Copper-Catalyzed Trifluoromethylthiolaton and Radical Cyclization of N-Phenylpent-4-Enamides to Construct SCF3-Substituted γ-Lactams
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 2008, 37, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Meanwell, N.A. Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design. J. Med. Chem. 2011, 54, 2529. [Google Scholar] [CrossRef] [PubMed]
- Ni, C.; Hu, J. The Unique Fluorine Effects in Organic Reactions: Recent Facts and Insights into Fluoroalkylations. Chem. Soc. Rev. 2016, 45, 5441–5454. [Google Scholar] [CrossRef] [PubMed]
- Leo, A.; Hansch, C.; Elkins, D. Partition Coefficients and Their uses. Chem. Rev. 1971, 71, 525–616. [Google Scholar] [CrossRef]
- Hansch, C.; Leo, A.; Taft, R.W. A Survey of Hammett Substituent Constants and Resonance and Field Parameters. Chem. Rev. 1991, 91, 165–195. [Google Scholar] [CrossRef]
- Leroux, F.; Jeschke, P.; Schlosser, M. α-Fluorinated Ethers, Thioethers, and Amines: Anomerically Biased Species. Chem. Rev. 2005, 105, 827–856. [Google Scholar] [CrossRef]
- Baert, F.; Colomb, J.; Billard, T. Electrophilic Trifluoromethanesulfanylation of Organometallic Species with Trifluoromethanesulfanamides. Angew. Chem. Int. Ed. 2012, 51, 10382–10385. [Google Scholar] [CrossRef]
- Shao, X.; Wang, X.; Yang, T.; Lu, L.; Shen, Q. An Electrophilic Hypervalent Iodine Reagent for Trifluoromethylthiolation. Angew. Chem. Int. Ed. 2013, 52, 3457–3460. [Google Scholar] [CrossRef]
- Jereb, M.; Gosak, K. Acid-promoted Direct Electrophilic Trifluoromethylthiolation of Phenols. Org. Biomol. Chem. 2015, 13, 3103–3115. [Google Scholar] [CrossRef]
- Ma, L.; Cheng, X.; Li, Y.; Wang, X. Direct Electrophilic Trifluoromethylthiolation of N-benzyl Indoles Using AgSCF3. Tetrahedron Lett. 2016, 57, 2972–2975. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Guo, W.; Zhang, Y.; Du, X.; Song, Y.; Wang, W.; Liu, Z.; Duan, Y.; Zhang, T. Enantioselective α-Trifluoromethylthiolation of Carbonyl Compounds with AgSCF3 and Trichloroisocyanuric Acid. J. Org. Chem. 2024, 89, 8011–8022. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Huang, Y.; Weng, Z. Recent Advances in Trifluoromethylthiolation Using Nucleophilic Trifluoromethylthiolating Reagents. Tetrahedron Lett. 2016, 57, 1397–1409. [Google Scholar] [CrossRef]
- Xu, C.; Chen, Q.; Shen, Q. Nucleophilic Trifluoromethylthiolation of Alkyl Chlorides, Bromides and Tosylates. Chin. J. Chem. 2016, 34, 495–504. [Google Scholar] [CrossRef]
- Teverovskiy, G.; Surry, D.S.; Buchwald, S.L. Pd-Catalyzed Synthesis of Ar-SCF3 Compounds under Mild Conditions. Angew. Chem. Int. Ed. 2011, 50, 7312–7314. [Google Scholar] [CrossRef]
- Liu, J.-B.; Xu, X.-H.; Chen, Z.-H.; Qing, F.-L. Direct Dehydroxytrifluoromethylthiolation of Alcohols Using Silver(I) Trifluoromethanethiolate and Tetra-n-butylammonium Iodide. Angew. Chem. Int. Ed. 2015, 54, 897–900. [Google Scholar] [CrossRef] [PubMed]
- Mizuta, S.; Tabira, M.; Shichiro, N.; Yamaguchi, T.; Ishihara, J.; Ishikawa, T. Reaction Mechanism and Origin of Stereoselectivity in the Fluorination and Trifluoromethylthiolation of 2-Bromoamides with AgF and AgSCF3. Eur. J. Org. Chem. 2024, 27, e202301100. [Google Scholar] [CrossRef]
- Barthelemy, A.L.; Magnier, E.; Dagousset, G. Direct Trifluoromethylthiolation Reactions Involving Radical Processes. Synthesis 2018, 50, 4765–4776. [Google Scholar]
- Honeker, R.; Garza-Sanchez, R.A.; Hopkinson, N.; Glorius, F. Visible-Light-Promoted Trifluoromethylthiolation of Styrenes by Dual Photoredox/Halide Catalysis. Chem. Eur. J. 2016, 22, 4395–4399. [Google Scholar] [CrossRef]
- He, B.; Xiao, Z.; Wu, H.; Guo, Y.; Chen, Q.; Liu, C. Oxidative Decarboxylative Radical Trifluoromethylthiolation of Alkyl Carboxylic Acids with Silver(i) Trifluoromethanethiolate and Selectfluor. RSC Adv. 2017, 7, 880–883. [Google Scholar] [CrossRef]
- Shao, X.; Zhou, S.; Hu, Z.; Zha, Y.; Wu, S.; Wang, X.; Xu, S.; Zhou, H. Metal-catalyzed Radical Trifluoromethylthiolation of Aryl Boronic Acids in the Aqueous Phase. ChemCatChem 2022, 14, e202200546. [Google Scholar] [CrossRef]
- Chen, X.; Geng, Y.; Zhu, Y.; Zou, D.; Wu, Y.; Wu, Y. Iron-Catalyzed Direct C3−H Trifluoromethylthiolation of Quinoxalin-2(1H)-ones. Adv. Synth. Catal. 2024, 366, 214–219. [Google Scholar] [CrossRef]
- Yin, F.; Wang, X. Silver-Mediated Radical Aryltrifluoromethylthiolaton of Activated Alkenes. Org. Lett. 2014, 16, 1128–1131. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Gao, P.; Chen, D.; Chen, S.; Wang, J.; Liu, X.; Liang, Y. AgSCF3-Mediated Oxidative Trifluoromethythiolation of Alkynes with Dearomatization to Synthesize SCF3-Substituted Spiro[4,5]trienones. Org. Lett. 2016, 18, 3486–3489. [Google Scholar] [CrossRef] [PubMed]
- Bi, M.; Liu, S.; Huang, Y.; Xu, X.; Qing, F.L. Cascade Trifluoromethylthiolation and Cyclization of N-[(3-aryl)propioloyl]indoles. Beilstein. J. Org. Chem. 2020, 16, 657–662. [Google Scholar] [CrossRef]
- Wang, L.; Xie, L.; Fang, Z.; Zhang, Q.; Li, D. Tandem Trifluoromethylthiolation and Cyclization of N-aryl-3-butenamides with AgSCF3: Divergent Access to CF3S-substituted 3,4-dihydroquinolin-2-ones and Azaspiro[4,5]dienones. Org. Chem. Front. 2022, 9, 3061–3067. [Google Scholar] [CrossRef]
- Chen, X.; Pei, C.; Liu, B.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Copper-assisted Trifluoromethylthiolation/radical Cascade Cyclization of Alkynes to Construct SCF3-containing Dioxodibenzothiazepines. Chem. Commun. 2022, 58, 8674–8677. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, G.; Guo, Q.; Xu, Z.; Zhang, D.; Wang, R. Copper-Catalyzed Intramolecular Oxytrifluoromethylthiolation of Unactivated Alkenes. Org. Lett. 2014, 16, 5390–5393. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Yan, Q.; Ren, Y.; Li, X.; Liu, Z.; Li, Z. Free-Radical-Involved Trifluoromethylthiolation Cyclization of Alkenes To Access SCF3-Substituted Indolo[2,1-a]isoquinolines. Synlett 2022, 33, 1938–1942. [Google Scholar] [CrossRef]
- Qian, Y.; Chu, L.; Zhang, X.; Lu, Z.; Bai, Y. Stereoselective Synthesis of Structurally Diverse (S)-Lactams via an Engineered Amine Dehydrogenase. Adv. Synth. Catal. 2022, 364, 4289–4299. [Google Scholar] [CrossRef]
- Li, Z.; Song, L.; Li, C. Silver-Catalyzed Radical Aminofluorination of Unactivated Alkenes in Aqueous Media. J. Am. Chem. Soc. 2013, 135, 4640–4643. [Google Scholar] [CrossRef]
- Jia, J.; Ho, Y.; Below, R.F.; Rueping, M. Brønsted Base Assisted Photoredox Catalysis: Proton Coupled Electron Transfer for Remote C−C Bond Formation via Amidyl Radicals. Chem. Eur. J. 2018, 24, 14054–14058. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Gutiérrez-Bonet, A.; Molander, G.A. Merging Photoredox PCET with Nickel-Catalyzed Cross-Coupling: Cascade Amidoarylation of Unactivated Olefins. Chem 2019, 14, 339–352. [Google Scholar] [CrossRef]
- Zheng, S.; Anna, M.J.; Zhang, S.; Hong, X.; Saeednia, B.; Zhou, J.; Molander, G.A. Diastereoselective Olefin Amidoacylation via Photoredox PCET/nickel-dual Catalysis: Reaction Scope and Mechanistic Insights. Chem. Sci. 2020, 11, 4131–4137. [Google Scholar] [CrossRef]
- Zhong, T.; Yi, J.; Chen, Z.; Zhuang, Q.; Li, Y.; Lu, G.; Weng, J. Photoredox-catalyzed Aminofluorosulfonylation of Unactivated Olefins. Chem. Sci. 2021, 12, 9359–9365. [Google Scholar] [CrossRef]
- Shi, J.; Guo, L.; Hu, Q.; Liu, Y.; Li, Q.; Pan, F. Photoredox-Catalyzed Difunctionalization of Unactivated Olefins for Synthesizing Lactam-Substituted gem-Difluoroalkenes. Org. Lett. 2021, 23, 8822–8827. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Xie, L.; Wang, L.; Zhang, Q.; Li, D. Silver-catalyzed Cascade Cyclization and Functionalization of N-aryl-4-pentenamides: An Efficient Route to γ-Lactam-substituted Quinone Derivatives. RSC Adv. 2022, 12, 26776–26780. [Google Scholar] [CrossRef]
- Xie, L.; Cao, R.; Huang, Y.; Zhang, Q.; Fang, Z.; Li, D. Rapid Construction of γ-Lactam Containing 3,3-Disubstituted Oxindoles via a Silver-catalyzed Cascade Radical Bicyclization Reaction. Org. Chem. Front. 2022, 9, 5929–5934. [Google Scholar] [CrossRef]
- Liu, W.; Wang, L.; Mu, H.; Zhang, Q.; Fang, Z.; Li, D. Synthesis of Cyano-substituted γ-Lactams through a Copper-catalyzed Cascade Cyclization/cyanation Reaction. Org. Biomol. Chem. 2023, 21, 1168–1171. [Google Scholar] [CrossRef]
- Fang, Z.; Liu, W.; Al-Maharik, N.; Cao, R.; Huang, Y.; Yuan, Y.; Zhang, Q.; Li, D. Silver-Catalyzed Cascade Radical Bicyclization Reaction: An Atom- and Step-Economical Strategy Accessing γ-Lactam Containing Isoquinolinediones. J. Org. Chem. 2023, 88, 15428–15436. [Google Scholar] [CrossRef]
- Liu, R.; Li, M.; Xie, W.; Zhou, H.; Zhang, Y.; Qiu, G. Tunable Synthesis of 3-Hydroxylisoquinolin-1,4-dione and Isoquinolin-1-one Enabled by Copper-Catalyzed Radical 6-Endo Aza-cyclization of 2-Alkynylbenzamide. J. Org. Chem. 2019, 84, 11763–11773. [Google Scholar] [CrossRef]
- Viveki, A.B.; Garad, D.N.; Gonnade, R.G.; Mhaske, S.B. para-Selective Copper-catalyzed C(sp2)–H Amidation/dimerization of Anilides via a Radical Pathway. Chem. Commun. 2020, 56, 1565–1568. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, F.C.; Turnpenny, B.W.; Chemler, S.R. Copper-Promoted and Copper-Catalyzed Intermolecular Alkene Diamination. Angew. Chem. Int. Ed. 2010, 49, 6365–6368. [Google Scholar] [CrossRef] [PubMed]
Entry | [Cu] | Oxidant | Solvent | T (°C) | t (h) | Yield (%) b |
---|---|---|---|---|---|---|
1 | Cu(OAc)2 | K2S2O8 | H2O/DMSO (1:1) | 80 | 12 | 55 |
2 | CuSO4 | K2S2O8 | H2O/DMSO (1:1) | 80 | 12 | 47 |
3 | CuCl2 | K2S2O8 | H2O/DMSO (1:1) | 80 | 12 | 46 |
4 | Cu(acac)2 | K2S2O8 | H2O/DMSO (1:1) | 80 | 12 | 26 |
5 | CuBr2 | K2S2O8 | H2O/DMSO (1:1) | 80 | 12 | 45 |
6 | CuO | K2S2O8 | H2O/DMSO (1:1) | 80 | 12 | 7 |
7 | Cu2O | K2S2O8 | H2O/DMSO (1:1) | 80 | 12 | 38 |
8 | CuCl | K2S2O8 | H2O/DMSO (1:1) | 80 | 12 | 32 |
9 | Cu(OAc)2 | K2S2O8 | H2O | 80 | 12 | NR |
10 | Cu(OAc)2 | K2S2O8 | DMSO | 80 | 12 | 43 |
11 | Cu(OAc)2 | K2S2O8 | H2O/DMSO (1:2) | 80 | 12 | 62 |
12 | Cu(OAc)2 | K2S2O8 | H2O/DMSO (1:3) | 80 | 12 | 67 |
13 | Cu(OAc)2 | Na2S2O8 | H2O/DMSO (1:3) | 80 | 12 | 26 |
14 | Cu(OAc)2 | (NH4)2S2O8 | H2O/DMSO (1:3) | 80 | 12 | 64 |
15 | Cu(OAc)2 | TBHP | H2O/DMSO (1:3) | 80 | 12 | NR |
16 | Cu(OAc)2 | m-CPBA | H2O/DMSO (1:3) | 80 | 12 | NR |
17 | Cu(OAc)2 | DTBP | H2O/DMSO (1:3) | 80 | 12 | NR |
18 | Cu(OAc)2 | K2S2O8 | H2O/DMSO (1:3) | 60 | 12 | 53 |
19 | Cu(OAc)2 | K2S2O8 | H2O/DMSO (1:3) | 100 | 12 | 73 |
20 | Cu(OAc)2 | K2S2O8 | H2O/DMSO (1:3) | 100 | 6 | 73 |
21 | Cu(OAc)2 | K2S2O8 | H2O/DMSO (1:3) | 100 | 18 | 68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Liu, W.; Hu, J.; Zhang, Q.; Fang, Z.; Li, D. Copper-Catalyzed Trifluoromethylthiolaton and Radical Cyclization of N-Phenylpent-4-Enamides to Construct SCF3-Substituted γ-Lactams. Catalysts 2024, 14, 797. https://doi.org/10.3390/catal14110797
Zhang H, Liu W, Hu J, Zhang Q, Fang Z, Li D. Copper-Catalyzed Trifluoromethylthiolaton and Radical Cyclization of N-Phenylpent-4-Enamides to Construct SCF3-Substituted γ-Lactams. Catalysts. 2024; 14(11):797. https://doi.org/10.3390/catal14110797
Chicago/Turabian StyleZhang, Hanyang, Wen Liu, Jiale Hu, Qian Zhang, Zeguo Fang, and Dong Li. 2024. "Copper-Catalyzed Trifluoromethylthiolaton and Radical Cyclization of N-Phenylpent-4-Enamides to Construct SCF3-Substituted γ-Lactams" Catalysts 14, no. 11: 797. https://doi.org/10.3390/catal14110797
APA StyleZhang, H., Liu, W., Hu, J., Zhang, Q., Fang, Z., & Li, D. (2024). Copper-Catalyzed Trifluoromethylthiolaton and Radical Cyclization of N-Phenylpent-4-Enamides to Construct SCF3-Substituted γ-Lactams. Catalysts, 14(11), 797. https://doi.org/10.3390/catal14110797