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Abstract: Hydrogen production from water electrolysis is gaining interest as a source of renewable
energy storage due to its high efficiency and low environmental impact. However, the slow kinetics
of the oxygen evolution reaction (OER) limits the overall efficiency of electrolyzer systems. This
study presents the synthesis and characterization of a novel electrocatalyst with a vertical structure,
composed of Ti3CN MXene-modified NiFe-layered double hydroxides (LDHs) supported on nickel
foam (NF) for efficient OER applications. The 1.0-LDH/3MXNF catalyst exhibits excellent electrocat-
alytic activity, achieving a low overpotential of 247 mV at a current density of 100 mA cm−2 and a
favorable Tafel slope of 67.7 mV/dec. This can be attributed to the transfer of excess electrons from
Ti3CN MXene to NiFe-LDH, which reduces the oxidation states of Ni and Fe, resulting in a strong
interfacial coupling between Ti3CN MXene and NiFe-LDHs. Additionally, the electrode exhibited
exceptional stability, maintaining constant performance with minimal potential degradation over
prolonged operation. These findings underscore the potential of hybrid LDH-MXene systems as
advanced electrocatalysts for renewable energy applications, paving the way for further innovations
in energy conversion technologies.

Keywords: Ti3CN-MXene; NiFe-LDH; collaborative interface; vertical structure; oxygen evolution
reaction

1. Introduction

With escalating global concern over environmental pollution and energy consumption,
there is an urgent need to develop clean and environmentally friendly energy storage and
conversion technologies [1–4]. Electrochemical water decomposition (EWD) technology
encompasses two half-reactions: a hydrogen evolution reaction (HER) and oxygen evolu-
tion reaction (OER), which are critical for grid-scale energy storage [5]. In alkaline media,
the OER involves a complex and slow four-electron transfer process that significantly
impacts the efficiency of the overall water electrolysis unit [6]. However, many materials
used for this purpose consist of precious metals, rendering them unsuitable for large-scale
applications due to their high cost and poor durability [7–9].

In recent years, substantial advancements have been made in the development of
non-precious metal-based OER catalysts [10–15]. Among these, layered bimetallic hydrox-
ides (LDHs), such as NiFe-LDHs [16], have demonstrated excellent OER performance in
alkaline electrolytes. The coexistence of Ni2+ and Fe3+ in NiFe-LDHs, along with their
synergistic effects, marks them as highly promising materials for energy conversion and
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storage. Moreover, the redistribution of electron density through partial charge transfer
can facilitate the oxidation of Ni2+, thereby enhancing OER catalytic activity [17]. However,
the OER activity of LDHs is limited by its inherent low conductivity and small surface area,
which result from prone agglomeration. Nanostructures can be stabilized by constructing
heterostructures with conductive substrates and LDHs [18]. Nevertheless, achieving strong
interfacial synergy typically necessitates surface treatments to introduce functional groups,
which can compromise the structural integrity and conductivity of the substrate material.

Two-dimensional layered materials, specifically MXene, have received considerable
attention in the field of energy storage and conversion [19–26]. The general formula of
MXene is Mn+1XnTx, where M represents a pre-transition metal element; A corresponds
to the main group elements, primarily from group IIIA to VIA; X is the carbon and/or
nitrogen elements; Tx denotes surface termination groups such as -OH, -O, -F, -Cl, etc.; and
n can range from 1 to 4 [27–30]. To further improve the electrochemical performance of
MXene, simple heteroatom doping (e.g., nitrogen) is an effective strategy [31]. Theoretically,
nitrogen has fewer vacant electron orbitals than carbon and exhibits better catalytic activ-
ity [32]. For instance, Shi and Liu [33] successfully employed nitrogen to replace carbon in
the lattice structure of Ti3C2Tx, resulting in increased layer spacing. Moreover, nitrogen
doping modifies the electron density of Ti3+ by filling incomplete orbitals, which lower
the energy of the valence electron system. Among various MXene materials, Ti3CNTx,
where nitrogen replaces half of the carbon, stands out. Due to its higher electronegativity
compared to carbon, the Ti-N bond is stronger than the Ti-C bond, enabling the nitrogen
side to adsorb metal cations more effectively [34,35]. This characteristic facilitates strong
interfacial coupling between LDH and MXene.

In this study, we employed a one-step hydrothermal method to construct a self-
standing electrocatalytic electrode with a multilayer structure, leveraging the properties of
Ti3CN. A three-dimensional framework was built using Ti3CN-modified porous nickel foam
(NF), which was further interfacially coupled with NiFe-LDH nanosheets, resulting in an
electrode designated as LDH/MXNF. The findings reveal a strong electrostatic interaction
between the interfaces of Ti3CN and NiFe-LDHs, enhancing the charge transfer between
LDHs and MXNF. Consequently, the as-prepared LDH/MXNF self-standing electrode
exhibits excellent OER performance, rapid catalytic reaction kinetics, and good stability.

2. Results and Discussion
2.1. Catalyst Synthesis and Structure Characterization

The LDH/MXNF catalyst was synthesized following the route illustrated in Figure 1.
Step I: Initially, m-Ti3CN was produced by etching off the Al layer from Ti3AlCN using
HF. This was followed by intercalation in the TMAOH solution to yield f-Ti3CN, which
was obtained through ultrasonication in deaerated water. The etching of the bulk MAX
material effectively produced m-Ti3CN (Figure S1), which showed no MAX characteristic
peak at 39◦ (Figure S2). This result confirms the successful removal of Al layers. After
exfoliation, the (002) peak of f-Ti3CN shifted to a smaller angle (2θ = 6.0◦) compared to
m-Ti3CN, indicating the successful formation of few-layered MXenes. Due to electrostatic
interactions, the negatively charged f-Ti3CN MXene coated the acid-treated porous NF
surface, resulting in a uniform MXene layer wrapping around the NF surface (Figure S4).
However, the MXene layer of 5MXNF exhibited cracking, likely due to its thicker structure
compared to 3MXNF. Step II: In the next stage, NiFe-LDH nanosheets were grown in situ
on the 3D MXNF framework by the straightforward hydrothermal synthesis method. In
general, urea is highly soluble in water and its prolonged hydrolysis produces CO3

2− and
OH− [36].

CO(NH2)2 + H2O → 2NH3 + CO2
NH3 · H2O → NH+

4 + OH−

CO2 + H2O → CO2−
3 + 2H+
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Figure 1. Schematic synthetic route of LDH/MXNF self-standing electrode.

The MXene surface, obtained through wet chemical etching and intercalation with
organic bases, is characterized by negatively charged oxygen-containing functional groups.
These groups can electrostatically adsorb metal cations, facilitating the precipitation and
aggregation of Ni2+ and Fe3+ on the surface of the MXene-modified nickel foam. As the
hydrothermal reaction proceeded, the hydrolysis of urea intensified, leading to an increased
concentration of OH− in the solution. This increase facilitated the crystallization of NiFe
ions, gradually forming NiFe-LDH nanosheets.

The XRD patterns shown in Figures 2a and S3a indicate that the NiFe-LDH/NF,
NiFe-LDH/MXNF, and NiFe-LDH/MCNF samples exhibit prominent diffraction peaks
corresponding to Ni monomers at 44.7◦, 52.1◦, and 76.6◦. The MXene signal is absent,
likely due to the overwhelming intensity of NF and NiFe-LDH peaks, which obscures the
MXene diffraction patterns. For the 1.0-LDH/3MXNF sample, the observed diffraction
peaks at 11.7◦, 23.2◦, 34.6◦, 39.0◦, 46.1◦, 59.9◦, and 61.2◦ correspond to the (003), (006), (012),
(015), (018), (110), and (113) lattices planes of NiFe-LDH, respectively [37]. In contrast,
the intensities and crystallinities of the 0.5-LDH/3MXNF and 0.5-LDH/5MXNF samples
are weaker due to the influence of NF and a lower concentration of metal cations used
in their preparation. The Fourier transform infrared spectroscopy with attenuated total
reflection spectra (FTIR-ATR) in Figures 2b and S3b highlight absorption peaks around
3400 cm−1 and 1636 cm−1, which are attributed to the stretching vibration of hydrogen-
bonded hydroxyl groups and the bending vibration of water molecules, respectively [38].
In addition, the absorption peak at 1350 cm−1 represents the C-O stretching vibration of the
interlayer CO3

2− [39]. The absorption peak at 2179 cm−1 corresponds to C-O stretching [40],
consistent with the layer spacing of 7.5 Å represented by the (003) peak at 11.7◦ in XRD
results. This suggests that the CO3

2− ions generated hydrothermally from urea during
synthesis act as intercalation anions, balancing the positive charge carried by the layered
hydroxides. An additional absorption peak at 2185 cm−1 further supports the presence of
CO3

2− ions. Moreover, the spectral band at 640 cm−1 indicates the successful preparation
of NiFe-LDH, attributed to the M-O vibrations in the hydroxide layers [38].

The EDS mapping of the 1.0-LDH/3MXNF sample in Figure S5 demonstrates a uni-
form distribution of Fe, Ti, N, and Ni across the nickel foam substrate. This uniformity
suggests the successful integration of the LDH material onto the MXNF framework. The
morphology and structure of NiFe-LDH nanosheets on MXNF can be effectively tuned
by varying the concentrations of Ni2+ and Fe3+ ions, as well as the amount of MXene
modification (Figure 2c–e). Notably, for the LDH/3MXNF self-standing electrode, the
average thicknesses of the NiFe-LDH nanosheets were measured to be 16.42 nm, 27.51 nm,
and 47.97 nm for metal cation additions of 0.5 mmol, 1.0 mmol, and 2.0 mmol, respectively
(Figure 2f–h). The nanosheets formed on the MXNF surface exhibited a staggered and
disordered arrangement, a result of the varying crystallization directions of nuclei origi-
nating from the initial aggregation of Ni2+ and Fe3+. This unique morphology enhances
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the availability of active sites and facilitates OER kinetics. Moreover, MXene serves as
an interfacial bridge between NiFe-LDH and NF, improving the electron transfer ability
across the electrode interface. High-resolution SEM images (Figures S6 and S7) reveal that
excessive MXene modification and elevated metal ion concentrations during hydrothermal
reactions can lead to cracks in the in situ grown LDH, resulting from the accumulation of
internal stresses. The TEM characterization revealed that NiFe-LDH nanosheets were uni-
formly and densely interlaced, forming stable 3D structures on the Ti3CN MXene surface
(Figure 2i). This configuration is expected to enhance catalytic efficiency and stability for
OER applications.
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X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical composition
and oxidation states of elements present in the 1.0-LDH/3MXNF and 1.0- LDH/NF. To min-
imize potential interference from the nickel foam substrate, the sample was ultrasonically
stripped from the substrate prior to characterization. All peak positions were calibrated
based on the C 1s peak at 284.8 eV. The XPS spectrum analysis (Figure S8) confirms the
coexistence of Ni, Fe, Ti, N, O, and C elements in the 1.0-LDH/3MXNF sample, implying
effective interfacial coupling between NiFe-LDH and Ti3CN. This finding is consistent
with observations from the SEM and TEM-EDS mapping images. In the Ni 2p spectrum
(Figure 3a), two characteristic peaks were identified at 856.14 eV and 873.77 eV, which
were attributed to the spin-orbit doublets of Ni 2p3/2 and 2p1/2 of Ni2+, respectively, ac-
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companied by accompanying satellite peaks (labeled as sat.) [37]. The Fe 2p spectrum
(Figure 3b) displayed peaks at 711.39 eV and 724.59 eV, associated with Fe 2p3/2 and Fe
2p1/2, confirming the presence of iron primarily in the Fe3+ oxidation state [38]. Addition-
ally, a satellite peak along with a pre-peak peak at 705.9 eV reinforces the identification of
Fe3+ in the catalyst [41,42]. Notably, the binding energies of the Ni 2p and Fe 2p peaks for
the NiFe-LDH/Ti3CN composite shifted lower by 0.2–0.6 eV compared to the 1.0-LDH/NF
sample. This shift suggests an increase in the electron density on the surface due to the
presence of Ti3CN, which likely facilitates electron transfer to the nickel and iron ions in
the LDH. Consequently, this phenomenon indicates a strong chemical interaction between
MXene and NiFe-LDH, whereby Ti3CN effectively modulates the surface electron density
and reduces the oxidation states of Fe3+ and Ni2+.
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2.2. Electrocatalytic Performance for OER

A The LDH/MXNF self-standing electrode was directly used as an electrocatalytic
electrode for the OER to eliminate the influence of the binder on the active site. The catalytic
performance was evaluated using a standard three-electrode setup with 1.0 M KOH as the
electrolyte. The reference electrode was calibrated in 1.0 M KOH against a reversible hydro-
gen electrode, and subsequent potential conversions were performed using the calibration
potentials (Figure S9). To further investigate the effects of MXene-modified NF and the
modulation of metal cation concentration on the electrochemical performance of the mono-
lithic electrodes, comparisons were made with samples 1.0-LDH/NF and 1.0-LDH/3MCNF,
both tested under identical conditions. The LSV compensated by iR losses was tested at
a low scan rate of 5 mV/s to minimize the capacitive background, allowing for a more
accurate assessment of OER performance. Sample 1.0-LDH/3MXNF (Figure 4a), which
utilized 1 mmol of metal ions and NF modified by a 3 mg/mL MXene dispersion, exhibited
a reduced overpotential of 247 mV at a current density of 100 mA cm−2. This represented a
more favorable performance relative to other variations in metal ion concentrations and
MXene loadings, underscoring the effective catalytic activity of the LDH/MXNF catalyst
under these regulated conditions (Figure S11). Additionally, the unique 3D porous structure
of NF facilitated higher current densities, with the LSV curve for 1.0-LDH/3MXNF display-
ing smoother characteristics at elevated current densities compared to other samples. This
smoothness indicates that gas bubbles are released from the electrode surface more rapidly,
enhancing kinetics related to electrolyte penetration, ionic transport, and the discharge
of gaseous products during electrochemical reactions. Notably, MXene alone exhibited
negligible OER catalytic performance (Figure S12), indicating that NiFe-LDH serves as
the primary active site within the self-standing electrode. In this setup, MXene primarily
serves as a coupling agent at the interfaces between the LDH and NF, facilitating electron
transfer. However, the overall catalytic activity decreased with a higher MXene content,
likely due to an increased tendency for warping and detachment following hydrothermal
treatment. This adversely impacts the interfacial coupling between NiFe-LDH and NF. On
the contrary, an appropriate amount of MXene can promote the effective coating of NF,
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maintaining this effect even after the growth of NiFe-LDH on the MXene surface. The Tafel
slope analysis (Figure 4b) for the 1.0-LDH/3MXNF catalyst further highlighted its superior
kinetic reaction rates compared to other conditions, yielding a Tafel slope of 67.7 mV/dec.
This low Tafel slope indicates that the rate-determining step is likely associated with the
latter stages of the multi-electron transfer reaction, a characteristic of high-performance
catalysts. In comparison to 1.0-LDH/NF (318 mV at 100 mA cm−2 and 148.1 mV/dec) and
1.0-LDH/3MCNF (270 mV at 100 mA cm−2 and 89.5 mV/dec), the Ti3CN MXene-modified
self-standing electrode demonstrated improved catalytic effects over electrodes featuring
Ti3C2Tx MXene or lacking MXene modification (Figure 4g). These findings suggest that
both the metal cation concentration and the extent of MXene modification significantly
influence the availability of active sites and electron transport within this hybrid structure,
aiding in the enhanced energy efficiency of the monolithic electrode.
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The electrochemical double-layer capacitance (Cdl) of the catalysts was evaluated in
the non-Faradaic region using cyclic voltammetry (CV) (Figures 4c and S10). The results
indicated that the vertically self-standing electrodes exhibited similar ECSAs, a finding
attributed to the shared use of nickel foam as the monolithic substrate. Notably, the Cdl
values for NF-based monolithic electrodes, such as 1.0-LDH/3MXNF (0.396 mF cm−2)
and 1.0-LDH/NF (0.185 mF cm−2), were improved by over tenfold compared to the
LDH/MXene powder catalyst (see Figure S9). The charge transfer resistance (Rct) is
a critical parameter related to electrode kinetics, with lower Rct values indicating faster
electron transfer rates. The electrochemical impedance spectroscopy (EIS) pattern presented
in Figure 4d reveals that the 1.0-LDH/3MXNF sample possesses the smallest semicircle
radius, corresponding to the lowest charge transfer resistance (Rct = 0.51 Ω). This reduction
suggests that the electron transfer kinetics are significantly faster for this sample compared
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to 1.0-LDH/NF (Rct = 0.82 Ω) and LDH/MXene powders (Rct = 38.1 Ω). Consequently,
the 1.0-LDH/3MXNF electrode substantially reduces the potential barrier for current flow
through the catalyst, thereby enhancing the OER efficiency and exhibiting optimal catalytic
activity. To further assess the dynamic performance of the 1.0-LDH/3MXNF electrode,
a multi-step constant-current test was conducted (Figure 4e). The current density was
incrementally increased from 50 mA cm−2 to 200 mA cm−2, increasing by 50 mA cm−2

per step, before returning to 50 mA cm−2. The electrode maintained a constant current at
each step for 300 s, demonstrating rapid response times without significant fluctuations.
Upon returning to 50 mA cm−2, the current could be sustained for over 10,000 s without
notable degradation, indicating robust electrochemical stability and mechanical integrity
even under high current density conditions. Furthermore, in a long-term chronopotential
(CP) stability test (Figure 4f) conducted at a constant current density of 50 mA cm−2, the
performance of the 1.0-LDH/3MXNF electrode remained stable over a 24 h period, with
no significant increase in potential observed. This outcome underscores the excellent
cycling stability and resilience of the electrode in demanding electrochemical environments.
Finally, when compared to other documented OER catalysts (Table 1), the demonstrated
performance of the 1.0-LDH/3MXNF catalyst remains competitive.

Table 1. OER catalysts in 1.0 M KOH that have been reported in recent years.

Catalyst jgeo (mA cm−2) η

(mV)
Tafel Slope
(mV dec−1) Ref.

1.0-LDH/3MXNF 100 247 67.7 This Work
NiFe-LDH/NF 50 306 143.1 [43]

NiFeAu-LDH/NF 100 267 58 [44]
MXene/TiO2/NiFeCo-LDH 10 320 98.4 [45]

NiCo-LDH/MXene/NF 100 257.4 68 [46]
Mo-Ni2P@NiFe LDH/NF 40 269 44 [47]

NiCoFe-LDH/NF 50 233 29.39 [48]
CoFeV-LDH/NF 100 330 57 [49]

Fe0.05CoNi-LDH/NF 10 212 48 [50]
CoSnO3@MX/NF 100 321 101 [51]

FeCoNi-P/NF 10 239 55.87 [52]
Ni-FeOOH/NF 100 277 52 [53]
NCP-MX/NF 50 303 69.5 [54]

NiFe-LDH/rGO@NF 50 277 59.9 [55]
Cr-FeNi LDH/MXene 10 232 54.4 [2]

LDH/H-Ti3C2Tx 100 364 47 [56]
CoNi-LDH/MXene@NiMoO4/NF 100 220 84.2 [57]

S,P-CoFeLDH/MXene 10 305 39 [58]
NiFe-LDH/Ti3C2 10 334 55 [59]

3. Materials and Methods
3.1. Chemicals

Ti3AlCN (99% purity, 300 mesh, Laizhou KaiXi Ceramic Materials Co., Ltd., Laizhou,
China), 49 wt% hydrofluoric acid (HF, Aladdin, Paris, France), 25 wt% tetramethylam-
monium hydroxide (TMAOH, Aladdin), iron (III) nitrate nonahydrate (Fe(NO3)3·9H2O,
Aladdin), nickel (II) nitrate hexahydrate (Ni(NO3)2·6H2O, Aladdin), urea (Aladdin), am-
monium fluoride (NH4F, Aladdin), L-ascorbic acid (LAA), and potassium hydroxide (KOH,
99.99%, Aladdin). Nickel foam was purchased from Suzhou Kesheng metal materials Co.,
Ltd. (Suzhou, China).

All chemicals were used as received, without further purification.

3.2. Synthesis of Few-Layered Ti3CN MXene

The few-layered Ti3CN (f-Ti3CN) MXene nanosheets were synthesized based on a
previous report [60]. In brief, 1 g of Ti3AICN (300 mesh) was slowly added to 10 mL of
30 wt% HF and allowed to react at room temperature for 18 h. After that, the mixture was
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washed with deoxygenated water until neutral, centrifuged at 5000 rpm for 5 min each
time, and finally filtered to obtain multilayered Ti3CN (m-Ti3CN), which was stored in a
vacuum dryer overnight. The deoxygenated water was prepared by purging deionized
water (DI water) with argon gas for 1 h.

Subsequently, 0.5 g of m-Ti3CN was intercalated in 10 mL of 1 M TMAOH for 24 h.
The resulting dispersion was washed with deoxygenated water until the pH reach approx-
imately 9. During the washing process, care was taken to ensure no shaking, with each
centrifugation conducted at 3500 rpm for 5 min. The f-Ti3CN dispersion was subsequently
obtained by cold bath sonication for 1 h, followed by centrifugation at 5000 rpm for 30 min.

3.3. Synthesis of LDH/MXNF

The nickel foam was thoroughly washed with acetone, 3 M HCl, and deionized water
to remove any organic residues and oxide layers on the surface. A 3 × 3 cm2 piece of NF
was impregnated in 3 or 5 mg/mL of f-Ti3CN dispersion, left to stand for 30 min, and
then sonicated for an additional 30 min. The NF modified by MXene was vacuum-dried
at 60 ◦C for 4 h, and these samples were designated as 3MXNF and 5MXNF, respectively.
Next, a specific amount of Fe(NO3)3·9H2O and Ni(NO3)2·6H2O, 1.5 g of urea, 10 mg of
LAA, and 50 mg of NH4F were dissolved in 30 mL of DI water and sonicated for 30 min.
The resulting solution was then combined with the MXNF and transferred to a 50 mL
Teflon-lined stainless-steel autoclave. This assembly was placed in an autoclave and heated
in an air blast drying box at 120 ◦C for 6 h, followed by natura cooling to room temperature.
The samples were then ultrasonically washed with deionized water and ethanol several
times and dried under vacuum at 60 ◦C for 4 h. The metal cations ratios of Ni2+ to
Fe3+ were maintained at a 3:1 ratio, with total metal cations of 0.5 mmol, 1.0 mmol, and
2.0 mmol, respectively. The samples were labeled as 0.5-LDH/MXNF, 1.0-LDH/MXNF,
and 2.0-LDH/MXNF, respectively.

Additionally, two comparative samples, 1.0-LDH/NF and 1.0-LDH/3MCNF, were pre-
pared under identical conditions. The 3MCNF in the 1.0-LDH/3MCNF sample represents
NF treated with 3 mg/mL of f-Ti3C2Tx.

3.4. Structural Characterization

The crystal phase of the catalyst was analyzed using an X-ray diffractometer (XRD,
ADVANCE D8, Bruker, Billerica, MA, USA) with a Cu Kα radiation source in the range
of 2θ of 5◦~80◦. The chemical composition of the catalyst was investigated using Fourier
transform infrared spectroscopy with attenuated total reflection (FTIR-ATR, Thermo Sci-
entific, Nicolet iS50, Waltham, MA, USA). The morphology of the obtained catalyst was
characterized by a thermal field emission scanning electron microscope (SEM, Zeiss Gemini
Sigma 300, Goldbach, Germany) equipped with energy-dispersive spectroscopy (EDS).
Transmission electron microscopy (TEM, Talos F200X, Thermo Fisher Scientific, Waltham,
MA, USA) was used to identify the catalyst’s morphology and elemental mapping. X-ray
photoelectron spectra (XPS) were recorded in an XPS system (Axis Ultra DLD, Kratos,
Manchester, UK) with a monochromatic Al X-ray source.

3.5. Electrochemical Measurements

All electrochemical properties were assessed in a standard three-electrode system
using a Shanghai Chenhua CHI 760E electrochemical workstation. A mercuric oxide
electrode (Hg/HgO) was used as the reference electrode, a graphite rod as the counter
electrode, and the as-prepared catalyst as the working electrode. The two-sided geometry
of the self-supported electrode was 1.2 cm2, with a catalyst mass loading of 0.5 mg/cm2.
The electrochemical performance of the catalyst was evaluated in 1 M KOH solution. All
measured potentials were converted to reversible hydrogen potential (RHE) based on the
Hg/HgO calibration potential and the Nernst equation. The prepared catalysts underwent
linear sweep voltammetry (LSV) tests to evaluate their OER activity at a sweep rate of
5 mV/s after 30 cycles of cyclic voltammetry (CV) activation in an O2-saturated 1.0 M
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KOH electrolyte. A 90% iR compensation was applied to all potentials in the LSV curve.
CV measurements were carried out in the non-Faradaic zone at various sweep rates of
20, 40, 60, 80, 100, and 120 mV/s to evaluate the electrochemical double layer capacitance
(Cdl) of the electrocatalysts. Electrochemical impedance spectroscopy (EIS) measurements
were performed at 1.53 V vs. RHE using a 5 mV amplitude over a frequency range of 105

to 0.1 Hz. Multi-step chronopotentiometric curves were obtained by altering the current
densities from 50 to 200 mA cm−2 with an increment of 50 mA cm−2 per 300 s before finally
returning to 50 mA cm−2 for an extended period. Chronopotentiometry (CP) curves were
recorded as the current densities reached 50 mA cm−2 to evaluate catalyst stability.

The Tafel slopes were calculated using the following formula:

η = b log j + c (1)

where η is the overpotential, j is the current density, b is the Tafel slope, and c is the intercept.
The Electrochemical Active Surface Area (ECSA) of the electrocatalysts was estimated

from Cdl according to the following formula [61]:

ECSA = Cdl/Cs (2)

where the specific capacitance (Cs) is 40 mF/cm2.

4. Conclusions

In conclusion, the foam nickel loaded with Ti3CNTx MXene-modified NiFe-LDH,
developed through electrostatic adsorption and hydrothermal methods, exhibits excellent
electrocatalytic performance for the oxygen evolution reaction. By adjusting the thickness
of NiFe-LDH nanosheets and the MXene content, the OER performance of the self-standing
electrode can be altered. In addition, the vertical structure of the LDH nanosheets facilitates
mass transfer during the catalytic process. The 1.0-LDH/3MXNF catalyst showcased a low
overpotential of 247 mV at 100 mA cm−2 and a Tafel slope of 67.7 mV/dec, attributed to
the effective interfacial coupling between NiFe-LDH and MXene, which enhanced electron
transfer kinetics. The electrochemical characterization revealed a significant increase in
electrochemical double-layer capacitance and a reduction in charge transfer resistance,
indicating a high density of active sites and efficient charge transport. Additionally, the
electrode exhibited remarkable stability with minimal potential degradation over long-term
operation. This study highlights the promising potential of hybrid LDH-MXene systems
for advanced electrocatalyst development in renewable energy applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal14100708/s1, Figure S1: SEM image of (a) Ti3AlCN and
(b) m-Ti3CNTx; Figure S2: XRD patterns of Ti3AlCN MAX and Ti3CNTx MXene; Figure S3: (a) XRD
patterns and (b) ART-FTIR spectrum of LDH/5MXNF; Figure S4: SEM image of (a) NF, (b) 3MXNF,
and (c) 5MXNF; Figure S5: SEM image of elemental mapping showing the uniform distribution
of Ti, N, Ni, and Fe elements in 1-LDH/3MXNF; Figure S6: SEM image of (a) 0.5-LDH/3MXNF,
(b) 1.0-LDH/3MXNF, and (c) 2.0-LDH/3MXNF; Figure S7: SEM image of (a) 0.5-LDH/5MXNF,
(b) 1.0-LDH/5MXNF, and (c) 2.0-LDH/5MXNF; Figure S8: Full spectrum of (a) 1.0-LDH/NF and
(b) 1.0-LDH/3MXNF; Figure S9: The calibration curve of Hg/HgO electrode vs. RHE. The calibration
was performed in a high-purity hydrogen-saturated electrolyte with Pt sheet as the working electrode
and Hg/HgO electrode as the reference electrode. CV runs at a scan rate of 1 mV/s, and the average of
the two potentials at the current zero crossing is considered to be the thermodynamic potential of the
hydrogen electrode reaction. In the 1.0 M KOH, E (vs. RHE) = E (vs. Hg/HgO) + 0.92 V; Figure S10:
OER CV curves for (a) pure NF; (b) 1.0-LDH/NF; (c) 1.0-LDH/3MCNF; (d) 0.5-LDH/3MXNF;
(e) 1.0-LDH/3MXNF; (f) 2.0-LDH/3MXNF; (g) 0.5-LDH/5MXNF; (h) 1.0-LDH/5MXNF; and (i) 2-
LDH/5MXNF; Figure S11: The OER performance of the LDH/5MXNF in 1.0 M KOH. (a) LSV curves;
(b) Tafel plots; (c) the Cdl; and (d) EIS patterns at 1.53 V vs. RHE; Figure S12: (a) LSV curves of
LDH/Ti3CN, NiFe-LDH, and Ti3CN powder loaded on glass carbon electrode for OER. (b) EIS
curves of LDH/Ti3CN and NiFe-LDH power at 1.53 V vs. RHE from 105 to 0.1 Hz. (c) Tafel slope.
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(d) Double-layer capacitance Cdl. (e,f) Corresponding CV of NiFe-LDH and LDH/Ti3CN. All LSV
tests were conducted at a scan rate of 5 mV s−1 at 1600 rpm with 90% iR-compensations. The mass
loading is about 0.214 mg cm−2. All tests were conducted in 1 M KOH.
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