Direct Conversion of Ethanol to Propylene over Zn-Modified HBeta Zeolite: Influence of Zinc Precursors
Abstract
:1. Introduction
2. Results
2.1. Structural and Textural Properties
2.2. Acidic Properties
2.3. Catalytic Performance
2.4. Deactivation of the Catalysts
3. Discussion
3.1. Key Factors Effecting the Catalytic Activity
3.2. Deactivation Mechanism
4. Materials and Methods
4.1. Chemicals
4.2. Catalyst Preparation
4.3. Catalyst Characterization
4.4. Procedure for Evaluating the ETP Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Matheus, C.R.V.; Aguiar, E.F.S. The role of MPV reaction in the synthesis of propene from ethanol through the acetone route. Catal. Commun. 2020, 145, 106096. [Google Scholar] [CrossRef]
- Matheus, C.R.V.; Chagas, L.H.; Gonzalez, G.G.; Aguiar, E.F.S.; Appel, L.G. Synthesis of Propene from Ethanol: A Mechanistic Study. ACS Catal. 2018, 8, 7667–7678. [Google Scholar] [CrossRef]
- Licht, R.B.; Bell, A.T. A DFT Investigation of the Mechanism of Propene Ammoxidation over α-Bismuth Molybdate. ACS Catal. 2016, 7, 161–176. [Google Scholar] [CrossRef]
- Hussain, A.I.; Aitani, A.M.; Kubů, M.; Čejka, J.; Al-Khattaf, S. Catalytic cracking of Arabian Light VGO over novel zeolites as FCC catalyst additives for maximizing propylene yield. Fuel 2016, 167, 226–239. [Google Scholar] [CrossRef]
- Phung, T.K.; Pham, T.L.M.; Vu, K.B.; Busca, G. (Bio)Propylene production processes: A critical review. J. Environ. Chem. Eng. 2021, 9, 105673. [Google Scholar] [CrossRef]
- Song, S.; Sun, Y.; Yang, K.; Fo, Y.; Ji, X.; Su, H.; Li, Z.; Xu, C.; Huang, G.; Liu, J.; et al. Recent Progress in Metal-Molecular Sieve Catalysts for Propane Dehydrogenation. ACS Catal. 2023, 13, 6044–6067. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y. Recent Advances in Catalytic Conversion of Ethanol to Chemicals. ACS Catal. 2014, 4, 1078–1090. [Google Scholar] [CrossRef]
- Yin, J.; Guo, X.; Sun, Y.; Han, S.; Li, Q. Understanding the Nanoconfinement Effect on the Ethanol-to-Propene Mechanism Catalyzed by Acidic ZSM-5 and FAU Zeolites. J. Phys. Chem. C 2021, 125, 310–334. [Google Scholar] [CrossRef]
- Huangfu, J.; Mao, D.; Zhai, X.; Guo, Q. Remarkably enhanced stability of HZSM-5 zeolite co-modified with alkaline and phosphorous for the selective conversion of bio-ethanol to propylene. Appl. Catal. A Gen. 2016, 520, 99–104. [Google Scholar] [CrossRef]
- Duan, C.; Zhang, X.; Zhou, R.; Hua, Y.; Zhang, L.; Chen, J. Comparative studies of ethanol to propylene over HZSM-5/SAPO-34 catalysts prepared by hydrothermal synthesis and physical mixture. Fuel Process. Technol. 2013, 108, 31–40. [Google Scholar] [CrossRef]
- Xia, W.; Chen, K.; Takahashi, A.; Li, X.; Mu, X.; Han, C.; Liu, L.; Nakamura, I.; Fujitani, T. Effects of particle size on catalytic conversion of ethanol to propylene over H-ZSM-5 catalysts—Smaller is better. Catal. Commun. 2016, 73, 27–33. [Google Scholar] [CrossRef]
- Xia, W.; Takahashi, A.; Nakamura, I.; Shimada, H.; Fujitani, T. Study of active sites on the MFI zeolite catalysts for the transformation of ethanol into propylene. J. Mol. Catal. A Chem. 2010, 328, 114–118. [Google Scholar] [CrossRef]
- Li, X.; Kant, A.; He, Y.; Thakkar, H.V.; Atanga, M.A.; Rezaei, F.; Ludlow, D.K.; Rownaghi, A.A. Light olefins from renewable resources: Selective catalytic dehydration of bioethanol to propylene over zeolite and transition metal oxide catalysts. Catal. Today 2016, 276, 62–77. [Google Scholar] [CrossRef]
- Xia, W.; Wang, J.; Wang, L.; Qian, C.; Ma, C.; Huang, Y.; Fan, Y.; Hou, M.; Chen, K. Ethylene and propylene production from ethanol over Sr/ZSM-5 catalysts: A combined experimental and computational study. Appl. Catal. B Environ. 2021, 294, 120242. [Google Scholar] [CrossRef]
- Zhang, N.; Mao, D.; Zhai, X. Selective conversion of bio-ethanol to propene over nano-HZSM-5 zeolite: Remarkably enhanced catalytic performance by fluorine modification. Fuel Process. Technol. 2017, 167, 50–60. [Google Scholar] [CrossRef]
- Huang, R.; Fung, V.; Wu, Z.; Jiang, D.-E. Understanding the conversion of ethanol to propene on In2O3 from first principles. Catal. Today 2020, 350, 19–24. [Google Scholar] [CrossRef]
- Wang, F.; Xia, W.; Mu, X.; Chen, K.; Si, H.; Li, Z. A combined experimental and theoretical study on ethanol conversion to propylene over Y/ZrO2 catalyst. Appl. Surf. Sci. 2018, 439, 405–412. [Google Scholar] [CrossRef]
- Xia, W.; Wang, F.; Mu, X.; Chen, K. Remarkably enhanced selectivity for conversion of ethanol to propylene over ZrO2 catalysts. Fuel Process. Technol. 2017, 166, 140–145. [Google Scholar] [CrossRef]
- Hayashi, F.; Iwamoto, M. Yttrium-Modified Ceria As a Highly Durable Catalyst for the Selective Conversion of Ethanol to Propene and Ethene. ACS Catal. 2012, 3, 14–17. [Google Scholar] [CrossRef]
- Hayashi, F.; Tanaka, M.; Lin, D.; Iwamoto, M. Surface structure of yttrium-modified ceria catalysts and reaction pathways from ethanol to propene. J. Catal. 2014, 316, 112–120. [Google Scholar] [CrossRef]
- Iwamoto, M.; Tanaka, M.; Hirakawa, S.; Mizuno, S.; Kurosawa, M. Pulse and IR Study on the Reaction Pathways for the Conversion of Ethanol to Propene over Scandium-Loaded Indium Oxide Catalysts. ACS Catal. 2014, 4, 3463–3469. [Google Scholar] [CrossRef]
- Xue, F.; Miao, C.; Yue, Y.; Hua, W.; Gao, Z. Direct conversion of bio-ethanol to propylene in high yield over the composite of In2O3 and zeolite beta. Green Chem 2017, 19, 5582–5590. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, R.; Zhang, W. One-step high-yield production of renewable propene from bioethanol over composite ZnCeOx oxide and HBeta zeolite with balanced Brönsted/Lewis acidity. Appl. Catal. B Environ. 2020, 279, 119389. [Google Scholar] [CrossRef]
- Jin, H.; Yue, Y.; Miao, C.; Tian, C.; Hua, W.; Gao, Z. Direct and Highly Selective Conversion of Bioethanol to Propylene Over Y-CeO2 and Zeolite Beta Composite. Catal Lett 2022, 153, 230–238. [Google Scholar] [CrossRef]
- Xue, F.; Miao, C.; Yue, Y.; Hua, W.; Gao, Z. Sc2O3-promoted composite of In2O3 and Beta zeolite for direct conversion of bio-ethanol to propylene. Fuel Process. Technol. 2019, 186, 110–115. [Google Scholar] [CrossRef]
- Islam, M.J.; Granollers Mesa, M.; Osatiashtiani, A.; Taylor, M.J.; Manayil, J.C.; Parlett, C.M.A.; Isaacs, M.A.; Kyriakou, G. The effect of metal precursor on copper phase dispersion and nanoparticle formation for the catalytic transformations of furfural. Appl. Catal. B Environ. 2020, 273, 119062. [Google Scholar] [CrossRef]
- Shao, B.; Ren, K.; Zhang, C.; Lin, M.; Zhou, S.; Li, Y.; Zong, B. Effect of Metal Precursors on the Performance of Pt/Y Catalysts for Isobutane-Butene Alkylation Reaction-Regeneration. Ind. Eng. Chem. Res. 2023, 62, 19619–19628. [Google Scholar] [CrossRef]
- Rehman, A.U.; Khan, M.; Maosheng, Z. Hydration behavior of MgSO4–ZnSO4 composites for long-term thermochemical heat storage application. J. Energy Storage 2019, 26, 101026. [Google Scholar] [CrossRef]
- Kurban, G.V.T.; Rego, A.S.C.; Mello, N.M.; Brocchi, E.A.; Navarro, R.C.S.; Souza, R.F.M. Thermodynamics and Kinetic Modeling of the ZnSO4·H2O Thermal Decomposition in the Presence of a Pd/Al2O3 Catalyst. Energies 2022, 15, 548. [Google Scholar] [CrossRef]
- Liao, W.; Tang, C.; Zheng, H.; Ding, J.; Zhang, K.; Wang, H.; Lu, J.; Huang, W.; Zhang, Z. Tuning activity and selectivity of CO2 hydrogenation via metal-oxide interfaces over ZnO-supported metal catalysts. J. Catal. 2022, 407, 126–140. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, X.; Gao, J.; Zhu, Y.; Ma, W. Zn modification of Beta zeolite: Effect on acid sites and propylene oxide rearrangement. Chem. Phys. 2020, 539, 110983. [Google Scholar] [CrossRef]
- Bai, T.; Zhang, X.; Wang, F.; Qu, W.; Liu, X.; Duan, C. Coking behaviors and kinetics on HZSM-5/SAPO-34 catalysts for conversion of ethanol to propylene. J. Energy Chem. 2016, 25, 545–552. [Google Scholar] [CrossRef]
- Sousa, Z.S.B.; Cesar, D.V.; Henriques, C.A.; Teixeira da Silva, V. Bioethanol conversion into hydrocarbons on HZSM-5 and HMCM-22 zeolites: Use of in situ DRIFTS to elucidate the role of the acidity and of the pore structure over the coke formation and product distribution. Catal. Today 2014, 234, 182–191. [Google Scholar] [CrossRef]
- Pinard, L.; Tayeb, K.B.; Hamieh, S.; Vezin, H.; Canaff, C.; Maury, S.; Delpoux, O.; Pouilloux, Y. On the involvement of radical “coke” in ethanol conversion to hydrocarbons over HZSM-5 zeolite. Catal. Today 2013, 218–219, 57–64. [Google Scholar] [CrossRef]
- Ferreira Madeira, F.; Ben Tayeb, K.; Pinard, L.; Vezin, H.; Maury, S.; Cadran, N. Ethanol transformation into hydrocarbons on ZSM-5 zeolites: Influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role. Appl. Catal. A Gen. 2012, 443–444, 171–180. [Google Scholar] [CrossRef]
Catalysts | SBET (m2/g) | Vmicro (cm3/g) | Vmeso (cm3/g) | Vtotal (cm3/g) |
---|---|---|---|---|
HBeta | 560.6 | 0.23 | 0.13 | 0.36 |
Zn/HBeta-S | 162.0 | 0.06 | 0.07 | 0.13 |
Zn/HBeta-C | 216.7 | 0.09 | 0.11 | 0.20 |
Zn/HBeta-Ac | 248.3 | 0.10 | 0.17 | 0.27 |
Zn/HBeta-N | 277.2 | 0.12 | 0.12 | 0.24 |
Catalysts | Acidity Distribution (a.u./g) | ||
---|---|---|---|
Weak (50–300 °C) | Strong (>300 °C) | Total | |
HBeta | 170.9 | 91.1 | 262.0 |
Zn/HBeta-S | 195.6 | 379.8 | 575.4 |
Zn/HBeta-C | 187.0 | 130.8 | 317.8 |
Zn/HBeta-Ac | 89.4 | 47.5 | 136.9 |
Zn/HBeta-N | 41.5 | 33.9 | 75.4 |
Used Catalysts | Tmax (°C) | The Consumption of Oxygen (a.u./g) | |||
---|---|---|---|---|---|
Peak I | Peak II | Peak I | Peak II | Total | |
HBeta | 545 | 611 | 25.8 | 47.5 | 73.3 |
Zn/HBeta-S | 533 | 634 | 64.2 | 39.7 | 103.9 |
Zn/HBeta-C | 551 | 602 | 54.1 | 15.4 | 69.5 |
Zn/HBeta-Ac | 546 | 603 | 39.6 | 19.8 | 59.4 |
Zn/HBeta-N | 518 | 580 | 9.9 | 33.1 | 43.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, T.; Li, X.; Ding, L.; Wang, J.; Xiao, Y.-S.; Cao, B. Direct Conversion of Ethanol to Propylene over Zn-Modified HBeta Zeolite: Influence of Zinc Precursors. Catalysts 2024, 14, 276. https://doi.org/10.3390/catal14040276
Bai T, Li X, Ding L, Wang J, Xiao Y-S, Cao B. Direct Conversion of Ethanol to Propylene over Zn-Modified HBeta Zeolite: Influence of Zinc Precursors. Catalysts. 2024; 14(4):276. https://doi.org/10.3390/catal14040276
Chicago/Turabian StyleBai, Ting, Xiaohui Li, Liang Ding, Jin Wang, Yong-Shan Xiao, and Bin Cao. 2024. "Direct Conversion of Ethanol to Propylene over Zn-Modified HBeta Zeolite: Influence of Zinc Precursors" Catalysts 14, no. 4: 276. https://doi.org/10.3390/catal14040276
APA StyleBai, T., Li, X., Ding, L., Wang, J., Xiao, Y. -S., & Cao, B. (2024). Direct Conversion of Ethanol to Propylene over Zn-Modified HBeta Zeolite: Influence of Zinc Precursors. Catalysts, 14(4), 276. https://doi.org/10.3390/catal14040276