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Abstract: The photocatalytic conversion of ethanol and the simultaneous development of hydrogen
technology play a role in solving the energy crisis and reducing environmental pollution. In this
research, rod-like M-MoS2 serves as a channel for charge transfer, leading to superior photocatalytic
activity compared to H-MoS2. Further, two-dimensional (2D) B-doped C3N4 (BCN) nanosheets were
anchored on the one-dimensional (1D) rod-like M-MoS2 surface to form a 1D/2D heterojunction,
with M-MoS2/BCN-0.08 (mass ratio of M-MoS2:BCN of 0.08:1) exhibiting the highest photocatalytic
performance. Under visible light irradiation, the ethanol conversion rate reached 1.79% after 5 h of
photocatalytic reaction per gram of catalyst, while generating 421 µmol of 2,3-butanediol (2,3-BDO),
5460 µmol of acetaldehyde (AA), and 5410 µmol of hydrogen gas (H2). This different characterization
provides evidence that a significant amount of photoinduced electrons generated in BCN under
illumination conditions rapidly transfer to the conduction band (CB) of M-MoS2 through the rod-like
structure of M-MoS2, and finally transfer to Pt to promote the production of hydrogen gas. The
photoinduced holes in the valence band (VB) of M-MoS2 are rapidly consumed by ethanol upon
transferring to BCN, effectively separating the photoinduced electron–hole pairs and resulting in
superior photocatalytic performance.

Keywords: Mo-MOF; MoS2; C3N4; photocatalytic; hydrogen production

1. Introduction

Ethanol, as the most basic monohydric alcohol, is used to produce value-added
chemical compounds. These compounds enable a number of various substances to be
obtained, relating to large-scale final products and intermediates such as commodity
chemicals (hydrogen, ethylene, acetaldehyde (AA), ethyl acetate, 2,3-butanediol (2,3-BDO),
etc.). The use of photocatalytic technology to convert abundant monohydric alcohols into
high value-added chemicals, while generating a large amount of hydrogen gas, exhibits
significant potential for solving the energy and environmental pollution crises [1]. At
present, the photocatalysts for converting ethanol are mainly TiO2, ZnS, and CdS [2–4];
however, these photocatalysts have the disadvantages of poor light absorption and low long-
term stability. Thus, it is an urgent priority to develop new photocatalysts for photocatalytic
ethanol conversion.

Due to its good visible light response, excellent thermal stability, and low cost, g-
C3N4 has shown significant advantages in the field of photocatalysis [5–8]. For instance,
carbon nitrides, including non-graphitic carbon nitrides, demonstrated high catalytic
activity in the Knoevenagel reaction, synthesis of dimethyl carbonate via transesterification
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of ethylene carbonate, Friedel–Crafts acylation, oxidation of cyclic olefin intepoxides,
etc. [9–11]. However, the inferior photogenerated electron–hole separation efficiency and
limited active sites lead to the extremely unsatisfactory photocatalytic efficiency of the bare
g-C3N4 [12–14]. Therefore, a series of modification methods, such as dimensionality control,
doping, and heterostructure construction with other materials, have been implemented to
boost the photocatalytic performance of g-C3N4 [15–17].

Metal–organic frameworks (MOFs), as a species of porous crystals with specific topo-
logical structures, are being widely used in gas adsorption, catalysis, sensing, and other
fields [18,19]. Semiconductor materials, with nanorods, nanosheets, and hollow structures
synthesized using MOFs as templates, can effectively improve the charge transfer efficiency
and absorption properties in photocatalytic processes [20,21]. Therefore, metal sulfides
derived from MOFs have unique advantages over traditional sulfides and are used to pro-
duce composites with g-C3N4, significantly facilitating charge transfer and enhancing the
photocatalytic efficiency [22–24]. For example, Fan et al. derived a new hollow, cubic CoS
structure from Co-ZIF-9 and successfully constructed S-C bonds between CoS and g-C3N4,
achieving efficient hydrogen evolution [25]. Qi et al. designed C-doped Ni3S4/Ni2P hybrid
co-catalysts decorated on g-C3N4 using Ni-MOF as a template, exhibiting a 10 times higher
photocatalytic performance compared to the pristine g-C3N4 [26]. Hu et al. prepared a
three-component C-Cu2-xS@ g-C3N4 heterojunction using HKUST-1 as a precursor and
observed 23-fold enhanced activity in comparison to C3N4 [27].

Most recently, molybdenum disulfide (MoS2) has been widely employed for construct-
ing heterojunctions with C3N4 due to its good electrical conductivity, broad light absorption
range, and appropriate band gap [28,29]. For example, Nagaraja et al. synthesized MoS2
microflowers and g-C3N4 heterostructures using a one-pot solvothermal method, exhibit-
ing significantly enhanced photocatalytic activity [30]. Li et al. successfully constructed
a g-C3N4/Cu/MoS2 Z-type heterojunction with excellent photocatalytic activity employ-
ing the two-step calcination method [31]. As for the MOF-derived MoS2, an MoS2/CdS
photocatalyst was constructed, and the Mo-MOF-derived MoS2 provided a sustainable
cocatalyst for CdS [32]. In addition, Bi4O5Br2 was anchored onto the rod-like MOF-derived
MoS2 to form a p-n heterojunction, which exhibited a distinctly improved photocatalytic
performance [33]. However, the use of Mo-MOF-derived MoS2 and g-C3N4 to construct
heterostructures for use as photocatalysts for efficient ethanol conversion has not been
extensively studied.

In a previous work, a B-doped C3N4 nanosheet (BCN) was first synthesized and
further combined with ZIF67, which exhibited an excellent photocatalytic performance [34].
Here, rod-shaped MoS2 was synthesized using a Mo-MOF rod-like structure as a template
and 1D/2D heterostructures were further constructed with B-doped g-C3N4 nanosheets.
The unique structure of the BCN nanosheets encapsulating the rod-like MoS2 resulted
in an enhanced light absorption capability, displaying outstanding photocatalytic behav-
ior. Moreover, a plausible reaction mechanism and a charge transfer pathway were also
proposed according to the characterization information.

2. Results and Discussion

Figure 1a–c show the SEM images of H-MoS2, Mo-MOF, and M-MoS2, respectively.
The hydrothermally synthesized MoS2 is an assembly of numerous nanosheets with severe
aggregation. Furthermore, the synthesized Mo-MOF exhibits a rod-like structure with an
interlocked arrangement and a smooth surface, indicating good dispersibility. Moreover,
the M-MoS2 prepared using Mo-MOF as a template maintains the rod-like structure of
Mo-MOF, with an interlocked arrangement of rod-like structures, demonstrating that the
M-MoS2 inherits the excellent dispersibility from Mo-MOF. In order to investigate the
effect of the changes in morphology on material properties, the photocatalytic hydrogen
evolution performance of H-MoS2 and M-MoS2 was tested under the irradiation of a 300 W
xenon lamp in a mixture of 45 mL ethanol and 5 mL aqueous solution (Figure 2a,b). The
photocatalytic hydrogen evolution rate of the H-MoS2 synthesized by the conventional
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hydrothermal method is only 7.3 µmol g−1 h−1, while that of the M-MoS2 derived from
Mo-MOF reaches 51.8 µmol g−1 h−1. Compared to H-MoS2, the unique rod-like structure of
M-MoS2 serves as a channel for charge transfer, promoting the transport of photogenerated
electron–hole pairs and thus resulting in an excellent photocatalytic activity. Figure 3a–d
show the SEM images of the 1D/2D M-MoS2/BCN-X composites. It can be observed that
all four synthesized composite materials exhibit a well-coated structure of BCN on M-MoS2,
with a well-maintained rod-like morphology of M-MoS2. Different amounts of BCN are
dispersed around the M-MoS2 in each sample, but overall, there is no significant difference
in the morphology of the four samples.

Catalysts 2024, 14, x FOR PEER REVIEW 3 of 16 
 

 

investigate the effect of the changes in morphology on material properties, the photo-
catalytic hydrogen evolution performance of H-MoS2 and M-MoS2 was tested under the 
irradiation of a 300 W xenon lamp in a mixture of 45 mL ethanol and 5 mL aqueous so-
lution (Figure 2a,b). The photocatalytic hydrogen evolution rate of the H-MoS2 synthe-
sized by the conventional hydrothermal method is only 7.3 µmol g−1 h−1, while that of the 
M-MoS2 derived from Mo-MOF reaches 51.8 µmol g−1 h−1. Compared to H-MoS2, the 
unique rod-like structure of M-MoS2 serves as a channel for charge transfer, promoting 
the transport of photogenerated electron–hole pairs and thus resulting in an excellent 
photocatalytic activity. Figure 3a–d show the SEM images of the 1D/2D M-MoS2/BCN-X 
composites. It can be observed that all four synthesized composite materials exhibit a 
well-coated structure of BCN on M-MoS2, with a well-maintained rod-like morphology of 
M-MoS2. Different amounts of BCN are dispersed around the M-MoS2 in each sample, 
but overall, there is no significant difference in the morphology of the four samples. 

 
Figure 1. The SEM morphology of (a) H-MoS2; (b) Mo-MOF; (c) M-MoS2. 

 
Figure 2. (a) Photocatalytic hydrogen production and (b) photocatalytic hydrogen evolution rate of 
H-MoS2 and M-MoS2. 

TEM characterization was performed on the M-MoS2/BCN-0.08 to investigate the 
morphological and structural features, as well as the nature of the bonding, between 
M-MoS2 and BCN in the composite material. As shown in Figure 4a, the rod-shaped 
M-MoS2 is dispersed with a large amount of BCN around it. The further magnification in 
Figure 4b reveals that the BCN surrounding M-MoS2 consists of only a few layers, ap-
pearing as translucent flakes, and the two are tightly bound together, revealing the 
presence of a close heterointerface between M-MoS2 and BCN. Figure 4c shows a 
high-resolution TEM image of the M-MoS2/BCN-0.08, with a measured lattice spacing of 
0.326 nm, corresponding to the (002) plane of BCN [35]. However, the M-MoS2 has no 
apparent lattice spacing, which indicates the formation of an amorphous structure. Fig-
ure 4d displays a further STEM mapping of the examined samples, where the B and N 
elements are detected around the Mo and S elements, indicating that a large amount of 
thin and translucent BCN is anchored to the surface of the M-MoS2. Thus, a close contact 
heterointerface exists between M-MoS2 and BCN. 

Figure 1. The SEM morphology of (a) H-MoS2; (b) Mo-MOF; (c) M-MoS2.

Catalysts 2024, 14, x FOR PEER REVIEW 3 of 16 
 

 

investigate the effect of the changes in morphology on material properties, the photo-
catalytic hydrogen evolution performance of H-MoS2 and M-MoS2 was tested under the 
irradiation of a 300 W xenon lamp in a mixture of 45 mL ethanol and 5 mL aqueous so-
lution (Figure 2a,b). The photocatalytic hydrogen evolution rate of the H-MoS2 synthe-
sized by the conventional hydrothermal method is only 7.3 µmol g−1 h−1, while that of the 
M-MoS2 derived from Mo-MOF reaches 51.8 µmol g−1 h−1. Compared to H-MoS2, the 
unique rod-like structure of M-MoS2 serves as a channel for charge transfer, promoting 
the transport of photogenerated electron–hole pairs and thus resulting in an excellent 
photocatalytic activity. Figure 3a–d show the SEM images of the 1D/2D M-MoS2/BCN-X 
composites. It can be observed that all four synthesized composite materials exhibit a 
well-coated structure of BCN on M-MoS2, with a well-maintained rod-like morphology of 
M-MoS2. Different amounts of BCN are dispersed around the M-MoS2 in each sample, 
but overall, there is no significant difference in the morphology of the four samples. 

 
Figure 1. The SEM morphology of (a) H-MoS2; (b) Mo-MOF; (c) M-MoS2. 

 
Figure 2. (a) Photocatalytic hydrogen production and (b) photocatalytic hydrogen evolution rate of 
H-MoS2 and M-MoS2. 

TEM characterization was performed on the M-MoS2/BCN-0.08 to investigate the 
morphological and structural features, as well as the nature of the bonding, between 
M-MoS2 and BCN in the composite material. As shown in Figure 4a, the rod-shaped 
M-MoS2 is dispersed with a large amount of BCN around it. The further magnification in 
Figure 4b reveals that the BCN surrounding M-MoS2 consists of only a few layers, ap-
pearing as translucent flakes, and the two are tightly bound together, revealing the 
presence of a close heterointerface between M-MoS2 and BCN. Figure 4c shows a 
high-resolution TEM image of the M-MoS2/BCN-0.08, with a measured lattice spacing of 
0.326 nm, corresponding to the (002) plane of BCN [35]. However, the M-MoS2 has no 
apparent lattice spacing, which indicates the formation of an amorphous structure. Fig-
ure 4d displays a further STEM mapping of the examined samples, where the B and N 
elements are detected around the Mo and S elements, indicating that a large amount of 
thin and translucent BCN is anchored to the surface of the M-MoS2. Thus, a close contact 
heterointerface exists between M-MoS2 and BCN. 

Figure 2. (a) Photocatalytic hydrogen production and (b) photocatalytic hydrogen evolution rate of
H-MoS2 and M-MoS2.

Catalysts 2024, 14, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 3. The SEM images of 1D/2D M-MoS2/BCN-X composites with various mass ratios: (a) 0.02; 
(b) 0.05; (c) 0.08; (d) 0.11. 

 
Figure 4. (a,b) TEM, (c) high-resolution transmission (HRTEM) image, and (d) STEM mapping of 
M-MoS2/BCN-0.08. 

Figure 5a presents the XRD pattern of M-MoS2. The relatively poor crystallinity of 
the synthesized M-MoS2 provides evidence that M-MoS2 is amorphous, which is con-
sistent with the HRTEM observation [36]. In addition, diffraction peaks corresponding to 
the (100) and (002) crystal planes of BCN can be observed in the entire pattern [37,38]. 
Figure 5b shows the XRD patterns of M-MoS2 and M-MoS2/BCN-X. Due to the weak 
crystallinity of M-MoS2, only the diffraction peaks of BCN are clearly observable. 

Figure 6a displays the total XPS spectrum of the M-MoS2/BCN-0.08 composite ma-
terial. The existence of the C, N, B, and Mo elements can be clearly identified. The fur-
ther analysis of the B 1s fine spectrum in Figure 6b shows a binding energy peak at 191.7 
eV, which corresponds to the typical N-B-N bond, confirming the existence of the BCN 
in the composite material [39]. Figure 6c presents the fine spectrum of Mo 3d, and two 
peaks at 229.3 eV and 232.3 eV corresponding to Mo 3d 5/2 and Mo 3d 3/2, respectively, 
can be confirmed, suggesting the presence of Mo4+ [40]. A weak peak at 235.8 eV is also 
observed, suggesting that a small amount of Mo4+ was slightly oxidized to Mo6+ during 
the material preparation process. Figure 6d shows the fine spectrum of S 2p, with two 

Figure 3. The SEM images of 1D/2D M-MoS2/BCN-X composites with various mass ratios: (a) 0.02;
(b) 0.05; (c) 0.08; (d) 0.11.



Catalysts 2024, 14, 833 4 of 15

TEM characterization was performed on the M-MoS2/BCN-0.08 to investigate the
morphological and structural features, as well as the nature of the bonding, between M-
MoS2 and BCN in the composite material. As shown in Figure 4a, the rod-shaped M-MoS2
is dispersed with a large amount of BCN around it. The further magnification in Figure 4b
reveals that the BCN surrounding M-MoS2 consists of only a few layers, appearing as
translucent flakes, and the two are tightly bound together, revealing the presence of a close
heterointerface between M-MoS2 and BCN. Figure 4c shows a high-resolution TEM image
of the M-MoS2/BCN-0.08, with a measured lattice spacing of 0.326 nm, corresponding to
the (002) plane of BCN [35]. However, the M-MoS2 has no apparent lattice spacing, which
indicates the formation of an amorphous structure. Figure 4d displays a further STEM
mapping of the examined samples, where the B and N elements are detected around the
Mo and S elements, indicating that a large amount of thin and translucent BCN is anchored
to the surface of the M-MoS2. Thus, a close contact heterointerface exists between M-MoS2
and BCN.
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Figure 4. (a,b) TEM, (c) high-resolution transmission (HRTEM) image, and (d) STEM mapping of
M-MoS2/BCN-0.08.

Figure 5a presents the XRD pattern of M-MoS2. The relatively poor crystallinity of the
synthesized M-MoS2 provides evidence that M-MoS2 is amorphous, which is consistent
with the HRTEM observation [36]. In addition, diffraction peaks corresponding to the (100)
and (002) crystal planes of BCN can be observed in the entire pattern [37,38]. Figure 5b
shows the XRD patterns of M-MoS2 and M-MoS2/BCN-X. Due to the weak crystallinity of
M-MoS2, only the diffraction peaks of BCN are clearly observable.
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Figure 6a displays the total XPS spectrum of the M-MoS2/BCN-0.08 composite mate-
rial. The existence of the C, N, B, and Mo elements can be clearly identified. The further
analysis of the B 1s fine spectrum in Figure 6b shows a binding energy peak at 191.7 eV,
which corresponds to the typical N-B-N bond, confirming the existence of the BCN in the
composite material [39]. Figure 6c presents the fine spectrum of Mo 3d, and two peaks at
229.3 eV and 232.3 eV corresponding to Mo 3d 5/2 and Mo 3d 3/2, respectively, can be
confirmed, suggesting the presence of Mo4+ [40]. A weak peak at 235.8 eV is also observed,
suggesting that a small amount of Mo4+ was slightly oxidized to Mo6+ during the material
preparation process. Figure 6d shows the fine spectrum of S 2p, with two characteristic
peaks at 162 eV and 163.2 eV, confirming the presence of S2− [41]. Through SEM, TEM,
XRD, and XPS analyses, the successful preparation of M-MoS2 and M-MoS2/BCN-X was
confirmed. M-MoS2 exhibits a unique rod-like structure, different from that produced via
conventional hydrothermal methods, and demonstrates an excellent photocatalytic per-
formance. M-MoS2/BCN-X, on the other hand, exhibits a structure where the nanosheets
envelop the rod-like structure, with a well-defined heterojunction at the interface between
the two components.
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Figure 6. The XPS spectra of the M-MoS2/BCN-0.08 sample. (a) Survey spectrum; (b) B 1s; (c) Mo 3d;
(d) S 2p.

The main products, H2, AA, and 2,3-BDO, were determined through chromatographic
analysis. The results showed that the prepared photocatalyst achieved the conversion of
ethanol while generating a large amount of hydrogen gas. The conversion of ethanol per
gram of catalyst within 5 h was calculated by measuring the amount of ethanol before and
after the reaction using chromatography, as depicted in Figure 7a. The ethanol conversion
of the BCN was 0.86%; after being combined with M-MoS2, the photocatalytic performance
of the materials was improved to some extent. M-MoS2/BCN-0.08 exhibited the highest
photocatalytic performance: the ethanol conversion reached 1.79%. This indicates that the
material obtained through the combination of the M-MoS2 and BCN had a remarkably
enhanced photocatalytic performance. Figure 7b presents the production rates of each
substance per gram of photocatalyst per hour. It can be observed that the BCN exhibits
weak photocatalytic activity, producing 534 µmol of hydrogen gas, 586 µmol of AA, and
43.9 µmol of 2,3-BDO per gram of BCN per hour under xenon lamp irradiation. When
combined with M-MoS2, the resulting composite material exhibits a significantly enhanced
photocatalytic performance, particularly M-MoS2/BCN-0.08 which generates 1082 µmol of
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hydrogen gas, 1092 µmol of AA, and 84.2 µmol of 2,3-BDO under xenon lamp irradiation.
Based on the ethanol conversion rate and the yield of AA and 2,3-BDO within 10 h, the
selectivity of the different photocatalysts for AA and 2,3-BDO after 10 h of reaction can be
calculated using a carbon content balance (Equations (1)–(3)), as follows:

SAA = 2n(AA)/2n(e) (1)

S2,3−BDO = 4n(2,3−BDO)/2n(e) (2)

Sother = (2n(e) − 2n(AA) − 4n(2,3−BDO))/2n(e) (3)

where n(AA) represents the amount of substance that produces AA within 10 h; n(2,3-BDO)
represents the amount of substance that produces 2,3-BDO within 10 h; n(e) represents the
amount of substance that converts ethanol within 10 h; and S represents the selectivity of
the corresponding product. As shown in Figure 7c, the results indicate that the addition of
M-MoS2 does not affect the selectivity of the products obtained after the ethanol conversion.
The reason for this phenomenon is that the loading of M-MoS2 does not affect the desorption
of the hydroxyethyl radical (•CH(OH)CH3). Therefore, compared with the pure BCN, the
selectivity of the products formed by ethanol conversion remains unchanged.
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To investigate the effect of the water content in solvents on the ethanol conversion and
hydrogen production performance, the M-MoS2/BCN-0.08 photocatalysts were used for
photocatalytic experiments in ethanol solutions with different water content. As shown
in Figure 8a, it can be seen that when the water content is 0%, almost no hydrogen gas is
generated and the substances generated by the conversion of ethanol are also extremely low.
When a trace amount of aqueous solution is added to the solvent (5%), its photocatalytic
performance is significantly enhanced, especially with a sharp increase in the generated
hydrogen gas. The significant enhancement in the photocatalytic performance can be
attributed to the fact that the addition of aqueous solutions consumes a large number of
electrons, thereby promoting the production of hydrogen gas, and there are more holes
that can oxidize ethanol to generate a large amount of •CH(OH)CH3. Moreover, the
reduction potential of water is higher than that of 2,3-BDO and AA, so the addition of
water can also effectively inhibit the reverse reaction of 2,3-BDO and AA. When the water
content increases to 10%, the photocatalytic performance is enhanced and the selectivity
of the products formed by ethanol conversion changes (Figure 8b). This is because the
•CH(OH)CH3 generated by the hole oxidation of ethanol can interact with water to form
hydrogen bonds, causing the partial desorption of •CH(OH)CH3 from the surface of the
photocatalyst, and thereby promoting C-C bond coupling and generating a significant
amount of 2,3-BDO. Therefore, the selectivity of 2,3-BDO is significantly improved. When
the water content increases to 20%, the production of the hydrogen increases, while the
conversion rate of the ethanol decreases. The reason for this phenomenon may be that the
photocatalysts compete for the adsorption of water and ethanol. In Figure 8c, the electron
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paramagnetic resonance (EPR) spectrum shows a significant amount of •CH(OH)CH3 in
the solution under light conditions for the generation of AA and 2,3-BDO. This indicates
that the photocatalysts can convert a large amount of ethanol under illumination.
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Figure 8. (a) The rate plots of each substance produced per hour per gram of the M-MoS2/BCN-0.08
photocatalyst in ethanol water solution with different water contents; (b) the selectivity of the M-
MoS2/BCN-0.08 photocatalyst after 5 h of illumination in ethanol aqueous solutions with different
water contents; (c) the EPR spectra of the dimethyl pyrroline-N-oxide (DMPO) M-MoS2/BCN-
0.08 system.

In order to evaluate the stability of the photocatalysts, three cycles of photocatalytic
conversion of ethanol were conducted on M-MoS2/BCN-0.08, the photocatalyst with the
best photocatalytic performance, with each cycle lasting for 5 h. As shown in Figure 9a,
with the increase in the photocatalytic time and the number of cycles, the photocatalytic
M-MoS2/BCN-0.08 still maintains good stability. The selectivity of the products formed
by the ethanol conversion also remains stable (Figure 9b). The SEM and XRD tests on the
photocatalyst after multiple cyclic tests are shown in Figure 9c and Figure 9d, respectively.
It can be seen that the morphology and structure of the photocatalyst basically remained
unchanged, indicating that the catalyst has good stability under the illumination conditions.
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UV-Vis diffuse reflectance spectra were measured to investigate the optical absorption
properties of the samples. From Figure 10a, it can be observed that the M-MoS2 derived
from Mo-MOF exhibits moderate light absorption overall but shows a certain absorption in
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the visible and near-infrared range. In addition, the BCN exhibits a strong absorption ability
in the UV region, with the absorption edge located at approximately 470 nm. Compared to
the BCN, M-MoS2/BCN-0.08 shows a slight red shift in the absorption edge in the visible
region, indicating an enhanced absorption ability in the visible range and a change in
the bandgap. The bandgap widths of the materials were calculated using the Kubelka–
Munk equation [42]. As shown in Figure 10b, the bandgap widths of the BCN, M-MoS2,
and M-MoS2/BCN-0.08 are determined to be 2.62 eV, 2.32 eV, and 2.52 eV, respectively.
The composite photocatalyst M-MoS2/BCN-0.08 has a smaller bandgap width compared
to the BCN, indicating that M-MoS2 enhances the visible light absorption ability of the
BCN and the narrower bandgap promotes the charge transfer capability and improves
the photocatalytic activity of the material. Figure 10c displays the Mott–Schottky slopes
of the BCN and M-MoS2, which are both positive, indicating that the two materials are
typical n-type semiconductors. Further, the flat band potentials of the BCN and M-MoS2
are determined to be −0.9 V and −0.39 V, respectively, vs. the SCE based on the intercept
results of the graph. Since the flat band potential of the n-type semiconductors is usually
higher by about 0.2 V compared to the conduction band (CB) potential, the CB potentials
of the BCN and M-MoS2 are calculated to be −1.1 V and −0.59 V (−0.86 and −0.35 V vs.
NHE), respectively. Meanwhile, the VB potentials of the BCN and M-MoS2 are calculated
to be 1.76 V and 1.97 V, respectively, using Eg = EVB − ECB.
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(f) photoluminescence spectra of M-MoS2, BCN, and M-MoS2/BCN-X samples.

To detect the electron transfer pathways in the composites, EPR measurements were
carried out by dispersing the samples in a methanol solution containing a DMPO spin
trapping agent. According to the concentration of the captured superoxide radicals in
the solution, the electron concentration of the CB of the materials can be inferred, thus
providing specific information on the electron transfer in the photocatalyst. As shown in
Figure 10d, no significant DMPO-•O2

− signals are observed for all three samples under
the dark environment, while the DMPO-•O2

− signals for all samples are significantly
enhanced under the light conditions. This suggests that the electrons generated from



Catalysts 2024, 14, 833 9 of 15

the three groups of samples can reduce O2 to O2
− in the solution under light irradiation.

Among them, the M-MoS2/BCN-0.08 shows the strongest DMPO-•O2
− signal, which

illustrates that this composite generates the most electrons for O2 reduction under the same
conditions. Therefore, the electrons on the CB of BCN continuously transfer to the CB of
M-MoS2 during the photocatalytic process, providing evidence that a type II heterojunction
between M-MoS2 and BCN is formed. Figure 10e displays the band structure of the M-
MoS2 and BCN, illustrating the specific pathways for the electron–hole transfer during
the photocatalytic process. The type II heterojunction constructed by these two materials
effectively improves the separation of the photo-generated charge carriers, leading to an
enhanced photocatalytic performance. To further investigate the recombination behavior of
the photo-generated charge carriers, photoluminescence (PL) spectroscopy was employed
to evaluate the lifetime of the charge carriers in different samples, as shown in Figure 10f.
The M-MoS2 exhibited a strong PL emission peak at around 600 nm, while BCN showed a
reduced emission peak compared to M-MoS2, indicating the shorter lifetime of the photo-
generated charge carriers in both materials. For all composites of M-MoS2 with BCN with
different ratios, a significant decrease in the PL intensity was observed, indicating that the
heterojunction interface between M-MoS2 and BCN effectively accelerates the separation of
the electron–hole pairs. Among all the composite materials, M-MoS2/BCN-0.08 exhibited
the lowest PL intensity, indicating the longest lifetime of the photo-generated charge
carriers, which corresponds to its excellent photocatalytic hydrogen evolution performance.
The PL spectra suggest that the unique nanosheet-coated rod-like structure and the type II
heterojunction formed by M-MoS2 and BCN can effectively spatially separate the photo-
generated electron–hole pairs, thereby enhancing the lifetime of the charge carriers in
the material.

Photoelectrochemical tests were conducted on M-MoS2, BCN, and M-MoS2/BCN-
X to analyze the separation and transfer abilities of the photo-generated electron–hole
pairs. As shown in Figure 11a, M-MoS2 and BCN exhibit low PC responses. However,
the composites formed by the two show a significantly improved PC response, indicating
that the heterojunction structure constructed by M-MoS2 and BCN effectively enhances
the separation ability of the photo-generated charge carriers. The highest PC response
for M-MoS2/BCN-0.08 also corresponds to its optimal photocatalytic hydrogen evolution
performance. The impedance test results of the materials are shown in Figure 11b, where
a bigger curvature radius in the impedance spectrum indicates a faster charge transfer
resistance. Among them, the curve with the smallest curvature radius corresponds to
M-MoS2/BCN-0.08, indicating that this material has the best separation and transfer ability
of the photo-generated carriers. The LSV curves are shown in Figure 11c. Compared
with the M-MoS2 and BCN, M-MoS2/BCN-X shows varying degrees of increased cathodic
currents. The maximum cathodic current of the M-MoS2/BCN-0.08 may be caused by the
rapid electron migration between the contact interface, implying that the heterojunction
prompts the electron transfer and enhances the photocatalytic activity. The improvement
in the performance is related to the rapid charge transfer at the material interface and the
significant increase in the lifetime of the photo-generated charge carriers after the formation
of the composite material. The rod-like structure of Mo-MoS2 can serve as a special
channel for the charge transfer, resulting in a faster charge transfer rate after the transfer of
electrons from BCN CB to M-MoS2 CB. The optimal electrochemical performance of the M-
MoS2/BCN-0.08 is consistent with its best photocatalytic hydrogen evolution performance.
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Figure 11. M-MoS2, BCN, and M-MoS2/BCN-X: (a) transient photocurrent density; (b) electricity
chemical impedance spectroscopy; (c) linear sweep voltammogram.

The proposed charge transfer mechanism of the 1D/2D M-MoS2/BCN-0.08 hetero-
junction under illumination conditions is presented in Figure 12. In comparison to MoS2
prepared using the conventional hydrothermal method, M-MoS2 exhibits a rod-like struc-
ture similar to Mo-MOF, with a large specific surface area and pore volume due to its
spatial dispersion. This results in the exposure of more active sites, leading to superior
photocatalytic performance. Additionally, the unique rod-like structure of M-MoS2 serves
as a channel for charge transfer, facilitating faster electron transfer during the process. More-
over, M-MoS2 has a significant absorption ability throughout the visible light region, and
the composite with BCN causes a redshift in the material, reducing the energy required for
electron excitation in BCN. Furthermore, the reduced bandgap of the M-MoS2/BCN-0.08
enhances its visible light absorption capacity.
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The charge transfer mechanism of the 1D/2D M-MoS2/BCN-0.08 heterojunction is
further analyzed. Under illumination conditions, both the M-MoS2 and BCN generate
photoinduced electron–hole pairs. Excited-state electrons migrate to the CB of M-MoS2 and
BCN, leaving photoinduced holes in the corresponding VB. Due to the potential difference
between the CB of the BCN and M-MoS2, the electrons in the CB of BCN spontaneously
transfer to the CB of the M-MoS2. With the continuous progress of the reaction, the
accumulated electrons on the CB of M-MoS2 react gradually with the adsorbed H+ to form
atomic hydrogen. Then, atomic hydrogen migrates to Pt particles to form H2. During this
process, ethanol acts to consume the photoinduced holes generated in the photocatalytic
reaction system. The ethanol molecules adsorbed on the catalyst surface are first oxidized to
•CH(OH)CH3, and then some of the •CH(OH)CH3 is desorbed onto the catalyst surface for
C-C bond coupling to form 2,3-BDO. Some of the •CH(OH)CH3 that fails to be desorbed in
a timely manner will be further oxidized to AA by more holes and finally will be oxidized
to other substances such as acetic acid or CO2.

Compared to the normal hydrogen electrode (NHE), the CB potentials of M-MoS2
and BCN are −0.35 V and −0.9 V, respectively, indicating that both the M-MoS2 and BCN
have sufficiently high levels of CB energy to drive the photocatalytic production of H2. The
type II heterojunction formed by M-MoS2 and BCN effectively utilizes the photoinduced
electrons generated by both materials. Moreover, the thin nanosheets of BCN and the
unique rod-like structure of M-MoS2 allow for the uniform coverage of BCN on the surface
of M-MoS2. During the photocatalytic hydrogen evolution process, the large amount of
photoinduced electrons generated in BCN under illumination conditions rapidly transfer
to the CB of M-MoS2 through the rod-like structure of M-MoS2, while the photoinduced
holes in the VB of M-MoS2 are rapidly consumed by ethanol upon transferring to BCN
and promote the generation of AA and 2,3-BDO, effectively separating the photoinduced
electron–hole pairs and resulting in superior photocatalytic performance.

3. Materials and Methods
3.1. Synthesis of B-Doped g-C3N4 Nanosheets

The B-doped g-C3N4 nanosheets were prepared using a thermal polymerization and
exfoliation method [43,44]. Specifically, 5 g of melamine (C3H6N6) and 40 mg of boric
acid (H3BO3) were mixed and ground. Then, the collected powders were transferred to a
covered alumina crucible, heated from room temperature to 550 ◦C at a rate of 5 ◦C/min
in a muffle furnace, and soaked for 4 h. The obtained solid was fully ground to obtain a
B-doped g-C3N4 nanosheet powder, which was then placed in an open alumina crucible
and heated again under the condition of 500 ◦C for 2 h in a muffle furnace at a rate of
5 ◦C/min, resulting in B-doped g-C3N4 nanosheets.

3.2. Preparation of MoS2 Nanosheets (H-MoS2)

A total of 90 mg of thiourea (C2H5NS) and 50 mg of sodium molybdate dihydrate
(Na2MoO4•2H2O) were mixed in 40 mL of deionized water, and the transparent solution
was transferred to a 100 mL Teflon-lined autoclave and heated at 220 ◦C for 24 h. The black
powder was collected, washed with deionized water three times, and dried in vacuum at
80 ◦C for 12 h to obtain H-MoS2.

3.3. Preparation of Rod-like Mo-MOF and Derived MoS2 (M-MoS2)

Then, 3.5 g of molybdenum trioxide (MoO3) and 1.66 g of imidazole (C3H4N2) were
dissolved in 250 mL of deionized water, and the mixture was refluxed at 100 ◦C for 12 h.
After that, the precipitate was collected by centrifugation. After washing three times with
deionized water, Mo-MOF microrods were obtained by vacuum drying at 70 ◦C. M-MoS2
was prepared using Mo-MOF as a template. Specifically, 0.2 g of the prepared Mo-MOF
and 1.6 g of thiourea (CH4N2S) were placed in separate open alumina crucibles, and the
crucibles were placed downstream and upstream of a tubular furnace. After purging with
N2 for 30 min to remove the oxygen from the furnace, the temperature was increased to
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600 ◦C at a rate of 5 ◦C/min under an N2 atmosphere and maintained for 3 h to obtain the
black M-MoS2.

3.4. Preparation of 1D/2D M-MoS2/BCN Heterostructure

The 1D/2D M-MoS2/BCN heterostructure was prepared using a mechanical grinding
method that enables precise control of the material ratio. Specifically, 0.2 g of the prepared
BCN and a certain amount of M-MoS2 were placed in a quartz grinding dish and thoroughly
ground for 30 min to obtain M-MoS2/BCN-X, where X represents the mass ratio of M-MoS2
to BCN. Four different mass ratios of the composite materials were prepared, namely
M-MoS2/BCN-0.02, M-MoS2/BCN-0.05, M-MoS2/BCN-0.08, and M-MoS2/BCN-0.11.

3.5. Characterization of the Catalyst

The morphologies of the samples were analyzed via field emission scanning electron
microscopy (FE-SEM, TESCAN MIRA3 LMH). Transmission electron microscopy (TEM)
images were characterized using a transmission electron microscope (TEM, JEOL 2100F,
JEOL, Tokyo, Japan). The phase and structure of the sample were measured via X-ray
diffraction (XRD; Panalytical Aeries Research) with Cu Ka radiation. The elemental com-
position and valence states were determined via X-ray photoelectron spectroscopy (XPS,
Thermo Scientific ESCALAB 250Xi, Waltham, MA, USA). The light absorption was evalu-
ated using PerkinElmer Lambda 1050+ UV-V (PerkinElmer, Waltham, MA, USA) reflectance
spectroscopy with BaSO4 as the standard reference material. The photoluminescence (PL)
measurement was conducted on the FLS980 fluorometer. Electron paramagnetic resonance
(EPR) was carried out by dispersing the samples in a methanol solution containing a DMPO
spin trapping agent, using a Brucker EPR A 200 W spectrometer (Brucker, Billerica, MA,
USA). The photoelectrochemical measurements, including transient photocurrent curves
(I–t curve, photocurrent vs. SCE at 0.598 V), electrochemical impedance spectroscopy (EIS,
at 0.2 V potential vs. SCE), and linear sweep voltammogram (−0.6 V to 0 V vs. SCE), were
performed on an electrochemical workstation (Metrohm Autolab; Nova, Waltham, MA,
USA) with a self-made standard three electrode battery. A conductive glass electrode coated
with the samples, a Pt electrode, and a saturated calomel electrode (SCE) were used as the
working electrode, counter electrode, and reference electrode, respectively. To prepare the
fluorine-doped tin oxide (FTO) working electrode, 5 mg of the sample was dispersed in a
mixed solution consisting of 50 µL Nafion and 500 µL ethanol using ultrasound to obtain
a slurry. Afterwards, the slurry was pre-immersed into the FTO glass protected by paper
tape at the boundary. After air drying, the paper tape was exposed to obtain the working
electrode. All electrochemical measurements were performed using 0.2 M Na2SO4 aqueous
solution as the electrolyte and a 300 W Xe lamp as the light source.

3.6. Photocatalytic Hydrogen Production

A total of 50 mg of the photocatalyst with 1 wt.% Pt (H2PtCl6•6H2O) added as a
cocatalyst was dispersed in 50 mL of ethanol–water solution with varying water contents
(0%, 5%, 10%, and 20%). Prior to the reaction, the reactor was purged with Ar gas to remove
air. During the reaction, continuous stirring was maintained to prevent the aggregation
of the photocatalyst under 300 W Xe lamp irradiation. The production of hydrogen, 2.3-
butanediol, and acetaldehyde was measured using the Agilent GC-950 gas chromatograph
(Agilent, Santa Clara, CA, USA). During the stability experiment, the liquid after 5 h
of photocatalytic reaction was centrifuged at 10,000 rpm for 10 min at high speed. The
photocatalyst was washed with ethanol to remove impurities and then dried at 60 ◦C for
12 h. The photocatalytic cycling experiment was continued using the dried photocatalyst.
The stability test was conducted over three cycles, with each cycle lasting for 5 h.

4. Conclusions

M-MoS2 was derived using Mo-MOF as the template, and the M-MoS2/BCN-X com-
posite photocatalyst was prepared via mechanical grinding with BCN. M-MoS2 derived
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from Mo-MOF has a rod-like structure and a photocatalytic hydrogen evolution rate of
51.8 µmol g−1 h−1, which is 7.1 times that of the H-MoS2 synthesized using the traditional
hydrothermal method. This is due to its special rod-like structure that can also act as a fast
channel for charge transport. A photocatalyst with excellent photocatalytic performance
was prepared by combining the 1D rod-like structure of M-MoS2 and 2D BCN. In an ethanol
aqueous solution with a water content of 10%, 1082 µmol of hydrogen gas, 1092 µmol of AA,
and 84.2 µmol of 2,3-BDO were produced per gram of M-MoS2/BCN-0.08 per hour. The
special one-dimensional rod-like structure of M-MoS2 provides an effective composite area
for the loading of two-dimensional BCN. The electrons in the CB of BCN are transferred
to the CB of M-MoS2, and the rod-like structure as a transmission channel accelerates the
electron transfer. The holes located in the VB of M-MoS2 are uniformly transferred to the
BCN, which promotes the separation of the photogenerated carriers and leads to a type II
heterojunction with excellent photocatalytic properties.
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