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Abstract: Herein, we synthesized Ti-MOF through a solvothermal method and subsequently calcined
it to form anatase TiO2. We further developed a Bi2O3@TiO2 mixed oxide using impregnation
and calcination processes. These oxides showed significant photocatalytic activity for degrading
Eriochrome Black T (EBT) dye under visible light irradiation. We characterized the prepared samples
using various techniques, including XRD, XPS, FTIR, BET, SEM, EDX, TEM, and UV-DRS analyses.
Our results indicated that TiO2 and 10%Bi2O3@TiO2 achieved 80% and 100% degradation of EBT
dye solution (50 ppm) within 30 min in acidic medium with a 50 mg catalyst dose, respectively.
The calcination of the Ti-MOF into TiO2 improved its sensitivity to visible light. The Bi2O3@TiO2

composite was also effective in degrading other organic pollutants, such as Congo Red (degradation
~99%), Malachite Green (degradation ~95%), Methylene Blue (degradation ~81%), and Safranine O
(degradation ~69%). The impregnation of Bi2O3 increased the surface acidity of TiO2, enhancing its
photocatalytic activity by promoting hydroxyl group formation through increased water adsorption.
Additionally, 10%Bi2O3@TiO2 demonstrated excellent chemical stability and reusability, maintaining
high degradation efficiency over four cycles. Density Functional Theory (DFT) and Time-Dependent
DFT (TD-DFT) calculations were performed to understand the degradation mechanisms. UV-Vis
absorption spectrum simulations suggested that the anionic HEB−2 (O24) or EB−3 forms of the EBT
dye are likely to undergo degradation. This study highlights the potential of Bi2O3@TiO2 composites
for effective photocatalytic applications in environmental remediation.

Keywords: Ti-MOF; calcination; mixed oxides; photocatalytic degradation; EBT

1. Introduction

One of the most pressing challenges in recent years has been the significant increase
in environmental pollution, with water pollution being a primary concern [1]. Indus-
trial activities and chemical-based industries have introduced vast amounts of harmful
chemicals into the environment, damaging various ecosystems. Among these pollutants,
dyes, heavy metals, chloro-organics, and pharmaceuticals are major sources of aquatic
contamination [2]. Conventional water treatment methods such as biological treatment,
sedimentation, filtration, and membrane technologies often merely transfer contaminants
from one medium to another, involve high operational costs, require substantial time, and
may release secondary pollutants into the ecosystem [3,4].
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Over the past several years, photocatalysis has emerged as an effective, affordable,
and environmentally friendly technology for removing hazardous pollutants. Photocatal-
ysis offers advantages such as catalyst regeneration and reuse, operation under ambient
conditions, and the capability to degrade a wide spectrum of organic contaminants [5,6].
However, conventional photocatalysts are limited by their absorption of light primarily
in the UV spectrum (which constitutes only 4% of the solar spectrum) and rapid charge
recombination. To more effectively harness the solar spectrum, advanced photocatalyst
systems that can be activated by visible light need to be developed [7].

Eriochrome Black T (EBT) is an anionic azo dye widely used in complexometric titra-
tions and the dyeing of wool, leather, and nylon in textile manufacturing [8,9]. EBT is
soluble in water and can cause skin, bladder, and gastrointestinal disorders, as well as
iron deficiency [10]. Due to its extensive industrial use, EBT is considered a significant
environmental pollutant in water. Considerable efforts have been made to mitigate its
impact and remove it from water. For instance, Sushil et al. demonstrated the photocat-
alytic degradation of EBT using TiO2 nanoparticles under UV irradiation, achieving 82%
degradation in 90 min [11]. Similarly, Malika et al. used chitosan for EBT removal, and the
percentage of EBT removal rose to 96.77% in acidic medium by using 3 g/L of chitosan [12].
Additionally, Singh et al. prepared ZnO/Arg-Au/Cit nanocomposite for the removal of
65% of EBT in 2 h [13]. Previous research revealed significant limitations such as the use
of limited UV irradiation, a long breakdown time, and a poor pH range; in addition, their
performance was limited by the small surface area and pore volume. However, in this
study, the TiO2 and mixed oxides produced with a wide surface area and pore volume
demonstrated excellent efficiency towards the total photocatalytic degradation of EBT in a
very short time under visible light irradiation.

In recent years, metal-organic frameworks (MOFs) and their modifications have shown
promise in photocatalytic dye degradation due to their unique properties, including tunable
structures, low crystal densities, and large specific surface areas [14]. Among these, Ti-
MOFs such as MIL-125, synthesized from terephthalic acid ligands and Ti-oxo clusters, have
garnered significant attention [15]. Various modification strategies, including photosensiti-
zation, functional group modification, metal ion doping, and combination with optically
active inorganic materials, have been employed to enhance their optical properties [16–18].
For example, BiOBr/NH2-MIL-125(Ti) composites degraded 80% of Rhodamine B under
visible light illumination over 100 min [19], and Ag/AgBr/NH2-MIL-125(Ti) composites
have shown strong photocatalytic activity towards methyl orange as the percent degra-
dation reached 70% in 120 min under visible light irradiation [20]. Bi2WO6/MIL-125(Ti)
composite enhanced the photocatalytic degradation of tetracycline hydrochloride (TC) to
73% under visible irradiated for 80 min [21]. Furthermore, Jian et al. prepared g-C3N4/TiO2
with a Z-type heterojunction for the photocatalytic degradation of Methylene Blue (MB),
and the decolorization ratio was 97.7% after 150 min of visible light irradiation [22].

In this work, we prepared MIL-125(Ti) via a solvothermal method and used it as a
precursor to form titanium dioxide and mixed bismuth metal oxides through post-synthetic
modification by impregnation followed by calcination. Various techniques, including X-ray
diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron
spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area analysis, scanning elec-
tron microscopy (SEM-EDX), transmission electron microscopy (TEM), and UV-Vis diffuse
reflectance spectroscopy (DRS), were used to characterize the prepared materials. The pho-
tocatalytic degradation of Eriochrome Black T (EBT) dye was evaluated to determine their
photocatalytic activity, and the effects of parameters such as the irradiation time, catalyst
dosage, initial dye concentration, and pH were systematically studied. A photocatalytic
mechanism is proposed, and the photocatalytic activity of the materials towards other
organic pollutants, including Congo Red, Malachite Green, Methylene Blue, and Safranine
O, is also discussed.
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2. Results and Discussion
2.1. Structural Characterizations

The X-ray diffraction (XRD) patterns of the prepared samples are presented in Figure 1a.
The XRD pattern of MIL-125(Ti) exhibits well-defined diffraction peaks at 2θ angles of
7◦, 10◦, 12◦, 15.3◦, 16.9◦, 22.6◦, 26.24◦, 33.6◦, 48.7◦, 63.3◦, 78.4◦, and 83.6◦, confirming
its crystalline structure [23,24]. The XRD pattern of TiO2, on the other hand, displays
characteristic peaks at 2θ angles of 25.5◦, 37.9◦, 48.2◦, 54.2◦, 55.1◦, 62.8◦, 69.02◦, 70.2◦, and
75.5◦, indicating that the MIL-125 framework was transformed into anatase TiO2 after
calcination. In the XRD patterns of Bi2O3@TiO2 mixed oxides, additional peaks appear
at 27.7◦, 35.0◦, 45.5◦, and 78.3◦. Notably, the peak at 27.7◦ broadens as the Bi2O3 content
increases from 10% to 30%, suggesting that different amounts of Bi species are incorporated
into the mixed oxide samples. The catalytic performance data (Figure 1b) for materials
with varying Bi ratios reveal that a 10% Bi2O3 content provides the best balance between
performance and economic feasibility, with no significant performance difference observed
at higher Bi ratios. Consequently, 10% Bi2O3@TiO2 is selected as the representative sample
for further studies.

Catalysts 2024, 14, x FOR PEER REVIEW 3 of 23 
 

 

towards other organic pollutants, including Congo Red, Malachite Green, Methylene 
Blue, and Safranine O, is also discussed. 

2. Results and Discussion 
2.1 Structural Characterizations  

The X-ray diffraction (XRD) patterns of the prepared samples are presented in Figure 
1a. The XRD pattern of MIL-125(Ti) exhibits well-defined diffraction peaks at 2θ angles of 
7°, 10°, 12°, 15.3°, 16.9°, 22.6°, 26.24°, 33.6°, 48.7°, 63.3°, 78.4°, and 83.6°, confirming its 
crystalline structure [23,24]. The XRD pattern of TiO2, on the other hand, displays charac-
teristic peaks at 2θ angles of 25.5°, 37.9°, 48.2°, 54.2°, 55.1°, 62.8°, 69.02°, 70.2°, and 75.5°, 
indicating that the MIL-125 framework was transformed into anatase TiO2 after calcina-
tion. In the XRD patterns of Bi2O3@TiO2 mixed oxides, additional peaks appear at 27.7°, 
35.0°, 45.5°, and 78.3°. Notably, the peak at 27.7° broadens as the Bi2O3 content increases 
from 10% to 30%, suggesting that different amounts of Bi species are incorporated into the 
mixed oxide samples. The catalytic performance data (Figure 1b) for materials with vary-
ing Bi ratios reveal that a 10% Bi2O3 content provides the best balance between perfor-
mance and economic feasibility, with no significant performance difference observed at 
higher Bi ratios. Consequently, 10% Bi2O3@TiO2 is selected as the representative sample 
for further studies. 

10 20 30 40 50 60 70 80

(i)

(ii)

(iv)

(iii)

In
te

ns
ity

 (a
.u

.)

2 Theta (degree) 

(a)

(v)

  
Figure 1. (a)  XRD patterns of (i) MIL-125, (ii)  TiO2, and (iii, iv, v) 10, 20, and 30% Bi2O3@TiO2, respec-
tively. (b) Effect of different ratio of Bi2O3 on the degradation of EBT dye. 

Further, the chemical composition and surface atom environments of the photocata-
lysts were characterized by the XPS technique (Figure 2). Figure 2a illustrates how the 
binding energies for Ti 2p, C 1s, and O 1s were visible in the scanning spectra for all sam-
ples; additionally, the binding energy of Bi 4f (159.1 eV and 164.5 eV) only appears in the 
10% Bi2O3@TiO2 sample, which closely matches the findings of the elemental mapping 
(EDX). For MIL-125, the peaks at 458.6 eV and 464.37 eV correspond to the binding ener-
gies of Ti 2p3/2 and Ti 2p1/2, respectively, proving the existence of Ti-O bonds (Figure 2b). 
In contrast, these peaks for TiO2 and 10% Bi2O3@TiO2 are slightly shifted with a difference 
of ca. 0.2 eV and ca. 0.1 eV, respectively, for Ti 2p3/2 and ca. 0.07 eV and ca. 0.08 eV differ-
ences for Ti 2p1/2, respectively. Figure 2c, d shows similar results for the binding energies 
of O 1s and C 1s. The results support the XRD findings and indicate that the Bi3+ oxidation 
state of Bi2O3 ought to be present in the structure of TiO2 based on the mixed oxide pho-
tocatalyst. This is also further explained by the binding energies at 159.1 eV and 164.5 eV 
fitted with Bi 4f7/2 and Bi 4f5/2, respectively, for 10% Bi2O3@TiO2 (Figure 2e) [25]. Figure 2f 
shows that Bi was impregnated by atomic weight percent 4.48%. The visible drop in car-
bon content and increase in oxygen content of the calcined samples further confirm the 
formation of metal oxides. 

Figure 1. (a) XRD patterns of (i) MIL-125, (ii) TiO2, and (iii, iv, v) 10, 20, and 30% Bi2O3@TiO2,
respectively. (b) Effect of different ratio of Bi2O3 on the degradation of EBT dye.

Further, the chemical composition and surface atom environments of the photocat-
alysts were characterized by the XPS technique (Figure 2). Figure 2a illustrates how the
binding energies for Ti 2p, C 1s, and O 1s were visible in the scanning spectra for all
samples; additionally, the binding energy of Bi 4f (159.1 eV and 164.5 eV) only appears in
the 10% Bi2O3@TiO2 sample, which closely matches the findings of the elemental mapping
(EDX). For MIL-125, the peaks at 458.6 eV and 464.37 eV correspond to the binding energies
of Ti 2p3/2 and Ti 2p1/2, respectively, proving the existence of Ti-O bonds (Figure 2b). In
contrast, these peaks for TiO2 and 10% Bi2O3@TiO2 are slightly shifted with a difference of
ca. 0.2 eV and ca. 0.1 eV, respectively, for Ti 2p3/2 and ca. 0.07 eV and ca. 0.08 eV differences
for Ti 2p1/2, respectively. Figure 2c,d shows similar results for the binding energies of O 1s
and C 1s. The results support the XRD findings and indicate that the Bi3+ oxidation state of
Bi2O3 ought to be present in the structure of TiO2 based on the mixed oxide photocatalyst.
This is also further explained by the binding energies at 159.1 eV and 164.5 eV fitted with Bi
4f7/2 and Bi 4f5/2, respectively, for 10% Bi2O3@TiO2 (Figure 2e) [25]. Figure 2f shows that
Bi was impregnated by atomic weight percent 4.48%. The visible drop in carbon content
and increase in oxygen content of the calcined samples further confirm the formation of
metal oxides.

The FTIR spectra of MIL-125, TiO2, and 10% Bi2O3@TiO2 were supplied to elucidate
the functional groups in the prepared photocatalysts as exhibited in Figure 3. The wide and
strong absorption band at approximately 3434 cm−1 was attributed to the asymmetrical
and symmetrical stretching vibrations of the O-H group of the adsorbed water molecules
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on the surface of the samples. For the MIL-125 spectra, the presence of a dicarboxylate
linker in the produced Ti-MOF is associated with the peaks at 1711 cm−1 and 1272 cm−1.
The peaks around 873 cm−1 are associated with Ti-O stretching for the non-bound (free
coordinated) oxygen atom of the carboxylic groups of the BDC linker. The peaks at 740,
677, and 537 cm−1 are assigned to Ti-O-Ti stretching vibrations [26]. For the metal oxides
spectra, peaks in the 500-800 cm−1 range are attributed to the vibration absorption of the
Ti-O-Ti bond in TiO2 and represent the contribution of anatase titania [27]; this matches
with the results of the XRD analysis. At 1601 cm−1, a deformative vibration of the Ti-OH
stretching mode can be noticed. The impregnation of Bi affected the intensity of the peaks
and increased their sharpness in the 10% Bi2O3@TiO2 sample, and the vibration of Bi-O
appears at 617.5 cm−1.
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The NH3-TPD analysis was conducted to evaluate the strength and quantity of surface
acid sites on 10% Bi2O3@TiO2 compared to TiO2, and the results are presented in Figure 4
and Table S1. As illustrated in Figure 4, the 10% Bi2O3@TiO2 sample exhibits desorption
peaks within the temperature ranges of 200–300 ◦C, 300–400 ◦C, and 500–600 ◦C, indicative
of medium and strong acid sites. In contrast, TiO2 displays a single desorption peak at
200–300 ◦C, corresponding to medium acid sites. The data indicate that 10% Bi2O3@TiO2
has a significantly higher acid amount (0.167 mmol NH3/g) than TiO2 (0.091 mmol NH3/g),
as determined by the integral areas of the NH3 desorption peaks. The substantial increase
in surface acidity observed in 10% Bi2O3@TiO2 can be attributed to the introduction of
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additional defect sites created by the impregnation of Bi species into the TiO2 structure.
This impregnation process not only enhances the surface acidity but also facilitates the
formation of hydroxyl groups through increased water adsorption on the surface [28].
Consequently, this improvement in surface acidity significantly boosts the photocatalytic
activity of the 10% Bi2O3@TiO2 photocatalyst.
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Figure 5 displays the SEM images of MIL125(Ti), TiO2, and 10% Bi2O3@TiO2. As seen,
MIL125(Ti) possesses an irregular shape (Figure 5a), and TiO2 exhibits a brick-like shape.
Its average particle size is about 2 µm (Figure 5b). Comparatively, 10% Bi2O3@TiO2emerges
in a distorted rhombus shape (Figure 5c). The average particle size is similar to that in TiO2.
Further, the EDX image of 10% Bi2O3@TiO2 reveals the existence of Bi species (Figure 5d).
The Bi content in 10% Bi2O3@TiO2 is 3.2%, which is close to the result from the XPS analysis.

To study the effect of the calcination temperature on the physicochemical properties of
samples, N2 adsorption desorption isotherms were measured (Figure 6a), and the textural
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properties data are displayed in Table 1. The N2 sorption isotherm of MIL-125(Ti) is
represented by the type I isotherm with an H3 hysteresis loop at P/P0 > 0.4, which is a
typical feature of microporous materials. A large specific surface area is found (891 m2 g−1).
When MIL-125(Ti) is calcined at high temperature (500 ◦C), type IV isotherms with an H2
hysteresis loop at P/P0 > 0.6 are observed on the TiO2 and 10% Bi2O3@TiO2 samples due to
the presence of mesopores. Compared with MIL-125(Ti), the specific surface areas (BET) of
TiO2 and 10% Bi2O3@TiO2 after calcination become 93 m2g−1 and 164 m2g−1, respectively.
This is attributed to the disappearance of many micropores and the development of new
mesopores during the collapse of the MOF network in the calcination process [29]. Figure S1
shows the pore size distribution of different samples. Additionally, the particles size
distribution of 10% Bi2O3@TiO2 is exhibited in the captured TEM image (Figure 6b), in
which their irregular shape along with the average particle size around ~200 nm can
be observed.
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Table 1. Physicochemical parameters of MIL-125, TiO2, and 10% Bi2O3@TiO2.

Sample BET Surface Area
(m2g−1)

Pore Volume
(cm3/g)

Pore Diameter
(nm)

MIL-125(Ti) 891.7 0.25 1.79
TiO2 93 0.25 6.7

10% Bi2O3@TiO2 164 0.48 8.12
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2.2. Photocatalytic Degradation of EBT Dye

Th photocatalytic activity of various samples was further investigated through the
photocatalytic degradation of EBT. Moreover, the effect of some factors such as the irra-
diation time, the photocatalyst dosage, the initial concentration of dye, and pH on the
photocatalytic degradation was studied.

2.2.1. Effect of Irradiation Time

The effect of irradiation time was first studied for 30 min at time intervals of 5 min as
shown in Figure 7a. MIL-125 showed the least activity for the EBT degradation, whereas
TiO2 exhibited good photocatalytic performance, and the enhanced photocatalytic effi-
ciency of EBT was observed over the 10% Bi2O3@TiO2 composite (70.3%, 82.16%, and 100%
degradation, respectively). The photocatalytic degradation of EBT follows the pseudo-first
order reaction kinetic (−ln(Ct/Co) = kt) as shown in Figure 7b. The reaction rate was calcu-
lated by the apparent reaction rate constant (k) from the degradation curves of ln(C0/Ct)
versus the irradiation time. The reaction rates of the various samples were in the following
order: MIL-125 < TiO2 < 10% Bi2O3@TiO2. The k value of 10% Bi2O3@TiO2 (0.212 min−1) is
4.85-fold that of TiO2 (0.0437 min−1) and 6.63-fold that of MIL-125 (0.032 min−1), indicating
that the photocatalytic degradation was enhanced by applying the mixed oxides. Therefore,
the 10% Bi2O3@TiO2 was employed to further investigate the optimum parameters for the
photocatalytic degradation in the following work.

2.2.2. The Dosage Effect of the Photocatalyst and Dye Concentration

Figure 8a shows the influence of the catalyst dose on the photocatalytic degradation of
EBT assessed at pH = 6, 50 ppm EBT solution. It was observed that the degradation percent
(%) increased by increasing the photocatalyst dosage due to the increase in the number of
active sites and the number of free radicals (·OH and O2

−·) [30]. The optimum dosage was
50 mg. When the catalyst dosage was further increased beyond the optimum dosage, the
percent degradation was decreased; this may be because when the dosage increases, the
suspended particles of the photocatalyst accumulate together, which inhibits the amount of
irradiation light that reaches the active sites, and consequently, the rate of degradation was
decreased [31]. Additionally, the effect of the concentration of EBT dye was assessed (50 mg
catalyst dose, pH = 6) as presented in Figure 8b. The degradation efficiency decreased to
76% with an increase in the concentration of dye to 100 ppm. When the concentration of
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dye increases, the molecules of dye accumulate on the surface of the catalyst and block the
active sites, so the penetration of light to the catalyst decreases, which in turn decreases the
degradation efficiency [32].

Catalysts 2024, 14, x FOR PEER REVIEW 8 of 23 
 

 

0 5 10 15 20 25 30
0

20

40

60

80

100

D
eg

ra
da

tio
n 

%

Irradiation time (min)

 10% Bi2O3@TiO2
 TiO2
 MIL-125
 No catalyst

(a)

 
0 5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

ln
(C

0/
C

t)
Irradiation time (min)

 10% Bi2O3@TiO2 
 TiO2 
 MIL-125 
No catalyst 

(b)

 
Figure 7. (a) Degradation performance of EBT (50 mL, 50 ppm) with 50 mg of various prepared 
samples. (b) Plot of ln(C0/Ct) as a function of irradiation time. 

2.2.2. The Dosage Effect of the Photocatalyst and Dye Concentration 
Figure 8a shows the influence of the catalyst dose on the photocatalytic degradation 

of EBT assessed at pH = 6, 50 ppm EBT solution. It was observed that the degradation 
percent (%) increased by increasing the photocatalyst dosage due to the increase in the 
number of active sites and the number of free radicals (·OH and O2−·) [30]. The optimum 
dosage was 50 mg. When the catalyst dosage was further increased beyond the optimum 
dosage, the percent degradation was decreased; this may be because when the dosage 
increases, the suspended particles of the photocatalyst accumulate together, which inhib-
its the amount of irradiation light that reaches the active sites, and consequently, the rate 
of degradation was decreased [31]. Additionally, the effect of the concentration of EBT dye 
was assessed (50 mg catalyst dose, pH = 6) as presented in Figure 8b. The degradation 
efficiency decreased to 76% with an increase in the concentration of dye to 100 ppm. When 
the concentration of dye increases, the molecules of dye accumulate on the surface of the 
catalyst and block the active sites, so the penetration of light to the catalyst decreases, 
which in turn decreases the degradation efficiency [32]. 

0 5 10 15 20 25 30
0

20

40

60

80

100

D
eg

ra
da

tio
n 

%

Irradiation time( min)

 10 mg
 30 mg
 50 mg
 100 mg

(a)

0 5 10 15 20 25 30
0

20

40

60

80

100

D
eg

ra
da

tio
n 

%

Irradiation time(min)

 25 ppm
 50 ppm
 75 ppm
 100 ppm

(b)

 
Figure 8. The effect of the catalyst dose of 10% Bi2O3@TiO2 as a photocatalyst (a), and the effect of 
different concentrations on the degradation of EBT dye (b). 

  

Figure 7. (a) Degradation performance of EBT (50 mL, 50 ppm) with 50 mg of various prepared
samples. (b) Plot of ln(C0/Ct) as a function of irradiation time.

Catalysts 2024, 14, x FOR PEER REVIEW 8 of 23 
 

 

0 5 10 15 20 25 30
0

20

40

60

80

100

D
eg

ra
da

tio
n 

%

Irradiation time (min)

 10% Bi2O3@TiO2
 TiO2
 MIL-125
 No catalyst

(a)

 
0 5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

ln
(C

0/
C

t)

Irradiation time (min)

 10% Bi2O3@TiO2 
 TiO2 
 MIL-125 
No catalyst 

(b)

 
Figure 7. (a) Degradation performance of EBT (50 mL, 50 ppm) with 50 mg of various prepared 
samples. (b) Plot of ln(C0/Ct) as a function of irradiation time. 

2.2.2. The Dosage Effect of the Photocatalyst and Dye Concentration 
Figure 8a shows the influence of the catalyst dose on the photocatalytic degradation 

of EBT assessed at pH = 6, 50 ppm EBT solution. It was observed that the degradation 
percent (%) increased by increasing the photocatalyst dosage due to the increase in the 
number of active sites and the number of free radicals (·OH and O2−·) [30]. The optimum 
dosage was 50 mg. When the catalyst dosage was further increased beyond the optimum 
dosage, the percent degradation was decreased; this may be because when the dosage 
increases, the suspended particles of the photocatalyst accumulate together, which inhib-
its the amount of irradiation light that reaches the active sites, and consequently, the rate 
of degradation was decreased [31]. Additionally, the effect of the concentration of EBT dye 
was assessed (50 mg catalyst dose, pH = 6) as presented in Figure 8b. The degradation 
efficiency decreased to 76% with an increase in the concentration of dye to 100 ppm. When 
the concentration of dye increases, the molecules of dye accumulate on the surface of the 
catalyst and block the active sites, so the penetration of light to the catalyst decreases, 
which in turn decreases the degradation efficiency [32]. 

0 5 10 15 20 25 30
0

20

40

60

80

100

D
eg

ra
da

tio
n 

%

Irradiation time( min)

 10 mg
 30 mg
 50 mg
 100 mg

(a)

0 5 10 15 20 25 30
0

20

40

60

80

100

D
eg

ra
da

tio
n 

%

Irradiation time(min)

 25 ppm
 50 ppm
 75 ppm
 100 ppm

(b)

 
Figure 8. The effect of the catalyst dose of 10% Bi2O3@TiO2 as a photocatalyst (a), and the effect of 
different concentrations on the degradation of EBT dye (b). 
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different concentrations on the degradation of EBT dye (b).

2.2.3. Effect of pH

The pH level is a critical factor in photocatalytic degradation, and its impact was
studied on 10% Bi2O3@TiO2 and TiO2 catalysts (Figure 9). To confirm the role of Bi3+

in enhancing the degradation efficiency, we compared the performance of both catalysts
under varying pH conditions (Figure 9). At low pH levels, the anionic nature of EBT
predominated, resulting in a positively charged photocatalyst surface that enhanced dye
adsorption. While TiO2 showed no significant effect at high pH (pH = 10), 10% Bi2O3@TiO2
demonstrated a 68% degradation of EBT dye under the same conditions, confirming that
Bi3+ impregnation enhances the catalytic efficiency of TiO2. This improvement is attributed
to Bi3+ attracting more water molecules due to its higher acidity as elucidated by NH3-TPD.
The higher adsorption of water molecules onto the 10% Bi2O3@TiO2 surface during light
irradiation enhances the formation of hydroxyl groups that act as electron pair donors, with
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hole-induced oxidation reactions converting them into ·OH free radicals, which are highly
effective in promoting dye degradation [28]. Our findings indicate that an acidic medium
is optimal for EBT degradation. In control experiments without 10% Bi2O3@TiO2 at pH = 3
and 50 ppm initial dye concentration, only 60% degradation of EBT was observed after
30 min, demonstrating that complete degradation does not occur without a photocatalyst
under light irradiation.
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Figure 9. Effect of pH on the photodegradation of EBT by using 50 mg of (a) 10% Bi2O3@TiO2 and
(b) TiO2.

Furthermore, when comparing the photocatalytic activity of 10% Bi2O3@TiO2 with
other photocatalysts for EBT degradation (Table 2), it was evident that 10% Bi2O3@TiO2 ex-
hibited superior degradation performance under low light energy and shorter reaction times.

Table 2. Comparison of the photocatalytic degradation of EBT with different catalysts.

Entry Catalyst Light Source Time Degradation (%) Ref.

1 CdS/BiVO4
40 WATT

Tungsten lamp 30 min 64% [33]

2 SnO2 nanoparticles 500 WATT
Mercury vapor lamp 4.5 h 77% [34]

3 BaWO4/MoS2 UV illumination 60 min 99.2% [35]

4 TiO2/g-C3N4 UV light 3 h 100% [36]

5 Mf-NGr-CNTs-SnO2
heterostructures Sun light 2 h 82% [37]

6 SnO2/ZnO nanocomposite Solar light 3 h 98% [38]

7 NiO-ZnO UV light 90 min 80% [39]

8 10% Bi2O3@TiO2
200 WATT

Tungsten lamp 30 min 100% This work

2.3. UV-Vis Diffuse Reflectance Spectra of Catalysts

UV-Vis diffuse reflectance spectra (UV-DRS) is a technique used to characterize the
optical properties of materials by measuring the amount of light reflected at different
wavelengths. In the context of materials such as MIL-125, TiO2, and 10%Bi2O3@TiO2,
UV-DRS provides valuable information about their absorption and reflectance properties
in the ultraviolet–visible (UV-Vis) range. Figure 10 shows the UV-Vis diffuse reflectance
spectra of MIL-125, TiO2, and 10% Bi2O3@TiO2. From Figure 10, it can be observed that
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the UV-DRS spectrum of TiO2 exhibits the highest absorbance compared to the other two
materials. This suggests that TiO2 has a higher tendency to absorb light in the UV-Vis range.
While the UV-DRS spectrum of 10% Bi2O3@TiO2 is located between MIL-125 and TiO2 in
terms of absorbance, 10% Bi2O3@TiO2 shows moderate absorbance across the measured
wavelengths, indicating its ability to absorb light in the UV-Vis range, albeit to a lesser
extent than TiO2. On the other hand, the UV-DRS spectrum of MIL-125 appears to have
the lowest absorbance among the three materials. This suggests that the incorporation
of bismuth into MIL-125 by impregnation/calcination methods has enhanced its light
absorption capabilities in the UV-Vis range. Additionally, the UV-DRS spectrum of 10%
Bi2O3@TiO2 would exhibit features that arise from the combined effects of TiO2 and bismuth
oxide, providing insights into their synergistic behavior and potential applications in
photocatalysis. From the UV–vis DRS spectra, the bandgap energy of the constructed
photocatalysts was calculated (Equation (1)) based on the Tauc’s plots [40], as shown in the
inset of Figure 10:

(αhυ)n = K
(
hυ − Eg

)
(1)

where α is the absorption coefficient, hν is the photon energy, n = 2 or ½ for direct or indirect
transition, K is the absorption constant, and Eg is the bandgap energy (eV).
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2.4. Optimized Geometry and Electrical Features of EBT

Figure 11 shows The structure of Eriochrome Black T dye (EBT) with the standard color
of atoms and their numerical order used in DFT and TD-DFT calculations. The optimized
structures and FMO amplitudes for neutral EBT and the protonated forms (HEB−2(O24)
and EB−3) are shown in Figure 12. The EBT dye’s LUMO and HOMO electron densities are
plainly spread over some atoms in the compounds. This is found for EBT in the neutral and
protonated forms; the LUMO is placed on the nitro group with the values of −3.432 eV,
−3.154 eV, −3.085 eV, −2.925 eV, and −2.831 eV for neutral EBT and protonated forms,
respectively, as exhibited in Table 2, while the HOMO densities are located on the carbon
atoms of the naphthalene ring (C1, C2, C3, C4, C7, C8, C9, C10) and the hydroxyl groups
with values of −5.877 eV, −5.818 eV, −5.080 eV, −5.314 eV, and −4.670 eV for neutral EBT
and protonated forms, respectively (Table 3). The HOMO and LUMO energies (EHOMO,
ELUMO) help assess the molecules’ ability to donate or accept electrons [41]. Moreover,
the lowest ∆Egap values of EB−3 and HEB−2(O24) indicate the highest chemical reactivity
compared to other species [42]. Additionally, the remaining protonated forms of dye
(H2EB− and HEB−2(O25)) show the same behavior as shown in Figure S4.
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Figure 12. The optimized structures and FMO amplitudes (LUMO and HOMO electron densities) for
neutral EBT and protonated forms calculated at B3LYP/6-311++G(d,p) level in water.

Table 3. Calculated HOMO energies (EHOMO), LUMO energies (ELUMO), HOMO–LUMO energy
gap (Eg) in eV, and charge transfer N (e) of systems.

System Etot (eV × 104) EHOMO (eV) ELUMO (eV) ∆Egap (eV) N (eV)

Neutral EBT −5.498 −5.877 −3.432 2.444 0.113
H2EB− −5.057 −5.818 −3.154 2.664 0.132

HEB2−(O24) −5.056 −5.080 −3.085 1.994 0.120
HEB−2(O25) −5.056 −5.314 −2.925 2.389 0.141

EB−3 −5.055 −4.670 −2.831 1.838 0.131

Further, Table 4 represents the electronic properties (IP, EA, µ, η, σ, χ, ω, and S) for
neutral EBT and its protonated forms that were calculated at the B3LYP/6-311++G(d,p) level
in water. The data suggests that HEB−2(O24) and EB−3 are the most chemically reactive
forms. Overall, these findings indicate that EB−3 and HEB−2(O24) are the most effective in
the degradation process in aqueous environments, aligning well with experimental results.
This confirms the computational study’s agreement with practical observations.



Catalysts 2024, 14, 829 12 of 22

Table 4. Electronic properties of neutral EBT and protonated forms calculated at B3LYP/6-
311++G)d,p) level in water.

System IP (eV) EA (eV) X (eV) µ (eV) η (eV) S (eV) ÑÑÑ (eV) µ (Debye)

Neutral EBT 5.877 3.432 4.654 −4.654 1.222 0.409 8.861 10.842
H2EB− 5.818 3.154 4.486 −4.486 1.332 0.375 7.553 32.023

HEB2−(O24) 5.080 3.085 4.083 −4.083 0.997 0.501 8.356 21.549
HEB−2(O25) 5.314 2.925 4.120 −4.120 1.195 0.419 7.103 35.218

EB−3 4.670 2.831 3.750 −3.750 0.919 0.544 7.648 26.997

2.5. Mulliken Atomic Charges and ESP

Mulliken atomic charges are essential in quantum chemistry, influencing molecular
properties such as the electronic structure, polarization, and dipole moments. These charges
provide insight into the electron distribution within molecules and are key in predicting
chemical reactions [43–45]. In a study using the DFT method with the 6-311++G(d,p) basis
set, the Mulliken charges were calculated to pinpoint the degradation centers in neutral
EBT dyes and their protonated forms. The findings revealed that oxygen and nitrogen
atoms, with higher negative charges (Table S2), play a significant role in interacting with
a 10% Bi2O3@TiO2 photocatalyst, driving dye degradation. Additionally, specific carbon
atoms (C9, C10, C11, C12, C19) and hydrogen atoms (H8 and H7) in the hydroxyl group
show varying charges, which affect their roles in the degradation process. Moreover, the
highest negative charges are found on O28 and O29 in the sulfonyl groups, attributed to
their proximity to sulfur atoms.

Electrostatic potential (ESP) is a fundamental property used to evaluate the charge
distribution in a molecule, providing insights into its reactivity and interactions with
other species. By calculating the ESP based on the electron density distribution obtained
from quantum chemical calculations, we can understand the distribution of positive and
negative charges within Eriochrome Black T dye. Analyzing the ESP helps in studying
the adsorption and degradation processes of the dye over the 10% Bi2O3@TiO2 catalyst.
Figure 13 shows the ESP maps for neutral EBT and the protonated forms (HEB−2(O24)
and EB−3) that visualize regions of high and low electron density, where high negative
values correspond to negatively charged areas and high positive values indicate positively
charged areas. These regions represent reactive centers or potential interaction sites with
other molecules or catalyst surfaces. Oxygen, nitrogen, and specific carbon atoms play
significant roles in Eriochrome Black T dye’s reactivity. Hydroxyl, nitro, and sulfuric groups
associated with oxygen atoms exhibit high ESP values, suggesting their involvement in
the adsorption process and potential interactions with the 10% Bi2O3@TiO2 photocatalyst,
leading to degradation pathways. The ESP maps of the rest of the forms of dye (H2EB−

and HEB−2(O25)) are mentioned in Figure S3.
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2.6. UV-Vis Absorption Spectra

Time-Dependent Density Functional Theory (TD-DFT) is a computational method
widely used to simulate UV-Vis absorption spectra for molecules such as Eriochrome
Black T dye. It provides information about the molecule’s electron distribution and energy
levels. By promoting electrons from occupied orbitals (HOMO) to unoccupied orbitals
(LUMO) using time-dependent perturbation theory, excited states are determined. TD-DFT
calculations are performed to simulate the UV-Vis absorption spectra of Eriochrome Black
T dye, revealing the wavelengths (λ) at which electronic transitions occur, indicating the
absorption of light at specific energy levels. The maximum wavelength (λmax) corresponds
to the HOMO–LUMO transition, which governs the main absorption peak. Comparing
the simulated UV-Vis absorption spectra with experimental data validates and verifies the
theoretical results. In the case of Eriochrome Black T dye, the calculated λmax values for
HEB−2 (O24) and EB−3 (519 nm and 529 nm) (Figure 14a) closely match the experimental
value (532 nm) (Figure 14b). This suggests that the anionic HEB−2 (O24) or EB−3 forms of
the dye could potentially undergo degradation processes.
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Figure 14. (a) The simulated UV-Vis absorption spectra of dye (neutral EBT and protonated forms)
by using time-dependent DFT (TD-DFT) method. (b) The experimental absorption spectra of EBT
dye solution.

2.7. Photocatalytic Degradation Mechanism of EBT over 10% Bi2O3@TiO2

Based on both practical and theoretical studies of EBT degradation, proposed mech-
anisms can be formulated to illustrate how EBT dyes degrade on the surface of the 10%
Bi2O3@TiO2 photocatalyst. As shown in Scheme 1 10% Bi2O3@TiO2 was exposed to light
radiation, which energized the existing electrons and moved them from the valance band
(VB) to the conduction band (CB). As a result, strongly oxidizing reactive positive holes
(h+) were produced in the VB, which in turn react with H2O leading to the generation of
radical hydroxide (•OH). In contrast, electrons in the photocatalyst CB possess a significant
reducing ability and can react with O2 and •OH to produce superoxide ion (O2

−•). The
generated reactive species (•OH) and (O2

−•) react with EBT dye adsorbed on the photocat-
alyst surface leading to their degradation. The degradation of products further undergoes
reactions with reactive species, resulting in the mineralization of the dye molecules into
simpler, less harmful compounds, such as CO2 and water, as suggested in the following:
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2.8. Photocatalytic Activity Towards Different Substrates

The as-prepared photocatalyst (10% Bi2O3@TiO2) showed observable activity towards
another anionic dye, Congo Red (CR), as well as cationic dyes such as Malachite Green
(MG), Methylene Blue (MB), and Safranine O (SO) as shown in Figure 15. A total of 50 mg
of photocatalyst was added to 10 ppm of each dye solution and stirred for 30 min in the
dark before visible light irradiation, and the photocatalytic efficiency percent was calculated
from Equation (2)

Photocatalytic efficiency % =
A0 − At

A0
×100 (2)

where A0 is the absorbance of the initial concentration of dye solution (10 ppm) and At is the
absorbance after time. Figure 15 shows that 99% of the CR dye was decomposed after only
15 min of visible light irradiation at pH = 3. This could be due to its anionic nature, which is
similar to that of EBT dye. The degradation of the other cationic dyes MG, MB, and SO was
performed at pH = 9.5, and after 30 min of light irradiation, it was found that 95% and 81%
of MG and MB were degraded, respectively, but only 68% of SO was degraded due to the
strong stability. The effective activity of 10% Bi2O3@TiO2 towards these different types of
dyes reveals its amphoteric and pH-dependent photocatalytic nature [46]. Figure S4 shows
the percent degradation of the four dyes. In addition to the colored dyes, the photocatalytic
activity of 10% Bi2O3@TiO2 was investigated for the degradation of lidocaine hydrochloride
(LDC), a commonly used local anesthetic and antiarrhythmic agent. Due to its high polarity
and low Henry’s coefficient, LDC easily enters water systems and is not fully removed
by conventional sewage treatments, highlighting the need for more effective removal
methods [47]. In this study, 50 mg of 10% Bi2O3@TiO2 was added to a 50 ppm LDC solution
and stirred in the dark for 30 min before exposure to visible light. As shown in Figure S6,
the peak absorbance of the LDC solution increased post-degradation, likely due to the
intermediate by-products with strong UV-Vis spectra [48]. These by-products, such as
2,6-dimethylaniline, contain conjugated or hydroxylated structures that absorb more UV
light. This temporary increase in absorbance occurs before full mineralization reduces
the solution to baseline levels [49]. These findings confirmed the efficiency of prepared
catalysts toward different materials.
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Figure 15. Decomposition of (a) CR dye (0.05 g catalyst, 10 ppm 50 mL dye solution, pH = 3, 15 min
irradiation time). (b–d) MB, SO, and MG dyes, respectively, (0.05 g catalyst, 10 PPM 50 mL dye
solution, pH = 9.5, 30 min irradiation time) using synthesized 10% Bi2O3@TiO2.

2.9. Reusability Test

A cycle experiment was conducted on 10% Bi2O3@TiO2 to evaluate its reusability
(Figure 16a). After every cycle, the catalyst was separated by centrifugation and added
to a fresh dye solution without regeneration. Notably, even after four cycles, the yield
remained at 76%. The XRD study was also performed on the spent catalyst to determine its
structural stability after recycling. The structure of 10% Bi2O3@TiO2 was maintained after
four cycles, according to the XRD results of the samples after the reusability (Figure 16b),
which shows that the structure of 10% Bi2O3@TiO2 is stable during the photocatalytic
degradation reaction. Additionally, the reusability test with regeneration of the catalyst
shows reduced deterioration findings after four cycles (Figure S7). This could be attributed
to the leaching of the catalyst into the washer liquor. This demonstrates that the catalyst is
more affordable and environmentally beneficial.

The above results reveal the novelty of this study through producing recyclable and
efficient photocatalysts sensitive to visible light and able to degrade both anionic and
cationic dyes in a short time.
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Figure 16. (a) The cycling runs of the degradation of EBT dye over 10% Bi2O3@TiO2. (b) XRD patterns
of the spent catalyst.

3. Experimental Details
3.1. Materials

Titanium (IV) isopropoxide (TTIP, 97%, Sinopharm, Shanghai, China), 1,4-benzenedicar-
boxylic acid (BDC, 98%, LOBA CHEMIE, Mumbai, India), Bismuth (III) nitrate pentahydrate
(98%, Sinopharm, China), Ammonium sulfide solution, Dimethyl formamide (DMF, 98%,
Sinopharm, China), Ethanol (99%, Sinopharm, China), Methanol (99.8%, Sinopharm, China),
Acetone (99%, Sinopharm, China), Eriochrome Black T (99%, LOBA CHEMIE, India),
Congo Red (99%, LOBA CHEMIE, India), Malachite Green (99%, LOBA CHEMIE, India),
Methylene Blue (99%, LOBA CHEMIE, India), Safranine O (99%, LOBA CHEMIE, India),
HCl (37%, Sinopharm, China), and NaOH (99%, LOBA CHEMIE, India) were used directly
without any further purification.

3.2. Synthesis Procedures
3.2.1. Synthesis of Ti-MOF

MIL-125 was solvothermal constructed from 250 mg of 1.5 mmol 1,4-benzenedicarboxylic
acid (BDC) and titanium (IV) isopropoxide Ti(OiPr)4 (0.3 mL, 1 mmol) introduced into a
solution of 4.5 mL of N, N-dimethylformamide (DMF) and 500 µL of dry methanol [26,50].
The mixture was stirred softly for 30 min at room temperature and then introduced to a
25 mL Teflon-lined autoclave at 150 ◦C for 15 h. The mixture was left to cool down to room
temperature, and then the white solid was collected via centrifugation, washed twice with
acetone, dried overnight at 100 ◦C, and then dried under vacuum at 150 ◦C for 24 h.

3.2.2. Synthesis of Mixed Oxide Bi2O3@TiO2

Certain amounts of Ti-MOF were sonicated in distilled water for 15 min to form a pale
yellow suspension. Then, the calculated percentage of bismuth (III) nitrate pentahydrate
(10, 20, and 30 wt.% based of the MOF weight) was dispersed in distilled water and added
to a Ti-MOF suspension with stirring for 30 min. After that, ammonium sulfide solution was
gently added dropwise as a precipitating agent, and the mixture turned into a brown color
that was still stirred at 80 ◦C for 2 h. The brown precipitate was collected by centrifugation
and then washed twice with distilled water and acetone. After that, the brown precipitate
was dried overnight at 60 ◦C to obtain a brown powder that was calcined at 500 ◦C for
2 h to obtain a pale-yellow powder of mixed oxides. The final products were specified as
10%, 20%, and 30% Bi2O3@TiO2 according to the weight percent of bismuth (III) nitrate
pentahydrate. Additionally, the prepared Ti-MOF was calcined at 500 ◦C for 2 h to obtain a
white powder of TiO2. Figure 17 shows the schematic preparation of the photocatalysts.
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3.3. Characterization

Nitrogen sorption isotherm analysis was carried out at −196 ◦C on a 3H-2000PS1
Gas Sorption and Porosimeter system (Beishide Instrument Technology (BSD), Shaanxi,
China). The samples were routinely prepared for evaluation after degassing at 150 ◦C
under vacuum for 2 h, until the ultimate pressure reached 1 × 10−3 Torr. X-ray photo-
electronic spectroscopy (XPS) was performed using a monochromatic X-ray Al K-AlPHA
(Thermofisher Scientific, Waltham, MA, USA) with a detection threshold of 0.05%. On a
Rigaku D/Max-2550 diffractometer equipped with a SolX detector CuK radiation with
λ = 1.5418 Å (Rigaku Corporation, Tokyo, Japan), the XRD patterns were analyzed. Using a
NicoLET iS10 spectrometer, Fourier transform infrared (FT-IR) spectroscopy was performed.
A Bruker Equinox 55 Fourier transform infrared spectrophotometer (Bruker Corporation,
Billerica, MA , USA) was employed to capture the spectra by using the KBr pellet tech-
nique, and diffuse reflectance spectra were scanned in the range of 500–4000 cm−1 with a
resolution of 2 cm−1 and 100 scans for each measurement. Images from scanning electron
microscopy (SEM) were captured using a SUPRA 55 equipped with a 20 kV acceleration
voltage (Carl Zeiss AG, Oberkochen, Germany). A transmission electron microscope (TEM,
JEM-2100, JEOL Ltd., Akishima, Tokyo, Japan) and UV–visible diffuse reflectance spec-
trophotometer (UV-Vis DRS, Lambda 950 Perkin Elmer, Inc., Waltham, MA, USA) were
employed. The NH3-TPD analysis was performed from 25 to 700 ◦C with a heating rate of
5 ◦C/min on a catalyst analyzer BELCAT (MicrotracBEL Corp., Osaka, Japan).

3.4. Photocatalytic Activity

Eriochrome Black T (EBT) was dissolved in distilled water to prepare the EBT dye
solution. The solution concentration was 50 mg L−1. A 200 W tungsten lamp was used
as the visible light source. It emits a continuous spectrum that extends from visible light
(around 400–700 nm) to near-infrared (NIR) wavelengths (up to about 2500 nm). A total of
50 mg of the photocatalysts was added to 50 mL of EBT solution with continuous stirring
for 30 min in the dark to reach an adsorption–desorption equilibrium before irradiation.
The solution was then irradiated under visible light and stirred magnetically. During the
test, a specific volume of liquid (about 4 mL) was withdrawn at regular time intervals and
centrifuged to eliminate the catalyst from the aqueous solution. The concentration of EBT
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was determined by measuring the absorbance at 532 nm with a UV-Vis spectrophotometer.
The percentage of dye degradation was calculated from Equation (3).

Degradation(%) =
Ci − Cf

Ci
× 100 (3)

where Ci and Cf are the initial and final dye concentration, respectively. The reusability
experiment is explained in the Supporting Information File.

3.5. Computational Methodology

The neutral EBT and protonated forms (HEB−2(O24) and EB−3) were fully opti-
mized based on the Density Functional Theory (DFT) of Becke’s three-parameter and
the Lee−Yang−Parr hybrid functional (B3LYP) in conjunction with the 6-311++G(d,p)
basis set in liquid phase [51]. The investigated dye’s electronic absorption spectra were
discovered utilizing the quantum chemistry techniques TD-DFT (TD-B3LYP/6-311++G(d,p)
with the spin multiplicity equal to one and the number of singlet states equal to ten [52], to
analyze the UV–visible spectrum in water for comparison with experimental results. This
spectrum was modelled using the Gauss-Sum program [53].

The Gaussian 09 program was used to perform all DFT and TD-DFT simulations [52].
To understand the reactivity and stability of the studied structures, global chemical reac-
tivity descriptors [42] have been determined using the energies of the highest occupied
and lowest unoccupied molecular orbitals (HOMO and LUMO). The abilities of electron-
donating and electron-accepting sites have also been represented by HOMO and LUMO,
respectively. Furthermore, the ionization potential (IP) and electron affinity (AE) were
calculated by using the HOMO and LUMO energies through the equations IP = −EHOMO
and AE = −ELUMO, respectively. Furthermore, the electronic chemical potential (µ) can be
defined as Equation (4) in accordance with Koopmans’ theorem [54,55].

µ = −χ =

(
∂E
∂N

)
v(r)

(4)

where (χ) is electronegativity. The softness (S) and hardness (η) can be calculated from the
first partial derivative of µ according to N (total number of electrons), which is equal to the
second derivative of the variation of energy according to the N by Equation (5):

1
S
= 2η =

(
∂µ

∂N

)
v(r)

=

(
∂2E
∂2N

)
(5)

In addition, the S, µ, η, ω (electrophilicity), and ∆Nmax (charge transfer capability)
values can be calculated using the frontier molecular orbital (FMO) energies as shown
below [56,57].

S =
1
η
=

(
−2

EHOMO − ELUMO

)
(6)

µ =
EHOMO + ELUMO

2
(7)

η =
ELUMO − EHOMO

2
(8)

ω =
µ2

2η
(9)

∆Nmax =
χ

2η
(10)

To predict the degradation centers and reactivity of the studied neutral EBT and
protonated forms (HEB−2(O24) and EB−3), ESP mapping and Mulliken charges are investi-
gated [58].
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4. Conclusions

In this sense, we successfully synthesized a series of Bi2O3@TiO2 composites for the
photocatalytic degradation of both anionic and cationic organic dye pollutants using a
straightforward impregnation followed by calcination, with MIL-125(Ti) as the precursor
for the first time. Characterization techniques including XRD, XPS, FTIR, and SEM-EDX
confirmed the successful impregnation of Bi into the TiO2 structure. Among the synthesized
composites, 10% Bi2O3@TiO2 demonstrated superior photocatalytic performance, achieving
100% degradation efficiency of EBT dye within 30 min under visible-light irradiation,
outperforming MIL-125 and TiO2. The remarkable enhancement in photocatalytic activity
can be attributed to the increased surface acidity and the formation of additional defect
sites from Bi impregnation, which also facilitated the formation of hydroxyl groups via
increased water molecule adsorption. Furthermore, 10% Bi2O3@TiO2 exhibited excellent
stability, maintaining a degradation rate of 76% even after four cycles of reuse.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal14110829/s1, Reusability experiment, effect of different
ratios of Bi2O3, XPS analysis, pore size distribution, photocatalytic comparison, and computational
study details. Table S1: Acid properties of TiO2 and 10% Bi2O3@TiO2; Figure S1: pore size dis-
tribution of various samples; Figure S2: The optimized structures, FMO amplitudes (The LUMO
and HOMO electron densities) for neutral EBT and protonated forms calculated by DFT/B3LYP/6-
311++G(d,p) level; Table S2: Mulliken atomic charges of the B3LYP/6-311++G(d,p) optimized neutral
and protonated EB in an aqueous medium; Figure S3: The contour representation of electrostatic po-
tential regions of negative (positive) potential is red (green) for molecules; (a) H2EB− and (b) HEB−2

(O25) in the aqueous phase using the DFT/B3LYP/6-311++G(d,p) method; Figure S4: The photo-
catalytic activity of 10% Bi2O3@TiO2 towards different dyes at the studied optimum conditions;
Figure S5: The cycling runs of the degradation of EBT dye over 10% Bi2O3@TiO2 after regeneration;
Figure S6: Decomposition of Lidocaine hydrochloride (0.05 g catalyst, 50 ppm 50 mL lidocaine
hydrochloride solution, pH = 6, the irradiation time: 30 min) over 10% Bi2O3@TiO2.
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