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Abstract: Exploring synthetic pathways for efficient photocatalysts has always been a major goal in
catalysis. The performance of organic photocatalysts is affected by a variety of complex factors, and
how to understand the structure–effect relationship is the key to designing efficient photocatalysts.
This work explored the feasibility of constructing large-specific-surface-area conjugated microporous
polymers (CMPs) based on stereoscopic units like spirobifluorene and achieving efficient photo-
catalytic activity by modulating the donor–acceptor (D-A) ratio with dibenzothiophene sulfone.
Crosslinked pore structures were successfully constructed, and the specific surface area increased
with the ratio of spirobifluorene. When the molar ratio of D-A was 1:20, polymer Spso-3 showed
the highest photocatalytic hydrogen production activity, at 22.4 mmol h–1 g–1. The findings indicate
that constructing D-A type CMPs should be a promising approach to improving the performance of
photocatalytic water separation. The appropriate push–pull effect of the D-A structure promotes the
photo-induced separation of electron–hole pairs, and the porous structure built on steric units offers
ample space for catalytic reactions. This work could provide case references for structural design and
the structure–effect relationship of efficient polymer photocatalysts.

Keywords: photocatalytic; conjugated polymer; D-A type; spirobifluorene; dibenzothiophene

1. Introduction

Hydrogen, a secondary energy resource with a wide range of clean and carbon-
free sources and rich application scenarios, is the ideal medium to substitute traditional
fossil energy sources and support the large-scale development of renewable energy [1–3].
Using solar energy for direct photocatalysis-induced water decomposition for hydrogen
production is a tempting and challenging energy conversion approach [4,5]. A 100 m2

scale prototype photocatalytic solar hydrogen production system constructed by Domen
has operated stably for many years and enables autonomous hydrogen recovery, further
demonstrating the feasibility of large-scale photocatalytic hydrogen production in the
future [6]. However, the lower hydrogen production efficiency is still the main challenge
limiting the use of this solution in reality, and the development of efficient, inexpensive, and
environmentally friendly photocatalyst materials has become a research focus in catalytic
chemistry and energy chemistry [7].

In recent times, organic conjugated polymers have gained significant interest owing to
their distinctive advantages. These encompass the capacity for tunable light absorption
and electronic properties, the ease of modifying the skeletal architecture and porosity,
superior light stability, and robust economic viability; they mainly include the family
of g-C3N4 [8–11], linear conjugated polymers [12–15], conjugated microporous polymers
(CMPs) [16–20], covalent organic frameworks (COFs) [21–23], and covalent triazine-based
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frameworks (CTFs) [24–26]. However, the performance of polymer photocatalysts is
affected by a variety of complex factors, and how to understand the structure–effect rela-
tionship is the key to designing efficient photocatalysts [20,27]. In our previous studies, the
influence mechanisms of numerous parameters in organic photocatalysts were investigated,
including the effect of bandgap modulation on the light absorption range, the effect of
the donor–acceptor (D-A) structure and ratio on the separation efficiency of electron–hole
pairs, and a preliminary mechanism for the promotion of the catalytic efficiency by strong
dipole units like B ← N [28–31]. It is very important to consider the interconnectivity
of different factors, among which the optimization of the D-A ratio and the increment
in specific surface area are beneficial for photocatalytic reactions. As a molecule with a
tetragonal–disphenoid shape, spirobifluorene not only functions as tetrahedral nodes for
three-dimensional structures to construct CMPs boasting a large specific surface area but
also exhibits remarkable potential in optoelectronic devices on account of its distinctive
conjugated structure [32–35]. Furthermore, the orthogonal conformation of two planar
intermolecular fluorene units possesses significant rigidity and can enhance the stability
of the resulting CMPs [36]. Building organic photocatalysts around spirobifluorene units
would be expected for good photocatalytic performance.

Herein, this work attempted to realize large-specific-surface-area CMP photocatalysts
using spirobifluorene as the core unit, matching a wide-bandgap dibenzothiophene sulfone
electron acceptor to achieve D-A structure construction (Scheme 1), and developed conju-
gated polymer series with various strengths of push–pull electron effects by copolymerizing
them in various proportions. Crosslinked pore structures were successfully constructed,
and the specific surface area increased with the ratio of spirobifluorene. The highest
photocatalytic hydrogen production activity of polymer Spso-3, 22.4 mmol h−1 g−1, was
observed when the molar ratio of D-A was 1:20, which could be attributed to the increase
in the photo-induced carrier separation efficiency, suggesting that the photocatalytic per-
formance is dependent on the molar ratio of D-A in the backbone. The molar ratio of D-A
serves as a significant variable in achieving a balance between the separation and transport
of photogenerated electrons and holes, further influencing the polymers’ photocatalytic
performance. All indications showed that the establishment of D-A type CMPs constitutes
a useful approach to enhancing photocatalytic performance for water splitting. The conju-
gated D-A structure has the ability to facilitate the separation of light-induced electron–hole
pairs. Meanwhile, the porous structure constructed on the basis of stereoscopic units offers
ample space for catalytic reactions.
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2. Results and Discussion
2.1. Structure and Morphology Analyses

Six random polymers were prepared by adjusting the molar feed ratio of 2,2′,7,7′-
tetrabromo-9,9′-spirobifluorene, 3,7-dibromo-dibenzothiophene sulfone and 3,7-diborate-
dibenzothiophene sulfone using Pd(0)-catalyzed Suzuki–Miyaura coupling polymerization
(Scheme 1). The molar ratio of D-A in the polymer structure was controlled between
0:1 and 1:2. The D-A ratio of 0:1 represents the chain polymer of polydibenzothiophene
sulfone, which is still named Spso-1 for uniformity, and the other CMPs were named
Spso-2 to Spso-5. The polymers obtained were processed through Soxhlet extraction using
tetrahydrofuran (THF) to eliminate unwanted impurities. No solubilizing side chains were
incorporated into the polymer framework. Consequently, all the obtained polymers were
insoluble in common organic solvents like methanol, hexanes, THF, acetone, and so on.
This phenomenon might be attributed to the rigid backbone of the polymer, which further
impedes the determination of its molecular weight.

The functional group structures of the six polymers were determined by Fourier
transform infrared (FT-IR) spectroscopy. As shown in Figure 1a, the infrared spectra of all
polymers showed the symmetric and asymmetric stretching vibration peaks of the O=S=O
bond of the sulfone group at 1300 and 1155 cm−1, as well as the stretching vibration peak
of the aromatic ring –C=C– at around 1600 cm−1 [37–39]. The presence of the sulfone
group and aromatic ring in the polymers was confirmed by FT-IR spectroscopy. Since the
photocatalytic water splitting reaction needs to be carried out under strong light irradiation,
which must lead to an inevitable long-term temperature increase in the photoreactor, the
polymers should be thermally stable [40]. The thermal stability of the polymers was
studied by thermogravimetric analysis (TGA). The decomposition temperatures at which
the polymer mass loss was 5% were 469 ◦C (Spso-1), 449.1 ◦C (Spso-2), 460.8 ◦C (Spso-3),
470.1 ◦C (Spso-4), 445.8 ◦C (Spso-5), and 441.6 ◦C (Spso-6), all above 400 ◦C, indicating
that the introduction of spirobifluorene did not affect the thermal stability of the material
(Figure 1b). In the low-temperature range below 430 ◦C, the weight loss was attributed
to physically adsorbed water inside and outside the pores, pyrolysis of certain functional
groups on the surface of the material, and volatilization of trace amounts of residual
solvent [41]. All the polymers met the thermal stability requirements for the photocatalytic
reaction. The powder X-ray diffraction (PXRD) patterns of the six conjugated polymers,
Spso-1 to Spso-6, are shown in Figure 1c. Polymers Spso-1 to Spso-4 had a distinct sharp
diffraction peak at around 2θ = 12.7◦ and 24.5◦, respectively. The diffraction peak at around
24.5◦ indicated that the π-π stacking distance of the polymer skeleton was in the range
of 3.8–4 Å. There was a low-intensity broad peak at around 2θ = 21.8◦. Polymers with
a molar ratio of spirobifluorene to dibenzothiophene sulfone in the range of (0–1:8) had
more distinct peaks, indicating that they had more crystalline structures, which was more
conducive to the improvement of photocatalytic activity [42]. However, the PXRD patterns
of polymers Spso-5 and Spso-6 did not show obvious diffraction peaks, only a low-intensity
broad peak in the shape of a bun, indicating that the crystallinity of the polymers with a
molar ratio of spirobifluorene to dibenzothiophene sulfone in the range of (1:4–1:2) was
poor and they were amorphous. With the ratio increase in spirodifluorene in the polymer
skeleton, the diffraction peak intensity varies from a peak with a certain intensity to a
steamed bun-like large package peak, and the structure gradually changes from order
to disorder, that is, from semi-crystalline to amorphous. The outcomes revealed that a
higher proportion of spirobifluorene in the polymer skeleton would significantly reduce
the crystallinity of the material, while a lower proportion of spirobifluorene had little
effect on the crystallinity of the material. The unique rigid three-dimensional structure
of spirobifluorene will produce a large spatial site resistance in the polymer. As the
spirobifluorene ratio increases, the spatial site resistance effect becomes obvious, causing
the alignment and regular stacking of polymer molecular chains to become difficult, and the
freedom of molecular chains decreases, and the crystallization process is inhibited, which
leads to a decrease in crystallinity [43–46]. The microscopic morphology of the polymer
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has a significant influence on the photocatalytic activity [47]. By observing the microscopic
morphology of the six polymers using a scanning electron microscope (SEM), as shown
in Figure 1d, we observed that polymer Spso-1 had an irregular flake-like morphology.
When a small amount of spirobifluorene was introduced into the polymer skeleton, that
is, when the ratio of spirobifluorene to dibenzothiophene sulfone was in the range of
1:40 to 1:8, polymers Spso-2, Spso-3, and Spso-4 exhibited a thin flake-like morphology.
With the further increase in the ratio of spirobifluorene to dibenzothiophene sulfone,
polymers Spso-5 and Spso-6 exhibited an aggregated granular morphology. Results of SEM
demonstrated that the variation in the D-A ratio changes the polymers’ micromorphology,
with a smaller ratio of spirobifluorene in the polymer backbone favoring the formation
of flake-like morphology. Different morphologies of the photocatalyst would result in
differences in the specific surface area and the number of reactive sites, thus having an
important influence on the carrier transport and photocatalytic activity [48]. The nanosheet
structure has better carrier transport efficiency than bulk materials [49,50].
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2.2. Energy Band and Photophysical Property

The polymers Spso-1~Spso-6 showed almost no difference in color under natural light
and were all yellow. Under the irradiation of a 365 nm UV lamp, the fluorescence color of
the polymers shifted from yellow-green to blue-green, and a slight blue shift phenomenon
occurred (Figure 2a). The blue shift in the polymer color could be attributed to the highly
distorted structure of the spirobifluorene, which prevents the departure of electrons from
the domain [51].
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The ability of the polymer to absorb light is an important element for achieving
high-efficiency photocatalytic hydrogen production activity. The solid UV–visible diffuse
reflectance spectra (DRS) showed a series of absorption edge bands, ranging from 469 to
495 nm (Figure 2b). The light absorption of all polymers extended to the visible light region.
By analyzing the DRS spectra of the six polymers, the maximum absorption wavelengths
of polymers Spso-1 to Spso-6 were 479 nm, 480 nm, 495 nm, 482 nm, 474 nm, and 469 nm,
respectively. That is, with the increase in the spirobifluorene content in the polymer
skeleton, the light absorption of the polymer did not change significantly. There was a
slight red shift at first, and then a slight blue shift. From the light absorption edge band, we
have the following formula [52]:

Eg = 1240/λ (1)

The optical bandgaps of polymers Spso-1 to Spso-6 were 2.59 eV, 2.58 eV, 2.51 eV,
2.57 eV, 2.62 eV, and 2.64 eV, respectively, decreasing from 2.59 eV to 2.51 eV and then
gradually increasing to 2.64 eV. Among the six polymers, Spso-3 had the smallest bandgap,
and Spso-6 had the largest bandgap. Compared with polymer Spso-1, Spso-3 had a red shift
of 16 nm, and Spso-6 had a blue shift of 10 nm. These results indicated that changing the
molar ratio of D-A in the conjugated polymer skeleton could fine-tune the light absorption
ability of the polymer, thereby affecting the photocatalytic hydrogen evolution activity
of the material. The Mott–Schottky curve was obtained by the Mott–Schottky method at
an electrochemical workstation [53]. The intersection of the longest tangent line with the
X-axis of curves is the flat band potential of the polymer. A positive slope of the curve
indicates an n-type semiconductor and a negative slope indicates a p-type semiconductor.
For n-type semiconductors, the flat band potential is negative 0.1–0.3 V compared to the
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conduction band potential. The conductor position of the semiconductor is calculated
according to the following formula:

ELUMO (NHE) = E (Ag/AgCl) + 1.976 V − 0.3V (2)

Combined with UV–Vis absorption spectra, the corresponding valence band positions
are obtained (Figure 2c and detailed energy level data in Table 1). The results show that the
lowest unoccupied molecular orbital (LUMO) level of all polymers is above the reduction
potential of water, which has enough driving force for proton reduction half-reaction.
The LUMO energy level of the six polymers did not change significantly, indicating that
changing the molar ratio of D-A did not have a significant effect on the energy level of
the materials. The Brunauer–Emmett–Teller (BET) specific surface areas of the polymers
were determined using nitrogen adsorption–desorption experiments. The specific surface
areas of the six polymers, Spso-1~Spso-6, are listed in Table 1, at 54.3, 177.3, 131.8, 267.4,
384.8, and 681.7 m2 g−1, respectively. Due to the highly distorted spatial structure of
spirodifluorene, increasing the ratio of spirodifluorene significantly improved the specific
surface area of the materials. The specific surface area of the polymers generally shows an
increasing trend, while the specific surface area of Spso-3 slightly decreases, which may be
related to its unique lamellar structure.

Table 1. Energy level and specific surface area data of polymers.

Sample λonset
(nm)

λem
(nm)

Eg
(eV)

BET Specific Surface Area
(m2 g−1)

LUMO
(eV)

HOMO
(eV)

Spso-1 479 511 2.59 54.3 −0.60 1.99
Spso-2 480 507 2.58 177.3 −0.60 1.98
Spso-3 495 505 2.51 131.8 −0.64 1.87
Spso-4 482 503 2.57 267.4 −0.62 1.95
Spso-5 474 492 2.62 384.8 −0.63 1.99
Spso-6 469 485 2.64 681.7 −0.59 2.05

The fluorescence emission peaks of Spso-1 to Spso-6 are 511 nm, 507 nm, 505 nm,
503 nm, 492 nm, and 485 nm, respectively, with a trend of gradual blue shift (Figure 3a),
suggest that the photophysical properties and electronic structures of the polymers can be
finely adjusted within a wide range by altering the molar ratio of D-A. Figure 3b shows a
comparison chart of the fluorescence intensity of the polymer. The fluorescence emission
peak intensity shows a trend of decreasing first and then increasing, indicating that the
probability of photogenerated electron and hole recombination decreases first and then
increases. Spso-6, the polymer with the highest ratio of spirodifluorene and dibenzoth-
iophene sulfone units, has the strongest fluorescence emission intensity, indicating that
the structure of polymer Spso-6 may limit the migration of photogenerated electrons and
holes under light irradiation so that the photogenerated electrons and holes can quickly
recombine. Polymers Spso-2, Spso-3, and Spso-4 all have relatively low fluorescence emis-
sion intensities, indicating that the photogenerated electrons and holes generated by these
three polymers can be better separated and migrated, which is helpful for the improvement
of photocatalytic hydrogen production performance.

The fluorescence lifetime data of the six polymers are listed in Table 2, and the average
fluorescence lifetime is calculated as follows [54]:

τAVG = A1 × τ1 + A2 × τ2 + A3 × τ3 (3)

As shown in Figure S1, the fluorescence lifetimes of the polymers are shorter, and
all of them are in the nanosecond scale, at 2.95 ns, 2.42 ns, 2.45 ns, 0.93 ns, 1.85 ns, and
1.33 ns, respectively. Among all the polymers, the shorter lifetimes of the polymers with
higher proportions of spirobifluorene, Spso-4~Spso-6, indicate that the probability of
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photogenerated electrons and holes complexing in these polymers is higher, and they
will be deactivated very quickly, which is unfavorable for the transport of the electrons
to the surface of the materials and will affect the photocatalytic hydrogen-producing
half-reaction. When the ratio of spirobifluorene to dibenzothiophene sulfone unit is less
than 1:8, the polymer has a relatively long lifetime. This indicates that the D-A molar
ratio in the polymer main chain has a substantial impact on the fluorescence lifetime
of the polymers. When the D-A molar ratio is relatively low, the fluorescence lifetime
of the material is relatively long. Conversely, when the molar ratio of D-A is relatively
high, the fluorescence lifetime is relatively short. Longer fluorescence lifetimes would
result in sufficient time for photogenerated electron/hole transfer, which in turn affects
the performance of photocatalytic hydrogen production [55]. The D-A ratio affects the
fluorescence lifetime of polymers as well. Transient photocurrent response testing provides
further insight into the ability of polymers to transport photoinduced charge carriers. This
measurement was carried out in four on/off cycles. The illumination used had wavelengths
greater than 420 nm and an intensity of 100 mW·cm–2. As shown in Figure 3c, first, the i-t
curves of all polymers had a good correlation with the process of switching the light on and
off, indicating that the polymers all had good photocatalytic activity. Secondly, there were
significant differences in the photocurrent intensity, and the photocurrent density from high
to low was Spso-3, Spso-2, Spso-4, Spso-5, Spso-1, and Spso-6. Electrochemical impedance
spectroscopy (EIS) characterizes the charge transport properties (Figure 3d), and Spso-3
has the smallest Nyquist circle radius, suggesting that interfacial charge transfer is more
efficient, which is consistent with the photocurrent response. These results combined with
fluorescence emission spectroscopy and fluorescence lifetime results indicate that polymer
Spso-3 has better carrier separation efficiency.
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tivated very quickly, which is unfavorable for the transport of the electrons to the surface 
of the materials and will affect the photocatalytic hydrogen-producing half-reaction. 
When the ratio of spirobifluorene to dibenzothiophene sulfone unit is less than 1:8, the 
polymer has a relatively long lifetime. This indicates that the D-A molar ratio in the poly-
mer main chain has a substantial impact on the fluorescence lifetime of the polymers. 
When the D-A molar ratio is relatively low, the fluorescence lifetime of the material is 
relatively long. Conversely, when the molar ratio of D-A is relatively high, the fluores-
cence lifetime is relatively short. Longer fluorescence lifetimes would result in sufficient 
time for photogenerated electron/hole transfer, which in turn affects the performance of 
photocatalytic hydrogen production [55]. The D-A ratio affects the fluorescence lifetime 
of polymers as well. Transient photocurrent response testing provides further insight into 
the ability of polymers to transport photoinduced charge carriers. This measurement was 
carried out in four on/off cycles. The illumination used had wavelengths greater than 420 
nm and an intensity of 100 mW·cm–2. As shown in Figure 3c, first, the i-t curves of all 
polymers had a good correlation with the process of switching the light on and off, indi-
cating that the polymers all had good photocatalytic activity. Secondly, there were signif-
icant differences in the photocurrent intensity, and the photocurrent density from high to 
low was Spso-3, Spso-2, Spso-4, Spso-5, Spso-1, and Spso-6. Electrochemical impedance 
spectroscopy (EIS) characterizes the charge transport properties (Figure 3d), and Spso-3 

Figure 3. (a) Fluorescence emission spectra and (b) comparison diagram of fluorescence emission
intensity of polymers. (c) Comparison of photocurrent behaviors of the polymers under visible light
(λ > 420 nm, 100 mW cm−2). (d) Electrochemical impedance spectrum of the polymers.
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Table 2. Fluorescence lifetime data of polymers.

Sample τ1 [ns]
(Rel.%)

τ2 [ns]
(Rel.%)

τ3 [ns]
(Rel.%) τ [ns] χ2

Spso-1 1.12 (44.93) 3.34 (48.89) 13.30 (6.18) 2.95 1.155
Spso-2 0.61 (33.38) 2.31 (54.79) 8.05 (11.83) 2.42 1.070
Spso-3 0.91 (53.22) 2.88 (39.30) 11.24 (7.39) 2.45 1.139
Spso-4 0.39 (79.74) 1.71 (16.66) 9.18 (3.61) 0.93 1.140
Spso-5 0.59 (61.36) 2.18 (30.68) 10.32 (7.96) 1.85 1.287
Spso-6 0.75 (55.59) 1.88 (42.73) 6.62 (1.68) 1.33 1.130

2.3. Photocatalytic Performance

The photocatalytic activity for hydrogen production was estimated for all the samples
under visible light irradiation with wavelengths greater than 420 nm. The curves of H2
evolution vs. irradiation time are shown in Figure 4a, with average hydrogen evolution
rates (HERs) of 12, 21.2, 22.4, 18.6, 14.4, and 7.5 mmol g–1 h–1 for Spso-1 to Spso-6, respec-
tively (Figure 4b). The HER initially increases and then decreases as the pyrene content
increases. When Spso-3 is used as a photocatalyst, the maximum HER of 22.4 mmol g–1 h–1

is obtained. Under visible light irradiation, this value is markedly higher than numerous
other reported values of materials containing thiophene units [56–65]. These results in-
dicate that the D-A ratio is a crucial variable in balancing photogenerated electron and
hole segregation and transportation, which has an important impact on optimizing the
photocatalytic performance of polymers [66]. These remarkable HER values imply that
constructing D-A type CMPs could be an effective tactic for enhancing the photocatalytic
water-splitting ability. The D-A structure can promote the separation of photogenerated
electron/hole pairs, and the porous structure built on steric units offers sufficient space for
the catalytic reaction. To study the relationship between light absorption and hydrogen
production activity, polymer Spso-3 was selected for the apparent quantum yield (AQY)
test. AQY represents the ratio of the number of photons effectively utilized in the photo-
chemical reaction to the total number of photons absorbed [67,68]. Monochromatic light
filters with wavelengths of 420 nm, 450 nm, and 500 nm were used to conduct the photo-
catalytic experiment on polymer Spso-3 for 3 h, under the reaction conditions of 40 mL of
deionized water, 10 mL of triethanolamine, and 10 mg of the photocatalyst. The hydrogen
production amounts of polymer Spso-3 at 420 nm, 450 nm, and 500 nm for 1 h were 179,
140, and 30.3 mol g–1 h−1, respectively. The AQY values of polymer Spso-3 at 420 nm,
450 nm, and 500 nm were 35.6%, 12.7%, and 1.82%, respectively. The AQY of polymer
Spso-3 at 420 nm was the highest, indicating that it had the highest utilization rate of
420 nm monochromatic light. This value is remarkably higher than the previously reported
AQY value for comparable organic photocatalysts [57,58,62–65,69–71]. Consistent with the
absorption spectrum, the HER of Spso-3 decreased significantly at 500 nm, suggesting that
the main hydrogen-producing photons are below 500 nm.

To prevent the palladium catalyst residue from causing photocatalytic testing errors,
the palladium residue was determined by inductively coupled plasma mass spectrometry
(ICP-MS). There was no obvious correlation between the hydrogen production activity of
the polymer and the content of the palladium catalyst (R2 = 0.24, Figure 4d). The lower
residual concentration (0.23–0.68 wt%) is much lower than the addition of palladium in
other organic photocatalytic systems as an adjunct (ca. 3 wt%). So while Pd residues were
detected in the polymers, the low concentrations did not influence the regularity of the
photocatalytic test results.
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Figure 4. (a) Time-dependent hydrogen evolution with polymers lacking a metal cocatalyst under
visible light illumination (wavelength > 420 nm, dosage of each photocatalyst is 10 mg). (b) Com-
parison of visible-light-driven H2 production activity among the polymers (wavelength > 420 nm).
(c) UV–vis diffuse reflectance spectrum and apparent quantum yields (at 420, 450, and 500 nm) of
Spso-3. (d) Correlation between photocatalytic hydrogen production activity and palladium residue.

The stability of this organic photocatalyst was evaluated by repeating experiments
on Spso-3. It was subjected to five consecutive photocatalytic cycles of 15 h (with each
cycle being 5 h) under visible light irradiation. Using triethanolamine as the sacrificial
agent, every 5 h was taken as a hydrogen production cycle, and the sacrificial agent was
replenished and degassed. As shown in Figure 5a, we observed that after 15 h of continuous
visible light catalytic testing, the rate of hydrogen production by polymer Spso-3 hardly de-
creased, indicating that there was no harmful photochemical degradation of Spso-3 during
illumination, and it was a stable photocatalyst. Following a 15 h photocatalytic reaction,
the recovered Spso-3 was analyzed using UV–vis adsorption spectra (Figure 5b), PXRD
(Figure 5c), and FT-IR (Figure 5d). Spso-3 retains its original structure and crystallinity
well after the photocatalytic reaction, resulting in excellent photocatalytic cycling stability.
Moreover, by comparing the peak PXRD intensity before and after photocatalysis, a certain
degree of decrease in the crystallinity of Spso-3 is observed. After a 15 h photocatalytic reac-
tion under visible light (λ > 420 nm), the flake morphology of Spso-3 became smooth, which
may have caused a partial decrease in the photocatalytic performance (Figure 5e,f). The
above results indicate that Spso-3 possesses outstanding HER performance and remarkable
long-time stability, possessing the potential to be a good polymer photocatalytic material.
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3. Materials and Methods
3.1. Materials and Reagents

In this study, Dibenzothiophene sulfone (purity 99.28%), Pinacol bis(boronic acid)
ester (purity 98%), 1,1′-bis (diphenylphosphine) ferrocene] palladium dichloride (purity
98%), Tetri (triphenylphosphine) palladium (purity 98%), 1,3,6,8-tetrabromopyrene (purity
of 98%), 2,2′,7,7′-tetrabromo-9,9′-spirodifluorene (M1, purity greater than 97%), 1,4-dioxane
(AR), anhydrous potassium carbonate (AR), potassium acetate (AR), anhydrous magnesium
sulfate (AR), barium sulfate (AR), sodium bicarbonate (AR), sulfuric acid (purity 98%),
nitric acid (AR), hydrochloric acid (AR), N,N-Dimethylformamide (AR), methanol (AR),
dichloromethane (AR), ethanol (AR), acetone (AR) and tetrahydrofuran (THF, AR) were
used. All reactions and manipulations were carried out under an argon atmosphere by
using standard Schlenk techniques or an inter-atmosphere glovebox. Before use, all the
solvents were dried by refluxing with sodium and benzophenone and degassed by applying
three freeze–pump–thaw cycles. Chloroform-d was dried by using a 4 Å molecular sieve
(2–3 days). All chemicals (reagents and solvents) were obtained from commercial suppliers
(Energy Chemical, Heowns, Tianjin, China) and directly used without further purification.

3.2. Polymer Synthesis Methods
3.2.1. Synthesis of 3,7-Dibromo-dibenzothiophene Sulfone (M2)

Dibenzothiophene sulfone monomer (7.0 g, 32.4 mmol) was dissolved in 240 mL
concentrated sulfuric acid in an atmosphere of argon, and n-bromosuccinimide (NBS) (12 g,
67.4 mmol) was added slowly in three batches. The mixture was then stirred at room
temperature for 24 h. After the reaction was complete, the reaction solution was slowly
poured into a large amount of ice water for dilution. The solids were filtered and then
washed with water and a solution of saturated sodium bicarbonate until the pH was neutral.
After drying in a vacuum drying oven, the pure white solid was obtained by repeated
recrystallization with trichloromethane (150 mL × 3) three times (5.5 g, 45%). 1H NMR
(400 MHz, CDCl3): δ 7.93 (s, 2H), 7.76–7.78 (d, J = 8.0 Hz, 2H), 7.62–7.64 (d, J = 8.0 Hz, 2H).
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3.2.2. Synthesis of 3,7-Diborate Ester-dibenzothiophene Sulfone (M3)

3,7-Dibromo-dibenzothiophene sulfone (4.1 g, 10.7 mmol), pinanol borate (8.4 g,
33.0 mmol), and potassium acetate (6.3 g, 6.3 mmol) were mixed in a 250 mL round-bottom
flask under the protection of argon. [1,1′-bis(diphenylphosphonyl)ferrocene] palladium
dichloride (0.40 g, 0.5 mmol) was dissolved in 120 mL dried 1, 4-dioxane, and reacted at
106 ◦C for 24 h. After the reaction, about 150 mL water was added to the reaction mixture,
and then 100 mL dichloromethane was extracted 3 times. The organic phase was combined
and dried with anhydrous magnesium sulfate, and the organic solvent was removed by
rotary evaporation. The solid crude product was purified by a silica gel column (petroleum
ether: dichloromethane = 2:1), and the white solid M3 was obtained (2.6 g, 50%). 1H NMR
(400 MHz, CDCl3): δ 8.27 (s, 2H), 8.04–8.06 (d, J = 8.0 Hz, 2H), 7.79–7.81 (d, J = 8.0 Hz, 2H),
1.36 (s, 24H).

3.2.3. Typical Procedure of Suzuki–Miyaura Coupling Polymerization

Shown as Scheme 1, under anaerobic and anhydrous conditions, 2,2′,7,7′-tetrabromo-
9,9′-spirodifluorene (M1), 3,7-dibromo-dibenzothiophene sulfone (M2), 3,7-diborate ester
dibenzothiophene sulfone (M3), Pd(PPh3)4 (5%) and K2CO3 were dissolved in mixed
solvent of degassed DMF and degassed H2O. Then, the reaction was refluxed at 130 ◦C
for 48 h. After cooling to room temperature, the reaction mixture was filtered through the
funnel to gain crude product, the polymer was further purified and washed with H2O,
MeOH, CH2Cl2, THF, and acetone. Then, the resulting polymers were subjected to Soxhlet
extraction using THF for 48 h to remove the undesirable impurities.

3.2.4. Synthesis of Spso-1

M2 (0.187 g, 0.50 mmol), M3 (0.234 g, 0.50 mmol), anhydrous potassium carbonate
(0.830 g, 6.0 mmol), tetraphenylphosphine) palladium (0.0125 g, 8.7 µmol), 16 mL of
N,N-dimethylformamide, and 3 mL of water were used for Suzuki–Miyaura coupling
polymerization. The yellow-green solid was obtained, the yield was 0.213 g, and the yield
was 82% (Pd: 0.22 wt%).

3.2.5. Synthesis of Spso-2

M1 (0.0152 g, 0.024 mmol), M2 (0.169 g, 0.45 mmol), M3 (0.234 g, 0.50 mmol), an-
hydrous potassium carbonate (0.830 g, 6.0 mmol), tetraphenylphosphine) palladium
(0.0125 g, 8.7 µmol), 16 mL of N,N-dimethylformamide, and 3 mL of water were used for
Suzuki–Miyaura coupling polymerization. The yellow-green solid was obtained, the yield
was 0.163 g, and the yield was 78% (Pd: 0.38 wt%).

3.2.6. Synthesis of Spso-3

M1 (0.0284 g, 0.045 mmol), M2 (0.153 g, 0.41 mmol), M3 (0.234 g, 0.50 mmol), an-
hydrous potassium carbonate (0.830 g, 6.0 mmol), tetraphenylphosphine) palladium
(0.0125 g, 8.7 µmol), 16 mL of N,N-dimethylformamide, and 3 mL of water were used for
Suzuki–Miyaura coupling polymerization. The yellow-green solid was obtained, the yield
was 0.162 g, and the yield was 77% (Pd: 0.22 wt%).

3.2.7. Synthesis of Spso-4

M1 (0.0632 g, 0.10 mmol), M2 (0.112 g, 0.30 mmol), M3 (0.234 g, 0.50 mmol), an-
hydrous potassium carbonate (0.830 g, 6.0 mmol), tetraphenylphosphine) palladium
(0.0125 g, 8.7 µmol), 16 mL of N,N-dimethylformamide, and 3 mL of water were used for
Suzuki–Miyaura coupling polymerization. The yellow-green solid was obtained, the yield
was 0.202 g, and the yield was 98% (Pd: 0.32 wt%).

3.2.8. Synthesis of Spso-5

M1 (0.105 g, 0.17 mmol), M2 (0.0625 g, 0.17 mmol), M3 (0.234 g, 0.50 mmol), an-
hydrous potassium carbonate (0.830 g, 6.0 mmol), tetraphenylphosphine) palladium
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(0.0125 g, 8.7 µmol), 16 mL of N,N-dimethylformamide, and 3 mL of water were used for
Suzuki–Miyaura coupling polymerization. The green solid was obtained, the yield was
0.171 g, and the yield was 83% (Pd: 0.39 wt%).

3.2.9. Synthesis of Spso-6

M1 (0.158 g, 0.25 mmol), M3 (0.234 g, 0.50 mmol), anhydrous potassium carbonate
(0.830 g, 6.0 mmol), tetraphenylphosphine) palladium (0.0125 g, 8.7 µmol), 16 mL of
N,N-dimethylformamide, and 3 mL of water were used for Suzuki–Miyaura coupling
polymerization. The green solid was obtained, the yield was 0.183 g, and the yield was 99%
(Pd: 0.68 wt%).

3.3. Instrumentation/General Methods

The Fourier transform infrared (FTIR) spectra of the samples were recorded with a
Bruker Vertex 70 (Billerica, MA, USA) at room temperature by using the conventional
KBr pellet method. Thermogravimetric analysis was performed on a NETZSCH STA449C
(Netzsch GmbH, Selb, Germany) instrument under nitrogen flow at a heating rate of
10 ◦C min−1 up to 800 ◦C. The surface morphology of the polymers was evaluated with
a Hitachi S4800 Cold Field Emission SEM (Tokyo, Japan). The Powder X-ray diffraction
(PXRD) measurements were performed using X-ray diffraction (X’pert pro, PANalytical,
Almelo, The Netherlands), equipped with Cu Kα radiation (λ = 1.54056 Å) at the scattering
angle 2θ between 3 and 50◦. The UV–visible absorption spectra of the polymers were
recorded for the dry-pressed disk samples on a Carry 5000 UV–Vis–NIR spectrometer
(Agilent, Santa Clara, CA, USA). The fluorescence data were measured on an FLS920
fluorescence spectrophotometer (Edinburgh Instruments, Livingston, UK) with the polymer
powders and optically dilute solutions (A < 0.1). Time-correlated single-photon counting
experiments were performed on an Edinburgh FLS920 fluorescence spectrophotometer
with picosecond pulsed LED excitation sources and an R928 detector (Agilent, Santa Clara,
CA, USA). An EPLED-330 diode (λ = 334.6 nm, instrument response 881.6 ps, bandwidth
9.6 nm, Edinburgh Instruments, UK) was used as the light source. Decay times were fitted
in the F900 software (ver. 7.1.3) using suggested lifetime estimates. Photocurrent response
was recorded using a CHI-660E electrochemical workstation (CH Instruments, Shanghai,
China) in a standard three-electrode configuration. The polymers (2.0 mg) were dispersed
in ethanol (0.5 mL) containing 1% Nafion by ultrasound for 1 h. The work electrodes were
prepared via drop-casting the mixture of 200 µL onto the surface of the FTO glass substrate
electrode and then filmed at 80 ◦C in a vacuum oven. The Pt plate served as the counter
electrode, and a saturated Ag/AgCl electrode as a reference electrode. A 0.5 M Na2SO4
solution was used as the electrolyte. Sunlight was simulated with a 300 W Xenon lamp
(Hefan Instrument, Shanghai, China) and a 420 nm cut-off filter.

3.4. Photocatalytic Activity Measurements

A flask was charged with the polymer powder (10.0 mg), a 4:1 vol. mixture of water
and triethanolamine. The resulting suspension was ultrasonicated until the photocatalyst
was dispersed before degassing by N2 bubbling for 30 min. The accumulated number of
evolved gases was monitored every 60 min using a gas chromatograph (450-GC, Varian,
Palo Alto, CA, USA) equipped with a thermal conductive detector (TCD). The light source
was a 300 W Xe lamp with a cut-off filter applied to generate visible light (λ > 420 nm).
Hydrogen was detected with a TCD detector, referencing standard gases with known
concentrations of hydrogen. Hydrogen dissolved in the reaction mixture was not mea-
sured, and the pressure increase generated by the evolved hydrogen was neglected in
the calculations.

3.5. AQY Measurements

The apparent quantum yield (AQY) for H2 evolution was measured using monochro-
matic visible light at 420 nm. The energy (E) of irradiation was determined to be 30 mW cm−1
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by a calibrated power meter. The irradiation area was controlled at 9.8 cm2. Depending on
the amount of hydrogen produced by the photocatalytic reaction in an average of 3 h, the
AQY was calculated with the following equation:

AQY =
Ne

Np
× 100% (4)

=
2×M× NA × h× c

S× P× t× λ
× 100% (5)

where M is the amount of H2 (mol), NA is the Avogadro constant (6.022 × 1023/mol), h
is the Planck constant (6.626 × 10–34 J·s), c is the speed of light (3 × 108 m/s), S is the
irradiation area (cm2), P is the intensity of irradiation light (W/cm2), t is the photoreaction
time (s), λ is the wavelength of the monochromatic light (m).

4. Conclusions

In conclusion, the D-A type CMP photocatalysts with spirobifluorene as the core
unit and dibenzothiophene sulfone as the electron acceptor were successfully synthe-
sized. Crosslinked pore structures were successfully constructed and the specific surface
area increased with the ratio of spirobifluorene. When the molar ratio of D-A was 1:20,
the polymer Spso-3 showed the highest photocatalytic hydrogen production activity of
22.4 mmol h–1 g–1, which was probably caused by the increase in the photo-induced carrier
separation efficiency, indicating that the photocatalytic performance depended on the
molar ratio of D-A in the skeleton. These results indicate that the D-A ratio is a crucial
variable in balancing photogenerated electron and hole segregation and transportation,
which has an important impact on optimizing the photocatalytic performance of polymers.
The D-A structure can promote the separation of photogenerated electron/hole pairs, and
the porous structure built on steric units offers sufficient space for the catalytic reaction. All
the findings suggest that the construction of D-A type CMPs could be an efficient approach
to improve the photocatalytic performance for water splitting.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal14100717/s1, Figure S1: The average fluorescence lifetimes
of polymers.
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