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Abstract: An efficient method involving copper-catalyzed trifluoromethylthiolation and radical
cyclization of N-phenylpent-4-enamides using readily available and stable AgSCF3 as the trifluo-
romethylthiolating reagent is described. The method enables the synthesis of a series of potential
medicinally valuable trifluoromethylthio-substituted γ-lactams and relative 2-oxazolidinone deriva-
tives with broad functional group compatibility. Mechanistic investigations indicated that this reaction
involved amidyl radical-initiated cascade 5-exo-trig cyclization followed by trifluoromethylthiolation,
resulting in the formation of new C-N and C-S bonds.
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1. Introduction

In recent years, the incorporation of fluorinated functional groups into organic molecules
has gained significant attention, primarily due to the unique chemical and physical proper-
ties these groups impart to the molecules [1–3]. Among these, the trifluoromethylthio group
(-SCF3) stands out for its exceptional electronegativity, lipophilicity, and metabolic stability,
making it a valuable moiety in the fields of pharmaceuticals, agrochemicals, and materials
science [4–6]. As a result, tremendous efforts have been devoted to the direct preparation
of trifluoromethylthiolated compounds via electrophilic [7–11], nucleophilic [12–16], and
radical [17–21] trifluoromethylthiolation. Recently, the SCF3• radical-cyclization pathway,
initiated by stable and readily available silver trifluoromethylthiolate (AgSCF3) as the
SCF3 radical source, has emerged as an efficient strategy for constructing SCF3-substituted
compounds. In particular, Wang [22], Liang [23], Qing [24], and ourselves [25], along with
others [26–28], have utilized this approach to synthesize SCF3-substituted cyclic compounds
through trifluoromethylthiolation/cyclization of alkenes and alkynes. Despite these signifi-
cant advances, there remains a strong demand for new methods to efficiently synthesize
SCF3-containing compounds, particularly those with medicinally promising scaffolds.

γ-Lactams are a class of five-membered cyclic amides that are present in numer-
ous bioactive natural products and pharmaceutical compounds. For instance, claudse-
namide, an anti-dementia agent, and stemoamide, an antitussive agent, are notable γ-lactam
derivatives that showcase their therapeutic potential in addressing critical health issues.
Other representative examples of biologically active γ-lactam derivatives are illustrated
in Scheme 1 [29]. Despite their significance in drug development, there is still a need to
expand the variety of γ-lactam derivatives to synthesize those with specific biological
activities. In the past few years, the cascade radical cyclization/functionalization of N-
phenyl-4-pentenamides through amidyl radicals for the synthesis of γ-lactam derivatives
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has attracted great attention. For example, in 2013, Li reported an efficient silver-catalyzed
radical fluorination/cyclization of various N-arylpent-4-enamides to afford 5-fluoromethyl-
substituted γ-lactams [30]. Afterward, in 2018, Rueping disclosed the synthesis of alkyne
and alkene-decorated γ-lactams through the photocatalytic proton-coupled electron trans-
fer (PCET) activation of N-phenyl-4-pentenamides [31]. Later, Molander successively
developed a photoredox PCET/Ni dual-catalyzed amidoarylation and aminoacylation
of N-phenyl-4-pentenamides to construct γ-lactam derivatives [32,33]. More recently,
Weng [34] and Pan [35] have described a mild photoredox catalytic approach to accessing
sulfonyl fluoride and gem-difluoroalkene-substituted γ-lactams via radical cascade cycliza-
tion of N-phenyl-4-pentenamides, respectively (Scheme 2, top). Inspired by these elegant
results and our ongoing interest in trifluoromethylthiolation [25] and γ-lactams [36–39], we
became interested in preparing SCF3-substituted γ-lactams that may be useful in medicinal
chemistry. Herein, we disclose a method involving copper-catalyzed trifluoromethylthiola-
tion and radical cyclization of N-phenyl-4-pentenamides using stable and easily operable
AgSCF3 to access SCF3-substituted γ-lactams (Scheme 2, bottom).
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2. Results and Discussion

In our initial investigation, N-phenylpent-4-enamide 1a and AgSCF3 2 were selected
as the model substrates to screen the reaction conditions, and the results are summarized in
Table 1. To our delight, the desired trifluoromethylthiolated product 3a was obtained in 55%
yield when the reaction was conducted with Cu(OAc)2 (0.2 mmol) and K2S2O8 (1.5 equiv.)
in the H2O/DMSO (1/1, v/v) at 80 ◦C for 12 h (entry 1). Subsequent tests revealed that
Cu(OAc)2 was essential in enhancing the reaction efficiency, as other copper salts, whether
Cu(I) or Cu(II), led to inferior results (entries 2–8). This is likely due to Cu(OAc)2’s superior
ability to generate amidyl radical intermediates, which is crucial for the desired radical
cyclization process [40–42]. When water or DMSO was used as the sole solvent, the yield of
3a dropped to 0% or 43%, respectively (entries 9, 10). These results revealed that water and
DMSO mixture solvent may be the best solvent system for the reaction. Further variation in
the ratio of mixed solvent systems showed that a H2O/DMSO (1:3, v/v) mixture resulted
in an improved yield of 67% (entries 11, 12). Next, different oxidants were tested in order to
improve yield further, but K2S2O8 consistently gave the best results (entries 13–17), which
is consistent with the literature indicating that S2O8

2− is effective for the formation of SCF3
radicals [22–24]. Finally, the effects of reaction temperature and time were investigated.
The results indicated that increasing the reaction temperature to 100 ◦C further boosted the
yield to 73% (entries 18 and 19). Additionally, shortening the reaction time to 6 h did not
reduce the yield (entries 20 and 21; for more details regarding the screening of conditions,
refer to the Supporting Information). Therefore, the conditions described in entry 20 were
selected as the optimal conditions.

Table 1. Optimization of the reaction conditions a,b.
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With the optimized conditions established, we then set out to investigate the cascade
cyclization reaction between various N-arylpent-4-enamides 1 and AgSCF3, as summarized
in Figure 1. Various substrates containing either an electron-donating (3b, 3c, 3f) or
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electron-withdrawing (3d, 3e) group at the para-position of the aryl group were all tolerated
under reaction conditions, leading to the desired products in moderate to good yields.
N-phenylpent-4-enamides with ortho- or meta-substitutions also reacted efficiently with
2, producing trifluoromethylthiolated γ-lactam products in 42–66% yields (3g–3k). Even
when substrates had two substituents on the phenyl ring, including one at the meta-position
(3p, 3q), the reaction efficiency was not significantly impacted, leading to the formation
of products (3m–3r), which shows that the steric hindrance of N-phenylpent-4-enamide
did not affect this transformation. Furthermore, substrates with the methyl group at the
α-carbonyl position were tried and were compatible with this reaction as well (3s, 3t).
Finally, to explore the scope of this transformation, several carbamate substrates were
examined under the standard reaction condition and resulted in good yields (3u–3x).
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(0.3 mmol, 1.5 equiv.), Cu(OAc)2 (0.2 equiv.), oxidant (1.5 equiv.) in DMSO/H2O (3:1, 2.0 mL) at
100 ◦C for 6 h; isolated yield.

To gain deeper insight into the plausible reaction mechanism, we performed several
control experiments (Scheme 3, top). First, when 1a and 2 were subjected to the reaction
conditions without Cu(OAc)2, the desired product 3 did not form. This indicates that
copper plays a crucial role in the catalytic cycle. Furthermore, the addition of the radical
scavenger 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) to the standard reaction of 1a and
2 resulted in the total inhibition of the reaction, suggesting the possible involvement of
a radical process. Notably, the TEMPO-trapped product 4 was observed by 1H NMR
spectroscopy in approximately 20% yield [38]. Despite the lack of complete clarity on
the process of this transformation, a feasible reaction mechanism was postulated based
on prior studies and the experimental data mentioned above (Scheme 3, bottom). Firstly,
Cu(OAc)2 facilitated the formation of an amidyl radical via N-H bond activation [40–42].
Subsequently, the amidyl radical underwent addition to the C=C bond, resulting in the
formation of intermediate B via 5-exo-trig cyclization. Meanwhile, AgSCF3 was oxidized
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by K2S2O8 to generate the AgII(SCF3)2, which further transformed into CF3SSCF3 [22–24].
Finally, CF3SSCF3 decomposed and released a SCF3 radical, which was coupled with B to
give the trifluoromethylthiolation product 3a.
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3. Experimental Section

General Information: 1H NMR (400 MHz), 13C NMR (100 MHz), and 19F NMR (376 MHz)
spectra were recorded on a Bruker NMR apparatus (Bremen, Germany) with CDCl3 as the
solvent. The chemical shifts are reported in δ (ppm) values. 1H NMR chemical shifts were
determined relative to the internal tetramethylsilane signal at δ 0.0. 19F NMR chemical
shifts were determined relative to external CHCl3 at δ 0.0. Data for 1H, 13C, and 19FNMR
were recorded as follows: chemical shift (δ, ppm), multiplicity (s = singlet, d = doublet,
t = triplet, m = multiplet, dd = doublet of doublets, br = broad). Coupling constants (J) are
reported in Hertz (Hz). Melting points were measured by SGW X-4A microscopic apparatus
(Shanghai INESA Physico-Optical Instrument Co., Ltd., Shanghai, China). HRMS was mea-
sured by Q Exactive Hybrid Quadrupole-Orbitrap LC/MS spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA). The starting materials, including the aniline, 4-pentene
acid, phosphorus oxychloride, and triethylamine, were obtained from commercial sources
such as Aladdin (Calhoun, GA, USA), Macklin (Shanghai, China), Alfa Aesar (Ward Hill,
MA, USA), and Ourchem (Guangzhou, China) and used as received unless otherwise noted.
Ethyl acetate (Titanchem, Shanghai, China) and petroleum ether (Titanchem, Shanghai,
China) were used for column chromatography without further purification.

General procedure for the synthesis of desired products forming SCF3-substituted γ-
lactams (3a–3x).

A mixture of substituted N-phenylpent-4-enamides (1, 0.2 mmol), AgSCF3 (2, 0.3 mmol),
K2S2O8 (0.3 mmol), and Cu(OAc)2 (0.04 mmol) in H2O/DMSO (1:3, 2 mL) was stirred at
100 ◦C for 6 h. After the reaction was completed, it was quenched with saturated NaHCO3,
and the crude solution was separated after diluting with ethyl acetate and dried over
anhydrous Na2SO4. The solvent was removed in vacuum to obtain the crude product,
which was further separated and purified by column chromatography to give the desired
products (3a–3x).
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1-phenyl-5-{[(trifluoromethyl)sulfanyl]methyl}pyrrolidin-2-one (3a): The target prod-
uct was synthesized as a colorless oil and purified by column chromatography (ethyl
acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.40–7.31 (m, 2H), 7.29 (d,
J = 7.5 Hz, 2H), 7.22–7.15 (m, 1H), 4.51–4.38 (m, 1H, CH), 3.10 (dd, J = 13.8, 3.0 Hz, 1H), 2.80
(dd, J = 13.8, 8.3 Hz, 1H), 2.69–2.46 (m, 2H), 2.45–2.35 (m, 1H), 1.99–1.89 (m, 1H). 13C NMR
(101 MHz, CDCl3) δ 172.9, 135.5, 129.6 (q, J = 307.0 Hz), 128.4, 125.5, 122.9, 57.4, 32.0 (q,
J = 2.0 Hz), 29.6, 22.0. 19F NMR (376 MHz, CDCl3) δ −40.65. HRMS: Cal. C12H12OF3NS
(M + H)+: 276.0664, found 276.0665.

1-(4-methylphenyl)-5-{[(trifluoromethyl)sulfanyl]methyl}pyrrolidin-2-one (3b): The tar-
get product was synthesized as a colorless oil and purified by column chromatography
(ethyl acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.22 (s, 4H), 4.52–4.42
(m, 1H, CH), 3.15 (dd, J = 13.7, 2.8 Hz, 1H), 2.87 (dd, J = 13.7, 8.3 Hz, 1H), 2.74–2.52 (m,
2H), 2.52–2.39 (m, 1H), 2.35 (s, 3H), 2.05–1.97 (m, 1H). 13C NMR (101 MHz, CDCl3) δ 174.1,
136.7, 133.9, 132.2 (q, J = 304.4 Hz), 130.1, 124.2, 58.7, 33.2 (q, J = 1.9 Hz), 30.7, 23.1, 21.1.
19F NMR (376 MHz, CDCl3) δ −40.56. HRMS: Cal. C13H14OF3NS (M + H)+: 290.0821,
found 290.0822.

1-(4-ethylphenyl)-5-(((trifluoromethyl)thio)methyl)pyrrolidin-2-one (3c): The target prod-
uct was synthesized as a colorless oil and purified by column chromatography (ethyl
acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.25 (d, J = 8.7 Hz, 4H),
4.53–4.42 (m, 1H, CH), 3.16 (dd, J = 13.7, 3.0 Hz, 1H), 2.92–2.83 (m, 1H), 2.74–2.54 (m, 4H),
2.51–2.39 (m, 1H), 2.07–1.97 (m, 1H), 1.23 (d, J = 7.6 Hz, 3H, CH3). 13C NMR (101 MHz,
CDCl3) δ 174.1, 142.9, 134.0, 131.0 (q, J = 394.7 Hz), 128.9, 124.2, 58.7, 33.1 (q, J = 1.8 Hz),
30.7, 28.4, 23.0, 15.4. 19F NMR (376 MHz, CDCl3) δ−40.64. HRMS: C14H16OF3NS (M + H)+:
303.0905, found 303.0906.

1-(4-chlorophenyl)-5-{[(trifluoromethyl)sulfanyl]methyl}pyrrolidin-2-one (3d): The target
product was synthesized as a colorless oil and purified by column chromatography (ethyl
acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.39 (d, J = 8.7 Hz, 2H),
7.33 (d, J = 8.0 Hz, 2H), 4.55–4.45 (m, 1H, CH), 3.21–3.10 (m, 1H), 2.87 (dd, J = 13.8, 8.3 Hz,
1H), 2.75–2.64 (m, 1H), 2.63–2.53 (m, 1H), 2.53–2.41 (m, 1H), 2.08–1.96 (m, 1H). 13C NMR
(101 MHz, CDCl3) δ 174.0, 135.2, 131.9, 130.6 (q, J = 305.5 Hz), 129.6, 124.9, 58.3, 32.9 (q,
J = 1.8 Hz), 30.6, 23.0. 19F NMR (376 MHz, CDCl3) δ −40.49. HRMS: C12H11OClF3NS
(M + H)+: 310.0275, found 310.0276.

1-[4-(trifluoromethyl)phenyl]-5-{[(trifluoromethyl)sulfanyl]methyl}pyrrolidin-2-one (3e):
The target product was synthesized as a colorless oil and purified by column chromatogra-
phy (ethyl acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 8.4 Hz,
2H), 7.64 (d, J = 8.5 Hz, 2H), 4.73–4.62 (m, 1H, CH), 3.21 (dd, J = 14.0, 2.8 Hz, 1H), 2.94 (dd,
J = 8.8, 8.4 Hz, 1H), 2.86–2.74 (m, 1H), 2.74–2.63 (m, 1H), 2.64–2.53 (m, 1H), 2.19–2.08 (m,
1H). 13C NMR (101 MHz, CDCl3) δ 171.3, 139.9, 130.3 (q, J = 308.0 Hz), 127.9 (d, J = 35.8Hz),
126.5 (q, J = 3.8 Hz), 126.2 (d, J = 3.6 Hz), 123.8 (d, J = 273.9 Hz), 122.8, 118.4, 58.0, 32.7
(q, J = 1.8 Hz), 30.7, 22.8. 19F NMR (376 MHz, CDCl3) δ −40.52, −62.48. HRMS:Cal.
C13H11OF6NS (M + H)+: 344.0538, found 344.0533.

1-(4-methoxyphenyl)-5-(((trifluoromethyl)thio)methyl)pyrrolidin-2-one (3f): The target
product was synthesized as a colorless oil and purified by column chromatography (ethyl
acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.22 (d, J = 8.9 Hz, 2H), 6.94
(d, J = 8.9 Hz, 2H), 4.45–4.36 (m, 1H, CH), 3.81 (s, 3H, OCH3), 3.12 (dd, J = 13.7, 3.1 Hz,
1H), 2.94–2.82 (m, 1H), 2.71–2.56 (m, 2H), 2.51–2.38 (m, 1H), 2.06–1.93 (m, 1H). 13C NMR
(101 MHz, CDCl3) δ 174.2, 158.2, 130.7 (q, J = 306.7 Hz), 129.2, 126.1, 114.7, 59.0, 55.5, 33.2 (q,
J = 1.9 Hz), 30.5, 23.1. 19F NMR (376 MHz, CDCl3) δ −40.72. HRMS: Cal. C13H14O2F3NS
(M + H)+: 305.0697, found 305.0698.
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1-(3-fluorophenyl)-5-{[(trifluoromethyl)sulfanyl]methyl}pyrrolidin-2-one (3g): The target
product was synthesized as a colorless oil and purified by column chromatography (ethyl
acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.31 (q, J = 8.1 Hz, 1H),
7.24–7.16 (m, 1H), 7.07 (d, J = 8.1 Hz, 1H), 6.94–6.84 (m, 1H), 4.55–4.38 (m, 1H, CH), 3.27–3.08
(m, 1H), 2.82 (dd, J = 13.9, 8.5 Hz, 1H), 2.71–2.58 (m, 1H), 2.59–2.46 (m, 1H), 2.46–2.34 (m,
1H), 2.03–1.90 (m, 1H). 13C NMR (101 MHz, CDCl3) δ 172.8, 162.1 (d, J = 247.8 Hz), 137.2
(d, J = 10.3 Hz), 129.6 (q, J = 307.6 Hz), 129.5 (d, J = 9.7 Hz), 117.3 (d, J = 2.9 Hz), 112.2 (d,
J = 21.5 Hz), 109.9 (d, J = 24.5 Hz), 57.2, 31.7 (q, J = 1.8 Hz), 29.6, 21.8. 19F NMR (376 MHz,
CDCl3) δ −40.59, −110.64. HRMS: Cal. C12H11OF4NS (M + H)+: 294.0570, found 294.0572.

1-[3-(trifluoromethyl)phenyl]-5-{[(trifluoromethyl)sulfanyl]methyl}pyrrolidin-2-one (3h):
The target product was synthesized as a colorless oil and purified by column chromatogra-
phy (ethyl acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 8.0 Hz,
2H), 7.56 (d, J = 8.3 Hz, 2H), 4.69–4.48 (m, 1H, CH), 3.21 (d, J = 13.6 Hz, 1H), 2.99–2.81 (m,
1H), 2.79–2.69 (m, 1H), 2.69–2.58 (m, 1H), 2.56–2.43 (m, 1H), 2.16–2.01 (m, 1H). 13C NMR
(101 MHz, CDCl3) δ 174.1, 137.3, 130.6 (d, J = 223.1 Hz), 130.5 (q, J = 301.5Hz), 130.1, 127.7
(d, J = 34.9 Hz), 126.6, 122.9 (q, J = 3.7 Hz), 119.8 (d, J = 3.9 Hz), 58.2, 32.7 (q, J = 1.8 Hz), 30.6,
22.9. 19F NMR (376 MHz, CDCl3) δ −40.61, −62.79. HRMS: Cal. C13H11OF6NS (M + H)+:
344.0538, found 344.0535.

1-(3-chlorophenyl)-5-(((trifluoromethyl)thio)methyl)pyrrolidin-2-one (3i): The target
product was synthesized as a colorless oil and purified by column chromatography (ethyl
acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.45 (t, J = 2.1 Hz, 1H), 7.35
(t, J = 8.0 Hz, 1H), 7.29–7.19 (m, 2H), 4.60–4.41 (m, 1H, CH), 3.18 (dd, J = 13.9, 2.9 Hz, 1H),
2.94–2.81 (m, 1H), 2.75–2.64 (m, 1H), 2.64–2.54 (m, 1H), 2.52–2.44 (m, 1H), 2.11–1.95 (m, 1H).
13C NMR (101 MHz, CDCl3) δ 173.9, 137.8, 135.1, 130.5 (q, J = 306.9 Hz), 130.4, 126.5, 123.7,
121.4, 58.3, 32.8 (q, J = 1.8 Hz), 30.6, 22.9. 19F NMR (376 MHz, CDCl3) δ −40.57. HRMS: Cal.
C12H11ClF3NOS (M + H)+: 309.0202, found 309.0203.

1-(3-bromophenyl)-5-(((trifluoromethyl)thio)methyl)pyrrolidin-2-one (3j): The target
product was synthesized as a colorless oil and purified by column chromatography (ethyl
acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.62 (t, J = 2.0 Hz, 1H),
7.40 (dt, J = 7.5, 1.7 Hz, 1H), 7.37–7.33 (m, 1H), 7.33–7.28 (m, 1H), 4.59–4.42 (m, 1H, CH),
3.20 (dd, J = 13.9, 2.9 Hz, 1H), 2.90 (dd, J = 13.9, 8.4 Hz, 1H), 2.78–2.66 (m, 1H), 2.66–2.55
(m, 1H), 2.54–2.42 (m, 1H), 2.12–1.98 (m, 1H). 13C NMR (101 MHz, CDCl3) δ 173.9, 138.0,
130.6, 130.3 (q, J = 307.2 Hz), 129.4, 126.6, 122.9, 121.9, 58.3, 32.8 (q, J = 1.8 Hz), 30.6, 22.9.
19F NMR (376 MHz, CDCl3) δ −40.57. HRMS: Cal. C12H11OBrF3NS (M + H)+: 352.9697,
found 302.9698.

1-(2-fluorophenyl)-5-{[(trifluoromethyl)sulfanyl]methyl}pyrrolidin-2-one (3k): The target
product was synthesized as a colorless oil and purified by column chromatography (ethyl
acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.37–7.27 (m, 2H), 7.24–7.13
(m, 2H), 4.49–4.32 (m, 1H, CH), 3.05 (dd, J = 13.7, 3.3 Hz, 1H), 2.88 (dd, J = 13.6, 7.7 Hz,
1H), 2.72–2.44 (m, 3H), 2.13–1.97 (m, 1H). 13C NMR (101 MHz, CDCl3) δ 174.6, 157.7 (d,
J = 252.0 Hz), 130.6 (q, J = 306.3 Hz), 129.6 (d, J = 8.1 Hz), 129.5 (d, J = 1.5 Hz), 124.9
(d, J = 3.7 Hz), 123.8 (d, J = 12.1 Hz), 116.9 (d, J = 19.9 Hz), 58.7 (d, J = 3.3 Hz), 33.3 (q,
J = 1.7 Hz), 30.0, 23.9. 19F NMR (376 MHz, CDCl3) δ −40.90, −119.90–−119.96. HRMS: Cal.
C12H11OF4NS (M + H)+: 294.0570, found 294.0573.

1-(2,5-dimethylphenyl)-5-{[(trifluoromethyl)sulfanyl]methyl}pyrrolidin-2-one (3l): The
target product was synthesized as a colorless oil and purified by column chromatography
(ethyl acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 6.92 (d, J = 19.1 Hz,
3H), 4.54–4.37 (m, 1H, CH), 3.15 (dd, J = 13.8, 2.7 Hz, 1H), 2.85 (dd, J = 13.7, 8.4 Hz,
1H), 2.68–2.52 (m, 2H), 2.50–2.40 (m, 1H), 2.32 (s, 6H, CH3), 2.06–1.93 (m, 1H). 13C NMR
(101 MHz, CDCl3) δ 174.0, 139.1, 136.3, 130.7 (q, J = 306.4 Hz), 128.6, 122.0, 121.2, 121.7, 58.8,
33.0 (q, J = 1.8Hz), 30.7, 29.7, 23.1, 21.3. 19F NMR (376 MHz, CDCl3) δ −40.65. HRMS: Cal.
C14H16OF3NS (M + H)+: 304.0977, found 304.0975.
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1-(3-fluoro-4-methylphenyl)-5-{[(trifluoromethyl)sulfanyl]methyl}pyrrolidin-2-one (3m):
The target product was synthesized as a colorless oil and purified by column chromatog-
raphy (ethyl acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.24–7.10
(m, 2H), 7.01 (dd, J = 8.2, 2.1 Hz, 1H), 4.50–4.44 (m, 1H, CH), 3.17 (dd, J = 13.8, 2.9 Hz,
1H), 2.88 (dd, J = 13.8, 8.4 Hz, 1H), 2.69–2.54 (m, 2H), 2.51–2.39 (m, 1H), 2.26 (s, 3H, CH3),
2.09- 1.96 (m, 1H). 13C NMR (101 MHz, CDCl3) δ 172.8, 160.2 (d, J = 244.3Hz), 134.5(d,
J = 9.9 Hz), 130.9(d, J = 6.3 Hz), 129.6 (q, J = 307.5 Hz), 122.1 (d, J = 17.3 Hz), 117.6 (d,
J = 3.5 Hz), 109.9 (d, J = 25.6 Hz), 57.3, 31.8 (q, J = 1.8 Hz), 29.5, 21.8, 13.1 (d, J = 3.2 Hz). 19F
NMR (376 MHz, CDCl3) δ −40.60, −114.43–−114.61. HRMS: Cal. C13H13OF4NS (M + H)+:
308.0727, found 308.0729.

1-(3-chloro-4-methylphenyl)-5-{[(trifluoromethyl)sulfanyl]methyl}pyrrolidin-2-one (3n):
The target product was synthesized as a colorless oil and purified by column chromatogra-
phy (ethyl acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.40 (d, J = 2.3 Hz,
1H), 7.29–7.23 (m, 1H), 7.15 (dd, J = 8.2, 2.2 Hz, 1H), 4.54–4.40 (m, 1H, CH), 3.15 (dd, J = 13.8,
2.9 Hz, 1H), 2.92–2.81 (m, 1H), 2.71–2.62 (m, 1H), 2.62–2.53 (m, 1H), 2.50–2.41 (m, 1H),
2.36 (s, 3H, CH3), 2.09–1.97 (m, 1H). 13C NMR (101 MHz, CDCl3) δ 172.9 134.3, 133.9,
133.4, 130.4, 129.6 (q, J = 305.6Hz), 123.4, 120.9, 57.3, 31.8 (q, J = 1.6 Hz), 29.5, 21.9, 18.6.
19F NMR (376 MHz, CDCl3) δ −40.59. HRMS: Cal. C13H13OClF3NS (M + H)+: 324.0431,
found 324.0432.

1-(3-bromo-4-methylphenyl)-5-{[(trifluoromethyl)sulfanyl]methyl}pyrrolidin-2-one (3o):
The target product was synthesized as a colorless oil and purified by column chromatogra-
phy (ethyl acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.51 (d, J = 2.1 Hz,
1H), 7.20 (d, J = 8.1 Hz, 1H), 7.14 (dd, J = 8.2, 2.1 Hz, 1H), 4.47–4.29 (m, 1H, CH), 3.09
(dd, J = 13.8, 2.9 Hz, 1H), 2.81 (dd, J = 13.8, 8.3 Hz, 1H), 2.68–2.47 (m, 2H), 2.44–2.35 (m,
1H), 2.30 (s, 3H, CH3), 1.99–1.89 (m, 1H). 13C NMR (101 MHz, CDCl3) δ 172.9, 135.3, 134.3,
130.2, 129.3 (q, J = 305.1 Hz), 126.5, 124.1, 121.6, 57.3, 31.8 (d, J = 1.8 Hz), 29.5, 21.9, 21.5.
19F NMR (376 MHz, CDCl3) δ −40.58. HRMS: Cal. C13H13OBrF3NS (M + H)+: 367.9926,
found 367.9925.

1-(2-fluoro-4-methylphenyl)-5-{[(trifluoromethyl)sulfanyl]methyl}pyrrolidin-2-one (3p):
The target product was synthesized as a colorless oil and purified by column chromatog-
raphy (ethyl acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.24–7.06 (m,
1H), 7.10–6.89 (m, 2H), 4.43–4.27 (m, 1H, CH), 3.05 (dd, J = 13.6, 3.5 Hz, 1H), 2.88 (dd,
J = 13.6, 7.7 Hz, 1H), 2.68–2.56 (m, 2H), 2.53–2.44 (m, 1H), 2.36 (s, 3H, CH3), 2.08–1.95 (m,
1H). 13C NMR (101 MHz, CDCl3) δ 173.6, 156.5 (d, J = 250.9 Hz), 139.5 (d, J = 7.8 Hz), 130.1
(q, J = 306.3 Hz), 128.1 (d, J = 2.0 Hz), 124.6 (d, J = 3.2 Hz), 119.9 (d, J = 12.4 Hz), 116.3
(d, J = 19.6 Hz), 57.7 (d, J = 3.0 Hz), 32.3 (d, J = 1.6 Hz), 28.9, 22.8, 20.2 (d, J = 1.3 Hz), 19F
NMR (376 MHz, CDCl3) δ −40.89, −121.00–−121.05. HRMS: Cal. C13H13OF4NS (M + H)+:
308.0727, found 308.0725.

1-(2,4-dimethylphenyl)-5-(((trifluoromethyl)thio)methyl)pyrrolidin-2-one (3q): The target
product was synthesized as a colorless oil and purified by column chromatography (ethyl
acetate/petroleum ether = 1:10). 1HNMR (400 MHz, CDCl3) δ 7.10 (d, J = 2.0 Hz, 1H), 7.04
(dd, J = 8.1, 2.0 Hz, 1H), 6.96 (d, J = 7.9 Hz, 1H), 4.40–4.04 (m, 1H, CH), 3.04 (dd, J = 13.5,
3.6 Hz, 1H), 2.91–2.76 (m, 1H), 2.68–2.55 (m, 2H), 2.55–2.44 (m, 1H), 2.32 (s, 3H, CH3), 2.18
(s, 3H, CH3), 2.09–1.95 (m, 1H). 13C NMR (101 MHz, CDCl3) δ 174.3, 138.4, 135.9, 132.3,
130.6 (q, J = 306.3 Hz), 127.8, 33.3, 30.1, 24.2, 21.01, 18.0. 19F NMR (376 MHz, CDCl3) δ
−40.92. HRMS: Cal. C14H16OF3NS (M + H)+: 303.0905, found 303.0906.

1-(3,5-dimethylphenyl)-5-{[(trifluoromethyl)sulfanyl]methyl}pyrrolidin-2-one (3r): The
target product was synthesized as a colorless oil and purified by column chromatography
(ethyl acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 6.95 (s, 2H), 6.90
(s, 1H), 4.50–4.41 (m, 1H, CH), 3.16 (dd, J = 13.7, 2.9 Hz, 1H), 2.85 (dd, J = 13.8, 8.4 Hz,
1H), 2.75–2.55 (m, 2H), 2.50–2.41 (m, 1H), 2.32 (s, 6H, CH3), 2.07–1.95 (m, 1H). 13C NMR
(101 MHz, CDCl3) δ 174.0, 139.1, 136.3, 130.7 (q, J = 306.1 Hz), 128.5, 121.9, 58.8, 33.1 (q,
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J = 1.8 Hz), 30.7, 23.1, 21.4. 19F NMR (376 MHz, CDCl3) δ−40.65. HRMS: Cal. C14H16OF3NS
(M + H)+: 303.0905, found 303.0902.

3-methyl-1-phenyl-5-(((trifluoromethyl)thio)methyl)pyrrolidin-2-one (3s): The target
product was synthesized as a colorless oil and purified by column chromatography (ethyl
acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.47–7.37 (m, 4H), 7.25–7.20
(m, 1H), 4.52–4.41 (m, 1H, CH), 3.16 (dd, J = 13.9, 3.0 Hz, 1H), 2.91–2.71 (m, 2H), 2.36–2.26
(m, 1H), 2.10–2.00 (m, 1H), 1.29 (dd, J = 7.2 Hz, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ
176.3, 136.9, 132.2 (q, J = 307.1 Hz), 129.4, 126.1, 123.0, 56.6, 36.0, 32.3 (q, J = 1.7 Hz), 31.5,
16.3. 19F NMR (376 MHz, CDCl3) δ −40.63. HRMS: Cal. C13H14OF3NS (M + H)+: 289.0748,
found 289.0749.

3,3-dimethyl-1-phenyl-5-(((trifluoromethyl)thio)methyl)pyrrolidin-2-one (3t): The target
product was synthesized as a colorless oil and purified by column chromatography (ethyl
acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.45–7.38 (m, 2H), 7.33–7.29
(m, 2H), 7.28–7.22 (m, 1H), 4.47–4.33 (m, 1H, CH), 3.22 (dd, J = 13.7, 3.1 Hz, 1H), 2.81 (ddd,
J = 13.7, 8.7, 0.9 Hz, 1H), 2.34 (dd, J = 13.0, 7.2 Hz, 1H), 1.81 (dd, J = 13.0, 7.7 Hz, 1H),
1.33 (s, 3H, CH3), 1.24 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ 179.0, 136.7, 130.7 (q,
J = 307.2 Hz), 129.3, 126.5, 124.2, 54.8, 40.8, 39.4, 33.5 (q, J = 1.8 Hz), 25.7, 25.3. 19F NMR
(376 MHz, CDCl3) δ−40.69. HRMS: Cal. C14H16OF3NS (M + H)+: 303.0905, found 303.0906.

3-(4-fluorophenyl)-4-(((trifluoromethyl)thio)methyl)oxazolidin-2-one (3u): The target
product was synthesized as a colorless oil and purified by column chromatography (ethyl
acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 8.6 Hz, 2H),
7.62 (d, J = 9.4 Hz, 2H), 4.81–4.72 (m, 1H), 4.69–4.62 (m, 1H, CH), 4.37 (dd, J = 9.3, 3.8 Hz,
1H), 3.37–3.28 (m, 1H), 3.01–2.91 (m, 1H). 13C NMR (101 MHz, CDCl3) δ 153.3, 138.0 (d,
J = 1.1 Hz), 129.3 (q, J = 308.4 Hz), 126.3 (d, J = 32.8 Hz), 125.3 (d, J = 3.8 Hz), 125.8 (d,
J = 11.4 Hz), 122.8 (d, J = 270.7 Hz), 119.0, 64.7, 54.0, 29.9 (q, J = 2.0 Hz). 19F NMR (376 MHz,
CDCl3) δ −40.16, −62.41. HRMS: Cal. C11H9O2F3NS (M + H)+: 295.0290, found 295.0291.

2-(4-chlorophenyl)-4-(((trifluoromethyl)thio)methyl)oxazolidin-2-one (3v): The target
product was synthesized as a colorless oil and purified by column chromatography (ethyl
acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.39 (s, 4H), 4.71–4.65 (m,
1H, CH), 4.65–4.60 (m, 1H), 4.32 (dd, 1H), 3.27 (ddd, J = 14.5, 2.8, 1.0 Hz, 1H), 3.03–2.87
(m, 1H). 13C NMR (101 MHz, CDCl3) δ 153.7, 133.3, 130.3, 129.3 (q, J = 307.9 Hz), 128.7,
121.5, 64.7, 54.4, 30.0 (q, J = 1.8 Hz). 19F NMR (376 MHz, CDCl3) δ −40.27. HRMS: Cal.
C11H9O2ClF3NS (M + H)+: 210.9995, found 310.9996.

3-(4-bromophenyl)-4-(((trifluoromethyl)thio)methyl)oxazolidin-2-one (3w): The target
product was synthesized as a colorless oil and purified by column chromatography (ethyl
acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.57–7.51 (m, 2H), 7.38–7.29
(m, 2H), 4.73–4.65 (m, 1H, CH), 4.65–4.60 (m, 1H), 4.35–4.28 (m, 1H), 3.35–3.21 (m, 1H), 2.95
(dd, 1H). 13C NMR (101 MHz, CDCl3) δ 153.6, 133.8, 131.7, 129.1 (q, J = 306.3 Hz), 121.7,
118.0, 64.7, 54.3, 30.0 (q, J = 1.8 Hz). 19F NMR (376 MHz, CDCl3) δ −40.25. HRMS: Cal.
C11H9O2BrF3NS (M + H)+: 354.9489, found 354.9490.

3-(4-(trifluoromethyl)phenyl)-4-(((trifluoromethyl)thio)methyl)oxazolidin-2-one (3x): The
target product was synthesized as a colorless oil and purified by column chromatography
(ethyl acetate/petroleum ether = 1:10). 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 8.7 Hz,
2H), 7.61 (d, J = 8.8 Hz, 2H), 4.82–4.71 (m, 1H, CH), 4.65 (t, J = 8.7 Hz, 1H), 4.36 (dd,
J = 9.3, 3.8 Hz, 1H), 3.33 (dd, J = 14.7, 2.8 Hz, 1H), 2.97 (dd, J = 14.6, 9.4 Hz, 1H). 13C NMR
(101 MHz, CDCl3) δ 154.4, 139.0 (d, J = 1.3 Hz), 130.3 (d, J = 306.1 Hz), 127.3 (d, J = 33.2 Hz),
126.8 (d, J = 11.4 Hz), 126.8 (q, J = 3.8 Hz), 123.7 (d, J = 271.8 Hz), 120.1, 65.7, 55.1, 30.9
(d, J = 1.8 Hz). 19F NMR (376 MHz, CDCl3) δ −40.17, −62.42. HRMS: Cal. C12H9O2F6NS
(M + H)+: 345.0258, found 345.0259.
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4. Conclusions

In summary, we have developed an efficient method for copper-catalyzed trifluo-
romethylthiolation and cyclization reaction of N-phenylpent-4-enamides using the stable
and operationally simple AgSCF3 as the trifluoromethylthiolation reagent. This methodol-
ogy allows for the synthesis of novel and potentially valuable SCF3-containing γ-lactam
derivatives, which are characterized by a broad substrate scope and excellent functional
group compatibility. Mechanistic studies indicate that the reaction likely proceeds via a
radical pathway, facilitating the formation of new C-N and C-S bonds. We believe that
these γ-lactam derivatives have important application value in the development of new
drugs in the future.
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