was used as a comparison sample with a significantly lower conversion rate of 62% than that of HCPs-OH-3, which confirms that the high specific surface enhances mass transfer and thus activity. Additionally, HCPs-OH-3/TBAI afford an obvious superiority in the catalytic activity compared to other counterparts with poor microporous structure properties. This factor, mainly ascribed to the microporous environment, could reinforce the CO2 enrichment around reactive active sites, thereby improving the reaction process and performance of the catalyst.



The stability and durability of a catalyst play pivotal roles in assessing its practical applicability [30,31,32,33,34,35]. To illustrate the stability and recyclability of HCPs-OH-3 in the CO2 cycloaddition of epichlorohydrin, we conducted a series of recycling experiments. HCPs-OH-3 were readily recovered through filtration and maintained its catalytic activity effectively during a five-run recycling test under ambient conditions (Figure 6a). Remarkably, the catalyst recovered in the fifth run displayed a kinetic profile nearly identical to that of the fresh catalyst throughout the reaction duration (Figure 6b), indicating minimal deactivation, even in the early stages of the reaction. This observation further underscores the excellent reusability of HCPs-OH-3 as a catalyst. Additionally, N2 adsorption isotherm data and SEM images of the recovered HCPs-OH-3 catalyst suggest that it retained its textural properties to a great extent compared to the fresh catalyst, further substantiating its impressive recyclability (Figure S3).



The epoxide substrates scope experiments were then screened using multi-hydroxyl-containing hyper-crosslinked organic polymers HCPs-OH-3 as the catalyst. Table 2 shows that the resulting reaction system was effective when in the presence of a variety of epoxides under ambient conditions (Table 2, entries 1–5). Furthermore, at 70 °C and 1 bar CO2 (entries 2, 3, 5), HCPs-OH-3 can efficiently and rapidly convert epoxides. We suggest that the constructed catalytic system successfully insert CO2 into a variety of epoxides with high yield and selectivity.




2.3. Insights into Reaction Mechanism


Numerous studies have proposed a mechanistic pathway for the cycloaddition of epoxide and CO2 triggered by hydroxyl groups [27,28,29]. In alignment with these findings, we present a similar mechanistic hypothesis (Figure 7). Firstly, the coupling reaction commences with the polarization of the C-O bond within the epoxide through hydrogen bonding interactions with the hydroxyl groups of HCPs-OH-3, which serve as Lewis acidic sites. This initial step activates the epoxy ring (1). Subsequently, the iodide anion (I−) initiates an attack on the C-O bond of the coordinated epoxides, leading to ring opening (2). The resulting oxyanion species is postulated to be stabilized by hydrogen-bond donors. Following this, the electrophilic addition of CO2 to the oxygen atom forms an alkyl carbonate anion, which subsequently undergoes ring closure to yield the corresponding cyclic carbonate. Concurrently, the catalyst is regenerated. The above analysis underscores the reinforcing effect of hydrogen bonding, with the hydroxyl groups playing a crucial role in the initial activation of the epoxide and the stabilization of intermediates and transitional states throughout the reaction. This dual function reduces both the time and pressure required for the reaction.





3. Materials and Methods


3.1. Materials and Chemicals


1,4-dichlorobenzyl (C8H8Cl2, AR), m-trihydroxybenzene (C6H6O3, AR), Iron (III) chlorideanhydrous (FeCl3, AR), and 1,2-dichloroethane (C2H4Cl2, AR) were purchased from Aladdin Industrial Corporation (Shanghai, China). Epichlorohydrin (C3H5ClO, AR), epibromohydrin (C3H5BrO, AR), glycidyl phenyl Ether (C9H10O2, AR), allyl glycidyl ether (C6H10O2, AR), and styrene oxide (C8H8O, AR) were purchased from TCI (Shanghai, China) Chemical Industry Development Co., Ltd. (Shanghai, China). All reagents (AR grade) were commercially purchased and used as received without further purification.




3.2. Synthesis of Catalysts


The synthesis of catalysts was carried out using the Friedel–Crafts alkylation hypercrosslinking process (FCAHP). The supercrosslinked organic polymers derived from polymerization of 1,4-dichlorobenzyl (DCX) and m-trihydroxybenzene with Iron (III) chlorideanhydrous as a catalyst in 20 mL 1,2-dichloroethane solvent. The synthesis process is depicted in Figure 1, and the products were named as HCPs-OH-n, where n stands for the molar ratio of DCX added. In a typical procedure, 3 mmol of DCX, 5 mmol of m-trihydroxybenzene, and 10 mmol of anhydrous Iron (III) chloride were dissolved in 20 mL of anhydrous dichloroethane under N2 protection. The above mixture was stirred for 1 h and subsequently subjected to reflux conditions at 80 °C for 24 h. Following the completion of the reaction, the resulting brown-black precipitate was isolated, filtered, and subjected to three methanol washes. It was then subjected to a Soxhlet extraction process using anhydrous methanol as the solvent at 80 °C for 24 h. The resulting products, labeled as HCPs-OH-3, were subsequently dried at 100 °C for 12 h. Additionally, the HCP samples were synthesized using 3 mmol of DCX.




3.3. Catalytic Performance Assessment


The pressurized catalytic cycloaddition of CO2 was conducted within a 25 mL Schlenk flask equipped with a CO2 balloon. In a standard procedure, the reaction occurred at ambient condition by introducing a mixture comprising 5 mmol of epoxide, 30 mg of catalyst, and 90 mg of auxiliary tetrabutylammonium iodide as co-catalysts into the Schlenk flask, which was then sealed with a CO2 balloon and maintained at the preset temperature. Following the reaction, n-dodecane (0.5 g) was introduced to an internal standard, which was diluted with ethyl acetate. Subsequently, the products were analyzed using gas chromatography. Reusability was assessed through a series of five consecutive reaction cycles. The used catalyst was extracted from the reaction solution via filtration, washed with ethyl acetate, dried in vacuum conditions, and then employed in the next reaction cycle, with the addition of fresh co-catalysts for reutilization.





4. Conclusions


In conclusion, we have successfully fabricated a series of HCPs-OH-n, which are multi-hydroxyl-containing hyper-crosslinked organic polymers with finely tunable microporous properties. These HCPs-OH-n materials exhibit high surface areas and are rich in hydrogen bond donor sites, attributes that are proven to benefit the activation of epoxides. Consequently, the constructed microporous catalysts have demonstrated remarkable efficiency in reaction of CO2 with epoxides under ambient conditions. The phenolic hydroxyl groups within these materials plays a pivotal role in facilitating the reaction, particularly when combined with tetrabutylammonium iodide. The microporous framework enhances the concentration of CO2 around the catalytically active sites, thus improving the overall catalytic performance in the cycloaddition of epoxides and CO2. Furthermore, our catalyst exhibits outstanding recyclability, allowing for five consecutive reuse cycles, and is compatible with solvent-free and metal-free conditions. Ongoing efforts are directed towards the development of even more applicable practical catalysts for ambient condition CO2 fixation.
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Figure 1. Synthesis of hydroxyl functionalized hyper-crosslinked bischloromethyl-based porous organic polymers. 
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Figure 2. N2 adsorption isotherms (a) and BJH mesopore size distribution curves (b) of various HCPs-OH materials. 
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Figure 3. (a) XRD patterns of HCPs-OH-3 and HCPs, (b) XPS surveys of HCPs-OH-3 and HCPs, (c) O1s XPS spectra of HCPs-OH-3 and HCPs, (d) C1s XPS of HCPs-OH-and HCPs. 
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Figure 4. SEM images (a–c), TEM images (d–f) of HCPs-OH-3, (g–i) Annular dark-field STEM image and corresponding elemental mapping images. 
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Figure 5. (a) TG curve of HCPs-OH-3, (b) CO2 adsorption isotherms of HCPs-OH materials. 
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Figure 6. (a) The reusability test of HCPs-OH-3 in cycloaddition of CO2 with epichlorohydrin. (b) Kinetic curves of the fresh and fifth recovered catalyst. Reaction conditions: epichlorohydrin 5 mmol, catalyst HCPs-OH-3 0.03 g, RT, 24 h, in the presence of 4.9 mol% n-Bu4NI as co-catalyst. 
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Figure 7. The proposed possible reaction mechanism for cycloaddition of CO2 with epoxide by HCPs-OH-3. 
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Table 1. Textural properties of various acidic hypercrosslinked polymers a and conversions yields in the CO2 coupling with epichlorohydrinwith b.
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	Entry
	Catalyst
	DCX (mmol)
	C%
	H%
	K c
	SBET d

(m2 g−1)
	Smicro e (m2 g−1)
	Vp f

(cm3 g−1)
	Dave g

(nm)
	Con. (%)
	Sel. (%)





	1
	HCPs-OH-1
	1
	60.5
	3.9
	7.8
	300
	414
	0.26
	3.50
	70
	99



	2
	HCPs-OH-2
	2
	62.3
	4.4
	2.9
	507
	603
	0.52
	4.08
	77
	99



	3
	HCPs-OH-3
	3
	64.8
	3.9
	2.4
	679
	886
	0.67
	4.00
	82
	99



	4
	HCPs-OH-4
	4
	64.5
	4.1
	2.0
	534
	645
	0.56
	4.20
	76
	99



	5
	HCPs-OH-5
	5
	65.8
	3.7
	1.6
	582
	680
	0.50
	3.40
	75
	99



	6
	HCPs-OH-3
	3
	64.8
	3.9
	2.4
	679
	886
	0.67
	4.00
	74 j
	99



	7
	HCPs-OH-3
	3
	64.8
	3.9
	2.4
	679
	886
	0.67
	4.00
	0 k
	0



	8
	HCPs-BA
	3
	68.9
	4.0
	-
	625
	774
	0.54
	4.18
	66
	99



	9 h
	PR
	-
	-
	-
	-
	-
	
	-
	-
	62
	99



	10 i
	1,3,5-THB
	-
	-
	-
	-
	-
	
	-
	-
	83
	99



	11
	TBAI
	-
	-
	-
	-
	-
	
	-
	-
	22
	99







a Synthetic condition: the samples prepared in solvent of dichloroethane = 20 mL, 1,3,5 benzenetriols 5 mmol, DCX x mmol, 80 °C, 24 h. b Reaction conditions: epichlorohydrin 5 mmol, CO2 0.1 MPa (balloon), catalyst 0.03 g, n-Bu4NI 0.09 g, RT, reaction time (10 h). c The number of hydroxyl groups per 1 nm2 material surface, determination of hydroxyl content by acid–base titration, d BET surface area. e Total pore volume. Micropore surface area calculated from the nitrogen adsorption isotherm using the t-plot method. f Total pore volume. g Average pore size. h Phenolic Resin. i Homogeneous 1,3,5 phloroglucinol. j n-Bu4NBr 4.9 mol%. k absence of n-Bu4NI.













 





Table 2. Substrate scope with various epoxides catalyzed by HCPs-OH-3 a.
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Entry

	
Epoxide1

	
Product 2

	
t (h)

	
Con. (%)

	
Sel. (%)






	
1

	
[image: Catalysts 14 00707 i002]
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24

	
99

	
>99




	
2
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48/15 b

	
87/81

	
>99




	
3
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48/10 b

	
95/86

	
>99




	
4
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24

	
95

	
>99




	
5
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120/24 b

	
93/96

	
>99








a Reaction conditions: epoxides 5 mmol, catalyst HCPs-OH-3 0.03 g, RT, in the presence of 4.9 mol% n-Bu4NI as co-catalyst, b 70 °C.
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